首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Gajda B  Smorag Z 《Theriogenology》1993,39(2):499-506
The effects of equilibration time, glycerol (GLY), and 1,2-propanediol (PROH) concentration, and of vitrification and sucrose solution on the viability of 1- and 2-cell rabbit embryos were investigated. After collection, the embryos were equilibrated for 5 or 10 minutes in phosphate buffered saline (PBS) containing 10% GLY-20% PROH and were exposed for 30 seconds at 4 degrees C or were exposed and vitrified in one of two vitrification solutions 35% GLY-35% PROH or 20% GLY-50% PROH. The in vitro survival rates of 1-cell embryos equilibrated for both 5 and 10 minutes were lower (34.0 and 48.0%, respectively) than those of 2-cell embryos (78.8 and 68.5%, respectively; P<0.01). No differences were noted in the viability of embryos exposed to the 2 vitrification solutions. Following vitrification in a mixture of 35% GLY-35% PROH, the survival rates of 1- and 2-cell embryos were 18.3 and 13.7% and 19.6 and 10.4% for 5 and 10 minutes of equilibration, respectively. The survival rates of 1- and 2-cell embryos vitrified in a solution of 20% GLY-50% PROH were 25.7 and 35.4% and 26.2 and 21.3% for 5 and 10 minutes of equilibration, respectively. The survival rates of 1-and 2-cell embryos stored in 1M sucrose solution were 63.8 and 84.0%, respectively. In conclusion, the viability of vitrified 1- and 2-cell rabbit embryos was reduced as a consequence of their equilibration before vitrification, the exposure to vitrification solution and the dilution in a sucrose solution rather than of the vitrification process itself.  相似文献   

2.
Lin TA  Chen CH  Sung LY  Carter MG  Chen YE  Du F  Ju JC  Xu J 《Theriogenology》2011,75(4):760-768
The objective was to determine cryotolerance of in vitro cultured rabbit embryos to the open-pulled straw (OPS) method. Overall, 844 rabbit embryos at pronuclear, 2- to 4-cell, 8-cell, and morula/blastocyst stages were vitrified, and ≥ 1 mo later, were sequentially warmed, rehydrated, and subjected to continuous culture (n = 691) or embryo transfer (ET, n = 153). Embryos vitrified at the 8-cell stage or beyond had greater survival, expanded blastocyst and hatched blastocyst rates in vitro, and better term development than those vitrified at earlier stages. The 8-cell group had 70.1% expanded blastocysts, 63.7% hatched blastocysts, and 25.7% term development, as compared to 1.5-17.7%, 1.5-4.3% and 2.8-3.7% in the pronuclear, 2-cell and 4-cell embryos, respectively (P < 0.05). The expanded and hatched blastocyst rates in vitrified morula/blastocyst post-warming were higher than that in the 8-cell group; however, their term development after ET was similar (8-cell vs morula/blastocyst: 25.7 vs 19.4%, P > 0.05). Development after ET was comparable between vitrified-warmed embryos and fresh controls at 8-cell and morula/blastocyst stages (19.4-25.7 vs 13.7-26.6%, P > 0.05). For embryos at pronuclear or 2- to 4-cell stages, however, term rates were lower in the vitrified-warmed (2.8-3.7%) than in fresh controls (28.6-35.6%, P < 0.05). Therefore, cultured rabbit embryos at various developmental stages had differential crytolerance. Under the present experimental conditions, the 8-cell stage appeared to be the critical point for acquiring cryotolerance. We inferred that for this OPS cryopreservation protocol, rabbit embryos should be vitrified no earlier than the 8-cell stage, and stage-specific protocols may be needed to maximize embryo survival after vitrification and re-warming.  相似文献   

