首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary The present paper demonstrates that colloidal gold silver-enhanced by autometallography (AMG) can be used to label phagocytic cells for light microscopic detection. Cultured macrophages were exposed to 0.5 l 6 nm colloidal gold particles for 24 or 48 h. Other cultures were exposed to 25 l of the same solution for 1 to 14 days. The staining was found to be stable also when new unmarked cells were applied. The colloidal gold had no adverse effect on the cells. The presented technique might also prove valuable for estimation of the total number of phagocytes in a culture or in an organism by applying labelled cells to culture or organism, and to ascertain the fate of a population of marked cells.  相似文献   

2.
胶体金对 K526 细胞影响的研究   总被引:1,自引:1,他引:0       下载免费PDF全文
本文论述了有关人类白血病细胞系K562细胞的体外培养的特点。以及胶体金纳米颗粒独特的物理性质,并应用胶体金治疗肿瘤的原理和意义,成功的在体外条件下培养出生长状态稳定的K562细胞,最后通过观察、记录体外生长的状况,绘制了细胞生长曲线,并计算出细胞的倍增时间。利用柠檬酸三钠来还原氟金酸的方法制备了胶体金,通过紫外/可见分光光度计和电子透射显微镜检测了胶体金的吸收光谱以及它的颗粒直径、形状,进行了胶体金颗粒对K562细胞的影响研究。竞验结果表明,加入胶体金和没加胶体金的细胞生长状况基本相同。  相似文献   

3.
We used fracture-label to establish ultrastructural localization of glycoproteins in cross-fractured nuclei of duodenal columnar and exocrine pancreatic cells. Mannose residues were detected in cell nuclei by labeling freeze-fractured tissues with concanavalin A-horseradish peroxidase X colloidal gold (Con A-HRP X CG) or direct concanavalin A X colloidal gold (Con A X CG); fucose residues were detected with Ulex Europaeus I X colloidal gold (UEA I X CG) markers. Areas of the three main intranuclear compartments (euchromatin, heterochromatin, and nucleolus) exposed by freeze-fracture were determined by automated image analysis. Colloidal gold particles bound to each nuclear subcompartment were counted and the results expressed in number of colloidal gold particles per square micrometer +/- SEM. Duodenal and pancreatic tissues fractured and labeled with Con A-HRP X CG complex or direct Con A X CG conjugates showed that the vast majority of Con A binding sites was confined to euchromatin regions with only sparse labeling of the heterochromatin and nucleolus. UEA I labeling of duodenal columnar cells showed that colloidal gold particles were almost exclusively confined to cross-fractured areas where euchromatin is exposed. Trypsinization of the fractured tissues before labeling with Con A and UEA I abolished 95-100% of the original label. Our results show that, within the nucleoplasm, mannose and fucose are residues of glycoproteins preferentially located within the regions of euchromatin.  相似文献   

4.
We have been able to visualize cytoskeletal messenger RNA molecules at high resolution using nonisotopic in situ hybridization followed by whole-mount electron microscopy. Biotinated cDNA probes for actin, tubulin, or vimentin mRNAs were hybridized to Triton-extracted chicken embryo fibroblasts and myoblasts. The cells were then exposed to antibodies against biotin followed by colloidal gold-conjugated antibodies and then critical-point dried. Identification of mRNA was possible using a probe fragmented to small sizes such that hybridization of several probe fragments along the mRNA was detected as a string of colloidal gold particles qualitatively and quantitatively distinguishable from nonspecific background. Extensive analysis showed that when eight gold particles were seen in this iterated array, the signal to noise ratio was greater than 30:1. Furthermore, these gold particles were colinear, often spiral, or circular suggesting detection of a single nucleic acid molecule. Antibodies against actin, vimentin, or tubulin proteins were used after in situ hybridization, allowing simultaneous detection of the protein and its cognate message on the same sample. This revealed that cytoskeletal mRNAs are likely to be extremely close to actin protein (5 nm or less) and unlikely to be within 20 nm of vimentin or tubulin filaments. Actin mRNA was found to be more predominant in lamellipodia of motile cells, confirming previous results. These results indicate that this high resolution in situ hybridization approach is a powerful tool by which to investigate the association of mRNA with the cytoskeleton.  相似文献   

