首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 654 毫秒
1.
Optimum conditions for the rapid, efficient, nondestructive determination of rubber producing potential in guayule (Parthenium argentatum) were established. The rubber producing potential may be defined as the ability of the plant material to synthesize rubber from a precursor under specified conditions. To achieve this, stem slices taken from the first 5 centimeters of branches were incubated with [14C]acetate as precursor in 0.1 molar phosphate buffer (pH 6.5) at 26°C for 16 hours in the light. The 14C from labeled acetate and acetyl coenzymeA were efficiently incorporated into rubber whereas the 14C from both mevalonic acid (MVA) and isopentenylpyrophosphate (IPP) were poorly incorporated. Incorporation of 68.6% of the 14C from labeled IPP into the acetone extractable material suggests that most of the IPP was channeled down the lower terpenoid branch of the polyisoprene biosynthetic pathway. The incorporation of 14C from labeled acetate into rubber was most efficient at temperatures between 20 and 25°C. The rubber producing potential was also found to be dependent on light intensity. The roots which represent about one-third of the plant biomass not only had the highest rubber producing potential but also contained the highest amount of rubber (7.6%), indicating that the root system could be a major source of rubber. The mature stem bark also had a high rubber content and rubber producing potential, whereas the young stem had a low rubber content and a lower potential for producing rubber. The leaves showed little potential to incorporate labeled acetate into rubber and no more than 0.5% rubber was found in guayule leaves.  相似文献   

2.
Washed rubber particles isolated from stem homogenates of Parthenium argentatum Gray by ultracentrifugation and gel filtration on columns of LKB Ultrogel AcA34 contain rubber transferase which catalyzes the polymerization of isopentenyl pyrophosphate into rubber polymer. The polymerization reaction requires Mg2+ isopentenyl pyrophosphate, and an allylic pyrophosphate. The Km values for Mg2+, isopentenyl pyrophosphate, and dimethylallyl pyrophosphate were 5.2 × 10−4 molar, 8.3 × 10−5 molar, and 9.6 × 10−5 molar, respectively. The molecular characteristics of the rubber polymer synthesized from [14C]isopentenyl pyrophosphate were examined by gel permeation chromatography on three linear columns of 1 × 106 to 500 Ångstroms Ultrastyragel in a Waters 150C Gel Permeation Chromatograph. The peak molecular weight of the radioactive polymer increased from 70,000 in 15 minutes to 750,000 in 3 hours. The weight average molecular weight of the polymer synthesized over a 3 hour period was 1.17 × 106 compared to 1.49 × 106 for the natural rubber polymer extracted from the rubber particles. Over 90% of the in vitro formation of the rubber polymer was de novo from dimethylallyl pyrophosphate and isopentenyl pyrophosphate. Treatment of the washed rubber particles with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate solubilized the rubber transferase. The solubilized enzyme(s) catalyzed the polymerization of isopentenyl pyrophosphate into rubber polymer with a peak molecular weight of 1 × 105 after 3 hours of incubation with Mg2+ and dimethylallyl pyrophosphate. The data support the conclusion that the soluble preparation of rubber transferase is capable of catalyzing the formation of a high molecular weight rubber polymer from an allylic pyrophosphate initiator and isopentenyl pyrophosphate monomer.  相似文献   

3.
Cold Acclimation in Arabidopsis thaliana   总被引:27,自引:13,他引:14       下载免费PDF全文
The abilities of two races of Arabidopsis thaliana L. (Heyn), Landsberg erecta and Columbia, to cold harden were examined. Landsberg, grown at 22 to 24°C, increased in freezing tolerance from an initial 50% lethal temperature (LT50) of about −3°C to an LT50 of about −6°C after 24 hours at 4°C; LT50 values of −8 to −10°C were achieved after 8 to 9 days at 4°C. Similar increases in freezing tolerance were obtained with Columbia. In vitro translation of poly(A+) RNA isolated from control and cold-treated Columbia showed that low temperature induced changes in the population of translatable mRNAs. An mRNA encoding a polypeptide of about 160 kilodaltons (isoelectric point about 4.5) increased markedly after 12 to 24 h at 4°C, as did mRNAs encoding four polypeptides of about 47 kilodaltons (isoelectric points ranging from 5-5.5). Incubation of Columbia callus tissue at 4°C also resulted in increased levels of the mRNAs encoding the 160 kilodalton polypeptide and at least two of the 47 kilodalton polypeptides. In vivo labeling experiments using Columbia plants and callus tissue indicated that the 160 kilodalton polypeptide was synthesized in the cold and suggested that at least two of the 47 kilodalton polypeptides were produced. Other differences in polypeptide composition were also observed in the in vivo labeling experiments, some of which may be the result of posttranslational modifications of the 160 and 47 kilodalton polypeptides.  相似文献   