3.
Two experiments were conducted to assess the viability of bovine blastocysts obtained by in vitro fertilization of oocytes matured in vitro (IVM-IVF) and cryopreserved by vitrification. In Expt 1, the optimal concentrations of glycerol and 1,2-propanediol in the basic medium (modified TCM199) for cooling and warming without formation of ice crystals were determined by plunging the solution into liquid nitrogen and then warming it in a water bath at 15 degrees C; when both glycerol and 1,2-propanediol were present in the solution (> 45% v/v), vitrification of the medium was observed. In Expt 2, IVM-IVF blastocysts were equilibrated to the mixture of glycerol and 1,2-propanediol (0% to 45%) at 15 degrees C in a stepwise manner as follows: (i) in one step, for 18 min to the final vitrification solution; (ii) in two steps, for 8 min in the first step and 10 min in the second step; (iii) in four steps, for 4 min in the first three steps and 6 min in the last step; (iv) in eight steps, for 2 min in each step, but 4 min in the last step; and (v) in 16 steps, for 1 min in each step, but 3 min in the last step. After removal of cryoprotectants, the blastocysts were cultured for 24 h in vitro. The survival rates for the embryos equilibrated in 1, 2, 4, 8 and 16 step(s) were 56, 89, 100, 100 and 100%, respectively. The blastocysts equilibrated in 1, 2, 4, 8 and 16 steps were vitrified by plunging the straws containing them into liquid N2, thawed and cultured in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Vitrification of rat embryos at various developmental stages   总被引:6,自引:0,他引:6  
Han MS  Niwa K  Kasai M 《Theriogenology》2003,59(8):1851-1863
The effect of developmental stage on the survival of cryopreserved rat embryos was examined. Wistar rat embryos at various developmental stages were vitrified by a 1-step method with EFS40, an ethylene glycol-based solution, or by a 2-step method with EFS20 and EFS40. After warming, the survival of the embryos was assessed by their morphology, their ability to develop to blastocysts (or expanded blastocysts for blastocysts) in culture, or their ability to develop to term after transfer. Most (91-100%) of the embryos recovered after vitrification were morphologically normal in all developmental stages. However, the developmental ability of 1-cell embryos was quite low; exposing them to EFS40 for just 0.5 min decreased the in vitro survival rate from 76 to 9%. The survival rates of 2-cell embryos and blastocysts, both in vitro and in vivo, were significantly higher with a 2-step vitrification process than with a 1-step vitrification process. Very high in vitro survival rates (94-100%) were obtained in 4- to 8-cell embryos and morulae in the 1-step method. Although survival rates in vivo of 4-cell (40%) and 8-cell (4%) embryos vitrified by the 1-step method were comparatively low, the values were similar to those obtained in non-vitrified fresh embryos. When morulae vitrified by the 1-step method were transferred to recipients, the in vivo survival rate (61%) was high, and not significantly different from that of fresh embryos (70%). These results show that rat embryos at the 2-cell to blastocyst stages can be vitrified with EFS40, and that the morula stage is the most feasible stage for embryo cryopreservation in this species.  相似文献   

5.
Inner cell mass (ICM) and trophectoderm cell lineages in preimplantation mouse embryos were studied by means of iontophoretic injection of horseradish peroxidase (HRP) as a marker. HRP was injected into single blastomeres at the 2- and 8-cell stages and into single outer blastomeres at the 16-cell and late morula (about 22- to 32-cell) stages. After injection, embryos were either examined immediately for localization of HRP (controls) or they were allowed to develop until the blastocyst stage (1 to 3.5 days of culture) and examined for the distribution of labeled cells. In control embryos, HRP was confined to one or two outer blastomeres. In embryos allowed to develop into blastocysts, HRP-labeled progeny were distributed into patches of cells, showing that there is limited intermingling of cells during preimplantation development. A substantial fraction of injected blastomeres contributed descendants to both ICM and trophectoderm (95, 58, 44, and 35% for injected 2-cell, 8-cell, 16-cell, and late morula stages, respectively). Although more than half of the outer cells injected at 16-cell and late morula stages contributed descendants only to trophectoderm (53 and 63%, respectively), some outer cells contributed also to the ICM lineage even at the late morula stage. Although the mechanism for allocation of outer cells to the inner cell lineage is unknown, our observation of adjacent labeled mural trophectoderm and presumptive endoderm cells implicated polarized cell division. This observation also suggests that mural trophectoderm and presumptive endoderm are derived from common immediate progenitors. These cells appear to separate into inner and outer layers during the fifth cleavage division. Our results demonstrate the usefulness of HRP as a cell lineage marker in mouse embryos and show that the allocation of cells to ICM or trophectoderm begins after the 2-cell stage and continues into late cleavage.  相似文献   

