首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
During replication of their linear, single-stranded DNA genomes, parvoviruses generate a series of concatemeric duplex intermediates. We have cloned, into Escherichia coli plasmids, junction fragments from these palindromic concatemers of minute virus of mice DNA spanning both the right end-to-right end (viral 5' to 5') and left end-to-left end (viral 3' to 3') fusions. When mouse cells were transfected with these circular plasmids and superinfected with minute virus of mice, the viral junctions were resolved and the plasmids replicated as linear chromosomes with vector DNA in their centers and viral DNA at their termini. Resolution did not occur when the concatemer joint was replaced by a different palindromic sequence or when the transfected cells were not superinfected, indicating the presence of latent origins of replication which could only be activated by a viral trans-acting factor(s). Moreover, the products of resolution and replication from the two termini were characteristically different. Analysis of individual terminal fragments showed that viral 5' (right-end) sequences were resolved predominantly into "extended" structures with covalently associated copies of the virally encoded NS-1 polypeptide, while bridges derived from the 3' (left) end resolved into both NS-1-associated extended termini and lower-molecular-weight "turn-around" forms in which the two DNA strands were covalently continuous. This pattern of resolution exactly coincides with that seen at the two termini of replicative-form intermediates in normal virus infections. These results demonstrate that the bridge structures are authentic substrates for resolution and indicate that the frequency with which extended versus turn-around forms of each terminus are generated is an intrinsic property of the telomere.  相似文献   

2.
Sera from porcine parvovirus (PPV)-infected swine fetuses immunoprecipitated and 84- to 86-kilodalton polypeptide in addition to the A and B virion structural proteins. This polypeptide, designated NS-1, was present in PPV-infected cell lysates but not in purified virions. Partial proteolysis mapping revealed that NS-1 was not related to the A and B viral structural proteins. All three proteins in infected cells were phosphorylated at serine residues, and NS-1 also contained phosphothreonine. From pulse-labeling experiments with either 32Pi or [35S]methionine, NS-1 was found to first appear 5 to 7 h postinfection, whereas the viral structural polypeptides were first synthesized 9 to 11 h postinfection. Pulse-chase experiments revealed that NS-1 initially appeared as an 84-kilodalton protein and was subsequently structurally modified to forms of slower electrophoretic mobilities. The time of appearance of NS-1 after virus infection coincided with the initiation of viral DNA synthesis, suggesting that this polypeptide (and the modified forms thereof) may be involved in PPV replication.  相似文献   

3.
Adenovirus type 5 contains linear double-stranded DNA with protein covalently attached to the ends of the molecules. The presence of protein at the termini of intracellular viral DNA in adenovirus type 5-infected cells was investigated at different stages during the replication process. The intracellular viral DNA was isolated from the nuclei by lysis in 4 M guanidine hydrochloride. Electrophoresis on agarose gels of HsuI restriction enzyme fragments and sucrose gradient centrifugation were used to detect protein on intracellular viral DNA. After uncoating parental DNA still contains protein attached to the termini of the viral genome. Replicating and mature progeny viral DNA can also be isolated in the form of DNA-protein complexes. These complexes exhibit the same properties as the DNA-protein complex isolated from purified virions. These results suggest that the protein at the termini of intracellular viral DNA is identical to the protein attached to the 5'-ends of the DNA extracted from virions and that it is possibly involved in the replication of viral DNA.  相似文献   