4.
5.
6.
Guayule (Parthenium argentatum Gray) contains rubber in the parenchymatous cells of stems and roots. Stem anatomy of P. argentatum is described along with that of P. incanum H.B.K. (mariola). Anatomy of these species differs significantly. Phloem rays in both species increase in width by cell division and expansion; however, the increase observed in mariola is less as compared to that in guayule. Axial xylem parenchyma in guayule is generally a two-cell strand as compared to the fusiform axial xylem parenchyma observed in mariola. Vascular ray cells and cells of the pith region of guayule are parenchymatous, whereas those of mariola are sclerenchymatous. As a result of introgression between guayule and mariola, three forms of guayule exist in the native stands of Mexico. Morphological differences between these guayule plants have been described previously. The stem anatomy of these three groups of plants differ importantly. Group I guayule plants, least introgressed by mariola, have taller rays with the cells of pith region and vascular rays parenchymatous. Group III plants, highly introgressed by mariola, have a few to many cells of vascular rays and pith with lignified secondary walls and shorter rays. Many of the anatomical characteristics of group II plants, somewhat introgressed by mariola, are intermediate between group I and III plants.  相似文献   

7.
8.
Identification of the leaf vacuole as a major nitrate storage pool   总被引:15,自引:11,他引:15       下载免费PDF全文
Highly purified vacuoles were isolated from protoplasts derived from green barley (Hordeum vulgare var. Numar) leaves, in order to determine their role as a NO3 storage sink. α-Mannosidase and acid phosphatase activities were used as markers to identify vacuoles, α-mannosidase being the more suitable. Nitrate and α-mannosidase, which were released from vacuoles destroyed during lysis of protoplasts, moved at unequal rates in the density gradient used for vacuole isolation. Purified vacuoles retained less NO3 than α-mannosidase during a single washing. Empirically determined corrections were used to account for NO3 movement in estimating the percentage of total cellular nitrate found in the vacuole. Vacuoles from plants grown in the presence of NO3 contained 58% of the total cellular NO3 and therefore represent a major NO3 storage pool.  相似文献   

9.
The uptake of (+)-S- and (−)-R-abscisic acid (ABA) by suspension culture cells of hopbush (Dodonaea viscosa L. Jacqu.) was followed over a range of temperatures, pH values, and time intervals. The natural (+)-S-ABA was taken up about five times faster than the unnatural (−)-R-ABA. Each 10°C rise in temperature from 1 to 31°C increased the rate of uptake (Q10) of (+)-S-ABA about 2.2-fold, whereas that of the (−)-R increased with a Q10 of 1.4. (+)-ABA was taken into the cells by a saturable carrier, but (−)-ABA and both enantiomers of 2-trans-ABA were not; they appeared to enter by passive diffusion. The uptake of (+)-ABA was linear over the first 8 hours but concentrations within the cells decreased after 2 hours to remain constant after 4 hours as rapid metabolism was induced. Electron microscopy of thin sections of the cells, combined with a stereological analysis of their shape, showed that the vacuoles comprised 80% of the cell volume and the cytoplasm plus nucleus comprised 20%. There were no photosynthetically active plastids in the cells. Concentrations of the endogenous ABA in the cytoplasm (pH 7.32) and vacuoles (pH 5.88) were calculated by applying the Henderson-Hasselbalch equation (ABA pKa 4.7) so that, provided no active metabolic redistribution occurred, the concentration in the cytoplasm was 7.9 micromolar and that in the vacuole was 0.3 micromolar. In vivo pH was measured by 31P nuclear magnetic resonance spectroscopy.  相似文献   