6.
Mouse embryos at the 2-, 4-, 8-cell, and morula stage were divided in half by using microsurgical procedures and were either grown in vitro up to the blastocyst stage or transferred at the late morula stage into the uteri of pseudopregnant recipients. A relatively high percentage of the half embryos from 2-cell (70%), 4-cell (75%), 8-cell (93%), or morula stage embryos (75%) developed into blastocysts in vitro. However, the overall development in vivo of half embryos was low, as 3%, 13%, 8%, and 1% of half embryos from the 2-cell, 4-cell, 8-cell, and morula stages, respectively, developed into live fetuses. Embryos which were divided in half at different stages developed at different rates in vitro. This determined the stage of embryonic development at the time of transfer, which might have interacted with the stage of pseudopregnancy of the recipients to influence embryo survival in vivo.  相似文献   

7.
Mouse oocytes and embryos at various developmental stages were exposed directly to an ethylene glycol-based vitrification solution (EFS) for 2 or 5 minutes at 20 degrees C. They were then vitrified at -196 degrees C and were warmed rapidly. At the germinal vesicle stage, the proportion of morphologically normal oocytes was 36 to 39% if they had cumulus cells, whereas in cumulus-removed immature oocytes and in ovulated oocytes it was only 2 to 4%. This low survival was attributed to the harmful action of ethylene glycol. After fertilization, on the other hand, the post-warming survival rate of 1-cell zygotes, as assessed by cleavage to the 2-cell stage, increased markedly (62%). As the developmental stage proceeded, higher proportions of vitrified embryos developed to expanded blastocysts; the rates increased up to 77 and 80% in 2-cell and 4-cell embryos, respectively. For embryos at the 8-cell, morula and early blastocyst stages, the proportion of embryos developed after vitrification (90 to 95%) was not significantly different from that of the untreated embryos (95 to 100%) when the period of exposure to EFS solution was 2 minutes. As the blastocoel began to enlarge, however, survival began to decrease again, with rates of 79 and 57% in blastocysts and expanded blastocysts, respectively. After the cryopreserved 2-cell, 4-cell and 8-cell embryos as well as morulae and blastocysts were transferred to recipients, 43 to 57% of the recipients became pregnant, and 48 to 60% of these various stage embryos developed into live young.  相似文献   

8.
It has been known that different protocols are used for embryo preservation at different stages due to different sensitivity to the physical and physiological stress caused by vitrification. In this study, we developed a common vitrification protocol using carboxlated ε-poly-l-lysine (COOH-PLL), a new cryoprotective agent for the vitrification of mouse embryos at different stages. The IVF-derived Crl:CD1(ICR) x B6D2F1/Crl pronuclear, 2-cell, 4-cell, and 8-cell, morula and blastocyst stage embryos were vitrified with 15% (v/v) ethylene glycol (EG) and 10% (w/v) COOH-PLL (E15P15) or 15% (v/v) EG and 15% (v/v) dimethyl sulfoxide (E15D15) using the minimal volume cooling method. The survival of vitrified embryos from pronuclear to blastocyst stages was equivalent between E15P15 and E15D15 groups. However, the rate of development to blastocysts was significantly lower in E15P15 than E15D15. The rates of survival and development to blastocysts were dramatically improved by a slight modification of EG and COOH-PLL concentrations (E20P10). After transferring 17 (E20P10) and 15 (E15D15) vitrified/warmed blastocysts, 8 and 7 pups were obtained (47.1% and 46.7%, respectively). Taken together, these results indicate that our vitrification protocol is appropriate for the vitrification of mouse embryos at different stages.  相似文献   