4.
Asymmetric resolution of a parvovirus palindrome in vitro.   总被引:12,自引:11,他引:1       下载免费PDF全文
Cell extracts from murine A9 or human HeLa cells containing wild-type copies the NS1 polypeptide of minute virus of mice (MVM), produced from a recombinant vaccinia virus, can support the resolution of viral 3' termini from palindromic junction fragments of dimeric, replicative-form MVM DNA. Resolution resulted in the generation of two new viral termini, one associated with each arm of the junction palindrome. Telomeres were created in two configurations, "extended" forms, which were covalently associated with NS1 molecules, and smaller "turn-around" forms in which a single arm of the palindrome terminated at the axis of dyad symmetry in a covalent bond which cross-linked the two strands. The in vitro resolution reaction was asymmetric, generating predominantly extended-form termini from one arm of the palindrome but predominantly turn-around forms from the other. This asymmetry was independent of the type of cell used to prepare the in vitro extract or the orientation of the palindrome in the plasmid and was obtained for all cloned junction sequences of 156 bp or more. Two modified forms of the duplex junction fragment, which appeared to be intermediates in the resolution process since they were nicked, covalently linked to NS1, and associated with newly synthesized DNA, were identified. The structures of these intermediates suggest that resolution is initiated by preferential nicking at one of the two candidate resolution sites. The asymmetric nature of this resolution reaction is discussed in terms of current models of MVM DNA replication.  相似文献   

5.
The 5' ends of all newly synthesized single-stranded (s1) DNA genomes of the autonomous parvovirus minute virus of mice are covalently linked to the major virally coded nonstructural protein NS-1, but later in infection this association is disrupted, giving rise to an abbreviated form of single-stranded DNA designated s2. Both s1 and s2 forms are encapsidated and migrate in velocity gradients as 110S particles, and, as such, both appear to be infectious. Most virions are released from A9 cells as s1 particles, but the NS-1 molecules are located on the outside of the virion where they are accessible to both antibodies and enzymes. These polypeptides are cleaved from the encapsidated DNA by nucleolytic or proteolytic digestion, which can occur either in the culture medium or upon subsequent entry into further host cells. Since the s1 to s2 cleavage can be minimized by blocking viral reentry, it is likely that most of the processing occurs after entry into the host cell. Incoming virus is rapidly converted to the s2 form when it is used to infect new host cells, but in vitro removal of the NS-1 molecules with proteases or nucleases fails to influence the infectivity of s1 particles under normal culture conditions. Limited proteolysis of s1 particles with trypsin demonstrates that NS-1 is linked to the DNA via its amino-terminal domain. Analysis of the 5' ends of s1 and s2 forms indicates that there are approximately 24 externally located nucleotides linking the NS-1 molecules to the 5.1-kilobase nuclease-resistant DNA core of the virion.  相似文献   

6.
Newly replicated DNA of the autonomous parvovirus minute virus of mice was pulse-labeled with 32PO4 during the time of maximal viral DNA replication in highly synchronized A9 cells. The subsequent processing of viral DNA-protein complexes was monitored during a chase period with no label. Several distinct classes of duplex replicative-form and progeny single-stranded DNA molecules were characterized and found to accumulate at different times during infection. Analysis of the terminal structures associated with these various forms provided new insights into the mechanism by which viral DNA replicates and, in particular, suggested that interstrand ligation occurs during this process.  相似文献   

7.
Three principal forms of viral DNA have been identified in cells infected with avian sarcoma virus: (i) a linear duplex molecule synthesized in the cytoplasm, (ii) a covalently closed circular molecule found in the nucleus, and (iii) proviral DNA covalently linked to high-molecular-weight cell DNA. To define precursor product relationships among these forms of viral DNA, we performed pulsechase experiments using 5-bromodeoxyuridine to label by density the linear species of viral DNA in the cytoplasm during the first 4 h after infection. After a 4-to 8-h chase with thymidine, a portion of the density-labeled viral DNA was transported to the nucleus and converted to a covalently closed circular form. We conclude that linear viral DNA, synthesized in the cytoplasm, is the precursor to closed circular DNA observed in the nucleus.  相似文献   

8.
9.
Processing of the adenovirus terminal protein.   总被引:26,自引:11,他引:15       下载免费PDF全文
The termini of nascent adenovirus DNA molecules synthesized in vivo are covalently bound to a protein with an apparent molecular weight of 80,000. This protein represents a precursor to the 55,000-dalton protein known to be bound to the 5' termini of mature adenovirus genomes. Processing of the 80-kilodalton precursor to the 55-kilodalton terminal protein is not required for continued adenovirus DNA replication and is probably accomplished during a late stage of virion maturation.  相似文献   