10.
Leaf resistance for water vapor (total diffusion resistance minus boundary layer resistance), transpiration, and leaf temperature were measured in attached leaves of greenhouse-grown Xanthium strumarium L. plants that had been pretreated for 72 hours with high (40 C day, 35 C night), or low (10 C day, 5 C night) air temperatures. Measurements were made in a wind tunnel at light intensity of 1.15 cal cm−2 min−1, air temperatures between 5 and 45 C, and wind speed of 65 cm sec−1. Leaf resistances in low temperature pretreated plants were higher (8 to 27 sec cm−1) than in controls or high temperature pretreated plants (0.5 to 3 sec cm−1) at leaf temperatures between 5 and 25 C. Thus, the pretreatment influenced stomatal aperture.  相似文献   

11.
Ice Nucleation Activity in Lichens   总被引:7,自引:0,他引:7       下载免费PDF全文
A newly discovered form of biological ice nucleus associated with lichens is described. Ice nucleation spectra of a variety of lichens from the southwestern United States were measured by the drop-freezing method. Several epilithic lichen samples of the genera Rhizoplaca, Xanthoparmelia, and Xanthoria had nuclei active at temperatures as warm as −2.3°C and had densities of 2.3 × 106 to more than 1 × 108 nuclei g−1 at −5°C (2 to 4 orders of magnitude higher than any plants infected with ice nucleation-active bacteria). Most lichens tested had nucleation activity above −8°C. Lichen substrates (rocks, plants, and soil) showed negligible activity above −8°C. Ice nucleation-active bacteria were not isolated from the lichens, and activity was not destroyed by heat (70°C) or sonication, indicating that lichen-associated ice nuclei are nonbacterial in origin and differ chemically from previously described biological ice nuclei. An axenic culture of the lichen fungus Rhizoplaca chrysoleuca showed detectable ice nucleation activity at −1.9°C and an ice nucleation density of 4.5 × 106 nuclei g−1 at −5°C. It is hypothesized that these lichens, which are both frost tolerant and dependent on atmospheric moisture, derive benefit in the form of increased moisture deposition as a result of ice nucleation.  相似文献   

12.
Standardization of biomass production in different vessels and bioreactor using explants and media for growth, total phenolic content and antioxidant capacity of shoot culture of Bacopa monnieri is described. Maximum number of shoots per explant, higher explants response irrespective of the type of explants, and higher shoot length was obtained on MS medium containing BAP (2.5 mg l−1) and IAA (0.01 mg l−1) with 3 % sucrose. This medium was selected by varying BAP concentration and recorded optimal for shoot culture on gelled medium. The condition of 0.5 cm explant size and 20 explant/40 ml (1 explant/2 ml) was optimal for high explant response, number of shoots per explant regenerated and shoots length. Among the different vessels used, maximum growth index was achieved in Growtek bioreactor (10.0) followed by magenta box (9.16), industrial glass jar (7.7) and conical flask (7.2). The cultures grown in conical flask (100 ml) were used as control. The total phenolic content and antioxidant capacity of in vitro grown plants was higher to that recorded for in vivo material. Among in vitro regenerated plants, the activity was maximal in the tissues grown in 250 ml conical flask. The most critical function for vessels is to support the optimum profusion (growing area for maximum growth) of shoots and for B. monnieri, Growtek bioreactor supported 1980 shoots l−1 medium as compared to control (938 shoots l−1). Growtek bioreactor was considered effective system to produce B. monnieri biomass in culture without loss of antioxidant properties.  相似文献   

13.
Involvement of abscisic Acid in potato cold acclimation   总被引:41,自引:22,他引:19       下载免费PDF全文
Upon exposure to 2°C day/night (D/N), leaves of Solanum commersonii (Sc) began acclimating on the 4th day from a −5°C (killing temperature) hardy level to −12°C by the 15th day. Leaves of S. tuberosum L. (St) cv `Red Pontiac' typically failed to acclimate and were always killed at −3°C. Leaves of control (20/15°C, D/N) and treated plants (2°C, D/N) of St showed similar levels of free abscisic acid (ABA) during a 15-day sampling period. In treated Sc plants, however, free ABA contents increased 3-fold on the 4th day and then declined to their initial level thereafter. The increase was not observed in leaves of Sc control plants.