9.
The study investigated the effects of internal (DMSO, 1,2-propanediol, glycerol, ethylene glycol, methanol, N,N-dimethylacetamide) and external cryoprotectants (glucose, sucrose) on the viability and on morphometric parameters of zebrafish embryos. From the tested internal cryoprotectants, DMSO had the lowest toxicity, followed by 1,2-propanediol and glycerol. The external cryoprotectants were less toxic then the internal ones. Early ontogenetic stages were more sensible to cryoprotectant exposure than advanced stages. Two-step incubation procedures in increasing concentrations of internal and external cryoprotectants were superior to multiple-step exposure procedures. All tested vitrification solutions exceeded the tolerance limit of embryos. The tolerance of zebrafish embryos to cryoprotectants was highly variable in a concentration range causing approximately 50% embryo mortality. The width of the perivitelline space showed significant morphometrical changes due to cryoprotectant exposure. In the germinative tissue non-significant changes occurred. The yolk did not change morphometrically after exposure to internal cryoprotectants and showed no sign of dehydration after exposure to external cryoprotectants. Based on these results the study comes to the following conclusions: as yolk dehydration was impossible and as vitrification solutions were over the tolerance limit it seems unlikely that successful vitrification of zebrafish embryos can be achieved. Under these considerations slow freezing methods would be a better option as lower cryoprotectant concentrations can be used and embryos can be dehydrated during freezing.  相似文献   

10.
11.
小鼠不同阶段胚胎玻璃化冷冻保存的比较研究   总被引:2,自引:0,他引:2  
The cryopreservation of different embryo stages collected from ICR, C57BL/6 and F1 of DBA*C57BL/6 was carried out by using vitrification method. The morphology, in vitro development and birth rates of these embryos were compared after frozen-thawed. The results showed that more than 75% of the morphology from 2-cell embryos to morula stages from different strains was normal, the normal morphology rates of 8-cell embryos being the highest, while those of blastulas being the lowest. The in vitro development rates became higher as the embryos developed. The morphology of in vivo and in vitro fertilized frozen 2-cell embryos showed no difference, but the development rate of in vivo fertilized frozen 2-cell embryos was significantly higher than that of in vitro ones. Embryos that underwent 3 times frozen-thawing remained normal morphology. The pregnant rate and birth rate of frozen 2-cell embryos after embryo transfer were 64% and 40% respectively, but lower than those of fresh 2-cell embryo transfer.  相似文献   

12.
采用玻璃化冷冻法对ICR、C57BL/6、DBA~*C57BL/6杂交F1代三种品系小鼠的不同阶段胚胎进行冷冻保存,比较胚胎解冻后形态良好率、体外发育率和移植后的出生率,结果表明解冻后各品系小鼠胚胎从2细胞到桑椹胚形态良好率在75%以上,其中8细胞胚胎形态良好率在83%以上,而囊胚的形态良好率仅在40%左右。解冻后胚胎体外培养的发育率随胚胎发育阶段的提高而提高,桑椹胚的发育达93%以上。体外受精2细胞冷冻胚与体内受精2细胞冷冻胚比较,二者形态良好率差异无显著意义(74%∶75%),但体内受精冷冻胚的发育率明显高于体外受精冷冻胚(76%:40%,p<0.01);胚胎经过三次反复冻融后形态良好率无显著差别;冷冻2细胞胚移植后的受孕率与仔鼠出生率分别达64%和40%,但均低于新鲜2细胞胚。  相似文献   