10.
We have previously shown that the 5'-terminal deoxycytidine residue of each nascent adenovirus 5 DNA strand synthesized in vitro is covalently linked to the 80-kilodalton (kd) terminal protein precursor via a phosphodiester bond to a serine residue in the protein. When extracts prepared from adenovirus 5-infected cells are incubated with [alpha-33P]dCTP as the only added deoxynucleoside triphosphate, complexes consisting of nucleotide covalently linked to the 80-kd protein can be detected. The nucleotide moieties present in such complexes include d(pC) and d(pCpA), the 5'-terminal nucleotide and dinucleotide of adenovirus 5 DNA, respectively, as well as some longer oligonucleotides. The formation of these complexes requires the presence of adenovirus DNA containing the attached 55-kd terminal protein and ATP. Extracts from H5ts125-infected cells which are defective in DNA replication catalyze complex formation to the same extent as extracts prepared from wild-type infected cells; thus, the presence of the adenovirus-coded 72-kd DNA-binding protein is apparently not required. Most, if not all, of the 80-kd protein-nucleotide complexes that are formed are noncovalently bound to the input viral DNA. These observations are consistent with the protein-priming model for the initiation of adenovirus DNA replication.  相似文献   

11.
The wild-type herpes simplex virus 1 genome consists of two components, L and S, which invert relative to each other, giving rise to four isomers. Previously we reported the construction of a herpes simplex virus 1 genome, HSV-1(F)I358, from which 15 kilobase pairs of DNA spanning the junction between L and S components were deleted and which no longer inverted (Poffenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2690-2694, 1983). Further studies on the structure of HSV-1(F)I358 revealed the presence of two submolar populations among packaged DNA. The first, comprising no more than 10% of total packaged DNA, consisted of defective genomes with a subunit size of 36 kilobase pairs. The results suggest that this population arose by recombination through a directly repeated sequence inserted in place of the deleted L-S junction. The second minor population consisted of HSV-1(F)I358 DNA linked head-to-tail. Analyses of the structure of HSV-1(F)I358 DNA after infection indicated that the fraction of total DNA linked head-to-tail increased to approximately 40 to 50% within 30 min after exposure of cells to virus. The formation of head-to-tail linkages did not require de novo protein synthesis. Our interpretation of the results is that the termini of full-length DNA molecules are held together during packaging, that a small fraction of the termini is covalently linked during or after packaging, and that the remainder is covalently joined after the release of viral DNA from the infecting virus by either host or viral factors introduced into the cell during infection.  相似文献   

12.
Grubisha O  Traktman P 《Journal of virology》2003,77(20):10929-10942
The linear, double-stranded DNA genome of vaccinia virus contains covalently closed hairpin termini. These hairpin termini comprise a terminal loop and an A+T-rich duplex stem that has 12 extrahelical bases. DeMasi et al. have shown previously that proteins present in infected cells and in virions form distinct complexes with the telomeric hairpins and that these interactions require the extrahelical bases. The vaccinia virus I6 protein was identified as the protein showing the greatest specificity and affinity for interaction with the viral hairpins (J. DeMasi, S. Du, D. Lennon, and P. Traktman, J. Virol. 75:10090-10105, 2001). To gain insight into the role of I6 in vivo, we generated eight recombinant viruses bearing altered alleles of I6 in which clusters of charged amino acids were changed to alanine residues. One allele (temperature-sensitive I6-12 [tsI6-12]) conferred a tight ts phenotype and was used to examine the stage(s) of the viral life cycle that was affected at the nonpermissive temperature. Gene expression, DNA replication, and genome resolution proceeded normally in this mutant. However, proteolytic processing of structural proteins, which accompanies virus maturation, was incomplete. Electron microscopic studies confirmed a severe block in morphogenesis in which immature, but no mature, virions were observed. Instead, aberrant spherical virions and large crystalloids were seen. When purified, these aberrant virions were found to have normal protein content but to be devoid of viral DNA. We propose that the binding of I6 to viral telomeres directs genome encapsidation into the virus particle.  相似文献   