Treated St plants showed a slightly higher content of leaf soluble protein than controls. In Sc, leaves of controls maintained relatively constant soluble proteins, but leaves of treated plants showed a distinct increase. This significant increase was initiated on the 4th day, peaked on the 5th day, and remained at a high level throughout the 15-day sampling period.

Exogenously applied ABA induced frost hardiness in leaves of Sc plants whether plants were grown under a 20°C or 2°C temperature regime. When cycloheximide was added to the medium of stem-cultured plants at the beginning of 2°C acclimation, or at the beginning of the ABA treatment in the 20°C regime, it completely inhibited the development of frost hardiness. However, when cycloheximide was added to plants on the 5th day during 2°C acclimation, the induction of frost hardiness was not inhibited. The role of ABA in triggering protein synthesis needed to induce frost hardiness is discussed.

  相似文献   

14.
A large population of Azorhizobium caulinodans was present on Sesbania rostrata; up to 5 × 10−5 cm−2 were found on leaves and fewer were found on flowers. Although A. caulinodans was also present on the leaves of Sesbania aculeata (nonhost), the populations were much smaller than that observed on S. rostrata. The population of S. aculeata rhizobia on host leaves was less than 30 cm−2, and their presence on host flowers was sporadic. Aeschynomene afraspera and Aeschynomene aspera rhizobia, which are profusely stem nodulating, were found on the leaves of host and nonhost plants and on the flowers of host plants, but, Aeschynomene pratensis and Aeschynomene sensitiva rhizobia were not found on the leaves and flowers of host plants.  相似文献   

15.
The anion contents of young barley leaves and of mesophyll protoplasts from the leaves was compared. Anion loss from the protoplasts during isolation was small. Although only about 60% of the leaf cells were mesophyll cells, phosphate and sulfate contents of the mesophyll cells accounted for almost 90% of the leaf contents. Chloride accumulated in the leaf epidermis. The rapid isolation of vacuoles from mesophyll protoplasts permitted the determination of vacuolar ion concentrations. Sodium and nitrate levels were very low in the cytoplasm, and much higher in the vacuole. When barley plants were grown in the presence of low NaCl levels, chloride concentrations were comparable in cytoplasm and vacuole, and similar observations were made with sulfate. Cytoplasmic phosphate concentrations were close to 30 millimolar and potassium concentrations 100 millimolar. During a 30 minute incubation period at room temperature, anion contents of isolated vacuoles decreased considerably. Efflux of NO3 was faster than that of Cl. Phosphate and sulfate crossed the tonoplast only slowly. 4,4′-Diisothiocyano-2,2′-stilbenedisulfonic acid partially inhibited the efflux of nitrate and, to a lesser extent, that of chloride. Decreased efflux was also observed in the presence of MgATP. In remarkable contrast, p-chloromercuribenzene sulfonate and HgCl2 stimulated the efflux of nitrate and chloride, but not of phosphate. Labeled chloride was taken up by isolated vacuoles. The apparent Km for chloride uptake at low chloride concentrations was 2.3 millimolar. At elevated chloride concentrations, chloride did not display saturation characteristics but, rather, characteristics of a diffusional process. Uptake was stimulated by ATP.  相似文献   