13.
Effects of the embryo retrieval stages and addition of glutathione (GSH) on post-thaw development of mouse morula were evaluated in 2 consecutive experiments. In the first experiment, 1-, 2-, 3- to 4- and 5- to 8-cell stage embryos were collected and cultured to the morula stage in Whitten's medium containing 0.1 mM ethylenediaminetetraacetic acid (EDTA). The development rate of 1-cell embryos to the morula stage was lower than that of the other stages (P<0.01). The post-thaw development rate of the morulae obtained from in vitro culture of 1-, 2-, 3- to 4-, and 5- to 8-cell embryos and from in vivo embryos (control) to the blastocyst stage was 55.5, 84.9, 87.4, 90.1 and 90.8%, respectively. The post-thaw development rate of morula obtained from in vitro produced 1-cell embryos was significantly lower than from the other stages or from the in vivo counterparts (P<0.0001). In Experiment 2, the impact of GSH supplementation of the culture medium in the presence or absence of EDTA was evaluated for embryo development to the morula stage and post-thaw survival, using in the 2 x 2 factorial design. Although EDTA supplementation increased development rates to the morulae (P<0.01) stage, GSH did not have an influence on morula development. However, the presence of either GSH or EDTA in the culture medium supported development to the blastocyst stage (P<0.01) of in vitro produced morulae. These data demonstrate that 1-cell embryos from a blocking-strain mouse cultured in vitro to the morula stage have a lower development rate following freezing and thawing than embryos collected at the 2-cell or later stages. Addition of EDTA or GSH, individually or in combination, to the culture medium may improve the development rate of morula to blastocyst stage following cryopreservation.  相似文献   

14.
The objective of this study was to compare iso-osmolar concentrations (1.5 M) of 1,2-propanediol, glycerol, dimethylsulphoxide and a combination of 1 M propanediol + 0.5M glycerol (PDGLY) as cryoprotectants for murine ovulated oocytes and one-cell embryos. A higher (P < 0.01) percentage of one-cell embryos developed to the two-cell stage when frozen-thawed with 1,2-propanediol (83%) as compared with glycerol (43%), dimethylsulfoxide (51%) or PDGLY (7%). Data recalculated on the basis of two-cell embryos/number of normal one-cell embryos after thawing indicated no differences among single cryoprotectant groups. More (P < 0.01) frozen-thawed, in-vitro fertilized oocytes developed to the two-cell stage when 1,2-propanediol (35%) was used as cryoprotectant as compared with glycerol (15%). Freezing-thawing resulted in a reduced number of two-cell embryos after oocytes were fertilized in-vitro as compared with fresh oocytes. 1,2-propanediol was a better cryoprotectant than glycerol, dimethylsulphoxide or PDGLY for deep freezing of murine oocytes or one-cell embryos.  相似文献   

15.
The survival of whole and bisected rabbit morulae cryopreserved by the vitrification method was investigated. The embryos were loaded in a column of vitrification solution (VS, a mixture of 25% glycerol and 25% 1, 2-propanediol in PBS+16% calf serum), which was located between two columns of 1 M sucrose solution in a plastic straw. The embryos were frozen by being plunged into liquid nitrogen and thawed in a water bath at 20 degrees C. Two methods of loading embryos into straws were used: the single and double column vitrification solution methods. The embryonic survival rates between these two methods were compared. Seventy-one (86.6%) out of 82 morulae vitrified in double column straws developed into the blastocyst stage in vitro. Eleven (18.3%) live fetuses were obtained after the transfer of 60 frozen-thawed morulae to four recipients. By contrast, the survival rate (36.5%, 27 74 ) of embryos vitrified in the single column straws was significantly lower (P<0.05). The vitrification solution of the single column straws became opaque, indicating ice-crystal formation, upon thawing in 5 of 11 straws, which was assumed to have damaged the embryos. More than 80% (29 36 ) of the bisected morulae frozen and thawed in the double column straws developed to the blastocyst stage in vitro when cryoprotectant was diluted stepwise with 1 M and 0.25 M sucrose solution. When the cryoprotectant was removed by one-step dilution with 1 M sucrose solution, swelling in blastomeres was observed and the development rate of the recovered embryos decreased (45.8%, 11 24 ). These results indicate that the vitrification method employed in our experiment is not only efficient for the cryopreservation of rabbit morulae, but it can also be used for the preservation of bisected rabbit morulae, which had not been successful using previous methods.  相似文献   