13.
The linear form of Epstein-Barr virus (EBV) DNA has homologous direct tandem repeats of approximately 500 bp at each terminus (TR). After infection, EBV DNA circularizes via the TR to form the intracellular episomal DNA. To analyze the mechanism of the synthesis of linear DNA through possible replicative intermediates, the terminal fragments were identified in the total intracellular DNA and the covalently closed circular DNA from a productively infected cell line after induction of replication or after treatment with an inhibitor of viral DNA synthesis. These studies indicate that some of the fused terminal fragments detected in the total intracellular DNA are replication-dependent forms which are selectively excluded from the covalently closed circular fraction and are eliminated after treatment with acyclovir. The EBV terminal restriction enzyme fragments were identified in three producer cell lines, each with a characteristic number of TR in the intracellular episomal DNA. Identification of the termini in cell lines established with the three virus strains revealed that the newly transformed cell lines had a greater number of TR than did the template DNA in the producer cell line. The increase in the number of TR in progeny episomes indicates that linear DNA is produced from concatameric replicative intermediates rather than from amplified catenated circular intermediates.  相似文献   

14.
15.
The DNA sequence of the ground squirrel hepatitis virus (GSHV) genome predicts the existence of several proteins in addition to the major surface (S) and core antigens. These include the pre-S1 and pre-S2 proteins, initiated at sites within the open reading frame preceding and continuous with the coding region for the S gene product, and the X protein, the putative product of an independent reading frame. Using an antibody directed against a peptide predicted by codons 130 to 143 of the pre-S1 reading frame, we identified a 43-kilodalton product of the pre-S1 coding region in preparations of GSHV surface antigen purified from the sera of infected animals. In addition, by immunoprecipitation of S- and pre-S-specific in vitro translation products with ground squirrel sera obtained after GSHV infection, we determined that antibodies arise to both S and pre-S determinants. The antibody response to pre-S includes, in some cases, reactivity to pre-S1-specific domains and is not always associated with an anti-S response. Similarly, by production of the viral X gene product in vitro followed by immunoprecipitation with ground squirrel sera, we showed that antibodies to this viral gene product also arise during infection, indicating that X antigenic determinants are synthesized during viral infection and are recognized by the host immune system.  相似文献   

16.
SV80 cells, a simian virus 40 (SV40)-transformed derivative of a strain of human fibroblasts, synthesize an 8-kilodalton anti-T reactive polypeptide in addition to large T and small t antigens. Although not observed during lytic infection carried out under a variety of conditions, an anti-T reactive molecule which comigrated with the SV80 8-kilodalton protein during sodium dodecyl sulfate-polyacrylamide gel electrophoresis was synthesized by one of five other SV40-transformed cell lines studied. The SV40 8-kilodalton protein was present in lysates of cells exposed to a brief pulse of radioactive methionine and did not accumulate during an extended chase period. This polypeptide could not by generated by mixing an unlabeled extract of SV80 cells with a labeled extract of infected monkey cells. The 8-kilodalton molecule reacts with antibody raised against homogeneous large T antigen, is present only in the cytoplasm, is not complexed with T, lacks DNA-binding properties, and is not phosphorylated. This protein could be translated in a cell-free system programmed by SV40-specific mRNA. At least two messenger species (approximately 19S and approximately 22S) directed its synthesis. Tryptic peptide analysis of [35S]methionine-labeled proteins demonstrated that the 8-kilodalton protein contains all eight of the common T/t peptides and one additional peptide not present in the maps of t or T. It lacks both of the t-unique peptides. The organization of the integrated viral sequences which encode this molecule was determined by restriction endonuclease analysis. In particular, SV80 cells contain at least two integrated SV40 genomes which are oriented in tandem, with an intervening cellular sequence..  相似文献   