16.
Adaptational changes occurring in the lipids and fatty acids of the cell and the thylakoid membrane in response to high light treatment, was studied in 30 days old rice (Oryza sativa L. cv. Jyothi) plants grown under low (150–200 μmol m−2 s−1) or moderate (600–800 μmol m−2 s−1) light conditions. Results were compared with rice plants grown in high (1200–2200 μmol m−2 s−1) light conditions. Exposure of rice plants and isolated chloroplast to high light, resulted in an increase in the amount of malonaldehyde, indicating oxidation of membrane lipids. Qualitative and quantitative changes in the phosphoglycolipids and quantitative changes in neutral lipids were observed in rice plants grown under the different growth conditions. A few of the phosphoglycolipids and neutral lipids were present exclusively in plants grown at low or moderate or high light, indicating requirement of different type of lipid composition of rice plants in response to their different growth irradiances. However, no significant quantitative changes were observed in the different saturated and unsaturated fatty acid groups of total lipids in low, moderate and high light grown rice plants, as a result of exposure to high light. No qualitative changes in the fatty acid composition due to difference in growth irradiance or high light treatment were seen. The changes observed in the phosphoglycolipids and neutral lipid composition of cell and thylakoid membrane of low, moderate and high light grown rice plants in response to high light, are probably the result of physiological changes in the rice plants, to sustain optimum structure and function of the cell and thylakoid membrane to maintain active physiological functions to endure high light conditions.  相似文献   

17.
Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67±0.99 cm) and M. galloprovincialis (shell height: 4.43±0.98 cm) was 77.84±7.77 and 6.37±0.67 mg ind−1•d−1, respectively. The total solid suspension (TSS) deposition rates of oyster and mussel treatments were 3.73±0.27 and 2.76±0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P<0.001). Furthermore, organic matter and C, N in the sediments of bivalve treatments were significantly lower than those in the sediments of the control (P<0.05). It was suggested that the filter feeders C. gigas and M. galloprovincialis had considerable potential to filter and accelerate the deposition of suspended particles from industrial aquaculture wastewater, and simultaneously yield value-added biological products.  相似文献   

18.
The cultivated monkey kidney cell is subject to changes when infected with ECHO viruses 6, 9, and 19. The electron microscope reveals three stages of infection: (a) initial stage. The nucleus appears granular with chromatin condensation on the nuclear envelope. The cytoplasm contains electron transparent vesicles and vacuoles forming nests. (b) Intermediate stage. The nucleus seems to diminish, appearing more pycnotic and displaced toward the periphery. The cytoplasm is filled with electron transparent vacuoles and vesicles, and dense masses as well as some spiral bodies are seen. The mitochondria retain their shape. Dense particles are seen, which are possibly of viral nature. (c) Final stage. The nucleus is contracted to a narrow strip close to the cellular membrane or is completely destroyed. The cytoplasm shows no apparent changes. Crystals are frequently observed in cells infected with ECHO viruses 6 and 19, consisting of dense particles with an average diameter of 14.4 mµ ranging from approximately 13.2 to 15.6 mµ for ECHO virus 6, and 14.5 mµ ranging from approximately 12.5 to 16.5 mµ for ECHO virus 19. These particles are clustered in hexagonal packages forming angles of 75° and 105°. The particles in most crystals are arranged in rows separated by a constant distance, the latter varying from one crystal to another and being approximately 1.5 and 2.5 times the distance between particles. Other particles were observed which, however, are not considered to be of viral nature.  相似文献   

19.
20.
A simple steady state iterative solution of Münch pressure-flow in unbranched sieve tubes containing only water and sucrose is derived. The iterative equations can be solved on a programmable desk calculator. Solutions are presented for steady state transport with specific mass transfer rates up to 1.5 × 10−5 mole second−1 centimeters−2 (= 18.5 grams hour−1 centimeters−2) over distances in excess of 50 meters. The calculations clearly indicate that a Münch pressure-flow system can operate over long distances provided (a) the sieve tube is surrounded by a semipermeable membrane; (b) sugars are actively loaded in one region and unloaded at another; (c) the sieve pores are unblocked so that the sieve tube hydraulic conductivity is high (around 4 centimeters2 second−1 bar−1); (d) the sugar concentration is kept high (around one molar in the source region); and (e) the average sap velocity is kept low (around 20-50 centimeters hour−1). The dimensions of sieve cells in several species of plants are reviewed and sieve tube hydraulic conductivities are calculated; the values range from 0.2 to 20 centimeters2 second−1 bar−1. For long distance pressure-flow to occur, the hydraulic conductivity of the sieve cell membranes must be about 5 × 10−7 centimeters second−1 bar−1 or greater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号