16.
The study was designed to evaluate the efficiency of a modified (sealed) open pulled straw (mOPS) method for cryopreserving rabbit embryos by vitrification or rapid freezing. An additional objective was to determine whether the mOPS method could cause the vitrification of a cryoprotectant solution generally used in rapid freezing procedures. Two consecutive experiments of in vitro and in vivo viability were performed. In Experiment 1, the in vitro viability of rabbit embryos at the morula, compacted morula, early blastocyst and blastocyst stages was assessed after exposure to a mixture of 25% glycerol and 25% ethylene glycol (25GLY:25EG: vitrification solution) or 4.5 M (approximately 25% EG) ethylene glycol and 0.25 M sucrose (25EG:SUC: rapid freezing solution). Embryos were loaded into standard straws or mOPS and plunged directly into liquid nitrogen. The mOPS consisted of standard straws that were heat-pulled, leaving a wide opening for the cotton plug and a narrow one for loading embryos by capillarity. The embryos were aspirated into the mOPS in a column positioned between two columns of cryoprotectant solution separated by air bubbles. The mOPS were then sealed with polyvinyl-alcohol (PVA) sealing powder. The vitrification 25GLY:25EG solution became vitrified both in standard straws and mOPS, whereas the rapid freezing 25EG:SUC solution crystallized in standard straws, but vitrified in mOPS. The total number of embryos cryopreserved was 1695. Embryos cryopreserved after exposure to each solution in mOPS showed higher rates (88.2%) of survival immediately after thawing and removal of the cryoprotectant than those cryopreserved in 0.25 ml standard straws (78.8%; P < 0.0001). After culture, the developmental stage of the cryopreserved embryos significantly affected the rates of development to the expanded blastocyst stage. Regardless of the cryoprotectant used, lower rates of in vitro development were obtained when the embryos were cryopreserved at the morula stage, and higher rates achieved using embryos at blastocyst stages. Based on the results of Experiment 1, the second experiment was performed on blastocysts using the mOPS method. Experiment 2 was designed to evaluate the in vivo viability of cryopreserved rabbit blastocysts loaded into mOPS after exposure to 25GLY:25EG or 25EG:SUC. Embryos cryopreserved in mOPS and 25GLY:25EG solution gave rise to rates of live offspring (51.7%) not significantly different to those achieved using fresh embryos (58.5%). In conclusion, the modified (sealed) OPS method allows vitrification of the cryoprotectant solution at a lower concentration of cryoprotectants than that generally used in vitrification procedures. Rabbit blastocysts cryopreserved using a 25GLY:25EG solution in mOPS showed a similar rate of in vivo development after thawing to that shown by fresh embryos.  相似文献   

17.
Numerous genetically engineered rat strains have been produced via genome editing. Although freezing of embryos is helpful for the production and storage of these valuable strains, the tolerance to freezing of embryos varies at each developmental stage of the embryo. This study examined the tolerance to freezing of rat embryos at various developmental stages, particularly at the pronuclear stage. Embryos that had developed to the pronuclear, 2-cell, and morula stages were frozen via vitrification using ethylene glycol- and propylene glycol-based solutions. More than 90% of the embryos at all developmental stages survived after warming. The developmental rates to offspring of thawed embryos at the pronuclear, 2-cell, and morula stages were 19%, 41%, and 52%, respectively. Pronuclear stage embryos between the early and late developmental stages were then vitrified. The developmental rates to offspring of the thawed pronuclear stage embryos collected at 24, 28, and 31 h after the induction of ovulation were 17%, 21%, and 23%, respectively. These results indicated that the tolerance to vitrification of rat embryos increased with the development of embryos. The establishment of vitrification method of rat embryos at various developmental stages is helpful for improving the production and storage of valuable rat strains used for biomedical science.  相似文献   