17.
Synthesis of Avian Oncornavirus DNA in Infected Chicken Cells   总被引:25,自引:15,他引:10       下载免费PDF全文
The intracellular synthesis and integration of viral DNA (vDNA) into the host cell genome was studied in cultured chicken embryo fibroblasts infected with avian sarcoma or leukemia viruses. The newly synthesized vDNA was detected by hybridization with 70S viral RNA. Extraction of infected cell DNA by the selective procedure of Hirt resulted in the enrichment of newly synthesized vDNA in the low molecular weight supernatant fraction while leaving the bulk of cellular DNA containing integrated vDNA in the high molecular weight pellet fraction. This approach led to detection of intracellular vDNA synthesis within 1 h after infection and to vDNA integration into cellular DNA within 24 h. There was a several-fold increase in the vDNA content of infected cells during the initial phase of virus infection. But only a part of this newly synthesized vDNA appeared to become covalently linked with high molecular weight cellular DNA. Most of the remaining unintegrated vDNA gradually disappeared. The sedimentation profiles of minimally sheared cellular DNA in alkaline sucrose velocity gradients suggest that vDNA is synthesized as free linear molecules of approximately 3 x 10(6) daltons which subsequently are covalently linked to host cell DNA.  相似文献   

18.
Previous reports (H. Delius and J. B. Clements, J. Gen. Virol. 33:125-134, 1976; G. S. Hayward, R. J. Jacob, S. C. Wadsworth, and B. Roizman, Proc. Natl. Acad. Sci. U.S.A. 72:4243-4247, 1975; B. Roizman, G. S. Hayward, R. Jacob, S. W. Wadsworth, and R. W. Honess, Excerpta Med. Int. Congr. Ser. 2:188-198, 1974) have shown that herpes simplex virus DNA extracted from virions accumulating in the cytoplasm of infected cells consists of four populations of linear molecules differing in the orientation of the covalently linked large (L) and small (S) components relative to each other. Together, these four isomeric arrangements of viral DNA display four different termini and four different L-S component junctions. In the studies reported in this paper, we analyzed with restriction endonucleases the newly replicated viral DNA shortly after the onset of viral DNA synthesis, the progeny DNA accumulating in the nuclei late in infection, and rapidly sedimenting DNA present in nuclei of infected cells at 8 h after infection. In each instance the nuclear viral DNA contained a decreased concentration of all four terminal fragments and an increase in the concentration of fragments spanning the junction of L and S components relative to the concentration of other DNA fragments. The results are consistent with the hypothesis that the viral DNA accumulating in the nuclei consists of head-to-tail concatemers arising from the replication of DNA by a rolling-circle mechanism. A model is presented for generation of all four isomeric arrangements of herpes simplex virus DNA from one arrangement based on excision and repair of unit length DNA from head-to-tail concatemers and known features of the sequence arrangement of viral DNA.  相似文献   

19.
20.
The specificity of Staphylococcus aureus and protein A-Sepharose (PA-S) were compared in the radioimmunoprecipitation assay for the characterization of monoclonal antibodies (mAbs) against rotavirus proteins. Five mAbs directed against bovine rotavirus Q17 proteins Vp6 and Vp7 and one mAb directed against human rotavirus protein Vp4 were used in this study. mAbs directed against other viruses, NS-1 culture supernatant and ascitic fluid, were used as control reagents. A non-specific immunoprecipitation of the viral protein Vp6 was always found with S. aureus, but not with PA-S. mAb 74 reacted with rotavirus antigens in ELISA and in indirect immunofluorescence assay but did not immunoprecipitate a viral protein with PA-S. This mAb immunoprecipitated the viral protein Vp6 when S. aureus reagent was used. This false positive reaction was always present and could lead to confusing results in the analysis and characterization of mAbs against rotavirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号