18.
在马(Equus caballus)的繁殖和非繁殖季节,本研究探讨马扩展型(Ex)和紧凑型(Cp)卵丘-卵母细胞复合体(COCs)卵母细胞的孤雌激活效率。在繁殖季节,探讨马驹和成年马成纤维细胞核移植(SCNT)的成功率。孤雌激活实验结果显示,在繁殖季节,发育到2-细胞、4-细胞和桑椹胚的比例,扩展型(Ex)卵丘-卵母细胞复合体分别是52.8%(19/36)、38.9%(14/36)和5.6%(2/36),紧凑型(Cp)卵丘-卵母细胞复合体分别是47.9%(23/48)、33.3%(16/48)和6.2%(3/48)。在非繁殖季节,发育到2-细胞、4-细胞的比例,扩展型(Ex)分别是37.2%(16/43)和16.3%(7/43),紧凑型(Cp)的比例分别是35.1%(27/77)和11.7%(9/77),都没有获得桑椹胚。同一季节,扩展型(Ex)与紧凑型(Cp)胚胎发育的比率差异不显著(P 0.05),不同季节,两者差异显著(P 0.05)。体细胞核移植实验结果显示,以马驹成纤维细胞作为核供体细胞,胚胎发育到2-细胞、4~8细胞和桑椹胚的比例分别是41.5%(22/53)、33.9%(18/53)和15.1%(8/53),以成年马成纤维细胞作为核供体细胞,比例分别是38.9%(7/18)、22.2%(4/18),没有获得桑椹胚。综上所述,季节和卵丘-卵母细胞复合体(COCs)类型影响马卵母细胞孤雌激活的效率,不同核供体细胞影响克隆胚胎构建的成功率。  相似文献   

19.
Smith  S.  Schmidt  M.  Purwantara  B.  Greve  T. 《Acta veterinaria Scandinavica》1992,33(4):349-355
One- to 16-cell porcine embryos were cultured in either Whittens medium supplemented with bovine serum albumin and fetal calf serum (WM) or in the same medium with porcine oviduct epithelial cell co-culture (WM-Poec). All stages of embryos cultured in WM-POEC had higher cell counts after 144–168 h of development than did embryos in WM. There was however, no significant difference in blastocyst formation rate of embryos cultured in WM-POEC over those cultured in WM. A high proportion of the embryos entering culture at the 1-2-cell were able to pass the 4-cell block stage in both WM and WM-POEC, 81% and 77%, respectively. In both media, most of the 1-2-cell embryos arrested their development at the compacted morula stage and failed to blastulate while embryos initiating culture at the 4-and 8-16-cell embryos formed blastocysts in culture at a rate of 80–90%.  相似文献   

20.
In cryopreserved rat embryos, survival rates obtained in vitro are not always consistent with the rates obtained in vivo. To determine the optimal conditions for in vivo development to term, rat embryos at the 4-cell, 8-cell, and morula stages were vitrified in EFS40 by a one-step method and transferred into oviducts or uterine horns of recipients at various times during pseudopregnancy. Vitrified and fresh 4-cell embryos only developed after transfer into oviducts of asynchronous recipients on Days -1 to -2 of synchrony (i.e., at a point in pseudopregnancy 1-2 days earlier than the embryos). Approximately half the vitrified embryos transferred into oviducts on Day -1 developed to term, but only a minority of embryos, whether vitrified (10%-34%) or fresh (24%-33%), transferred at later times did so, suggesting that this may not be the most suitable stage for cryopreservation. Very few 8-cell embryos, either vitrified or fresh, developed when transferred into oviducts on Day 0 to -0.5. However, when transferred into uterine horns, high proportions of vitrified 8-cell embryos ( approximately 63%) developed to term in reasonably synchronous recipients (Day 0 to -0.5) but not in more asynchronous ones (6%; Day -1). A majority of vitrified morulae also developed to term (52%-68%) in a wider range of recipients (Days 0 to -1), the greatest success occurring in recipients on Day -0.5. Similar proportions of vitrified and fresh 4-cell embryos, 8-cell embryos, and morulae developed to term when appropriate synchronization existed between embryo and recipient. Thus, vitrification of preimplantation-stage rat embryos does not appear to impair their developmental potential in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号