5.
The autometallographic technique involves application of a silver bromide-containing emulsion on the surface of ultrathin sections placed on grids that are subsequently exposed to a photographic developer. In tissue sections from animals treated intravitally with gold, silver, or mercury compounds, accumulations of the metals are visualized by autometallography and can be used for quantitative studies. After amplification, sections can be stained with lead citrate and uranyl acetate. Using autometallography, particles of colloidal gold dispersed in a film of gelatin showed a time-dependent growth and were gradually amplified up to 3.5-fold after 15 min of development. Hence the method may prove useful tracing colloidal gold particles in sections with low particle density, and be a powerful tool for revealing metals in biological tissues.  相似文献   

6.
Macrophages from both rodent and human sources have been shown to produce lipoprotein lipase (LPL), the enzyme activity of which can be measured in culture media and in cellular homogenates. The studies reported here show the presence of LPL on the surface of human monocyte-derived macrophages. An inhibitory monoclonal antibody to human LPL was used for cellular and immunoelectron microscopy studies. This antibody is a competitive inhibitor of LPL hydrolysis of triacylglycerol but does not inhibit LPL hydrolysis of a water-soluble substrate, p-nitrophenyl acetate. Furthermore, when postheparin plasma was mixed with monoclonal antibody prior to gel filtration on 6% agarose, the LPL activity eluted with the lipoproteins and was not inhibited by the antibody. These studies suggest that the antibody recognized the lipid/lipoprotein binding site of the LPL molecule. Membrane-bound LPL was demonstrated on human monocyte-derived macrophages using colloidal gold-protein A to detect the monoclonal antibody to LPL. The surface colloidal gold was randomly distributed with a surface density of 56,700 gold particles per cell. Control cells cultured in heparin-containing media (10 units/ml) or cells reacted with anti-hepatic triacylglycerol lipase monoclonal IgG or nonimmune mouse IgG did not exhibit membrane binding of protein A-gold. Macrophages were incubated with control and monoclonal anti-LPL IgGs and 125I-labeled anti-mouse IgG F(ab')2. Heparin-releasable membrane-bound anti-LPL antibody was demonstrated. These studies demonstrate the presence of LPL on the surface of human monocyte-derived macrophages, such that the LPL is oriented with its lipid-binding portion (recognized by this antibody) exposed. Membrane-associated LPL may be important in the interaction and subsequent uptake of lipid and lipoproteins by macrophages and in the generation of atherosclerotic foam cells.  相似文献   

7.
We studied the capacity of colloidal gold for enhancing specific and nonspecific immune response in laboratory animals (rabbits, rats, and mice) immunized with antigens of various nature. The antibody titers obtained with colloidal gold as a carrier were higher as compared to the standard immunization techniques (free antigen or its combination with Freund's adjuvant). Application of colloidal gold also enhanced nonspecific immune responses, such as lysozyme concentration in the blood, activity of the complement system proteins, as well as phagocytic and bactericidal activities. The antibodies were tested by immunodot assay using gold markers. Immunization of the animals with colloidal gold conjugates with haptens or complete antigens (without other adjuvants) was shown to induce the production of highly active antibodies. In addition, the amount of antigen used for animal immunization with colloidal gold was an order of magnitude lower, compared to immunization with complete Freund's adjuvant. This fact can be evidence for adjuvant properties of colloidal gold proper.  相似文献   

8.
Autometallographic (AMG) silver enhancement is a potent histochemical tool for tracing a variety of metal containing nanocrystals, e.g. pure gold and silver nanoclusters and quantum dots of silver, mercury, bismuth or zinc, with sulphur and/or selenium. These nanocrystals can be created in many different ways, e.g. (1) by manufacturing colloidal gold or silver particles, (2) by treating an organism in vivo with sulphide or selenide ions, (3) as the result of a metabolic decomposition of bismuth-, mercury- or silver-containing macromolecules in cell organelles, or (4) as the end product of histochemical processing of tissue sections. Such nano-sized AMG nanocrystals can then be silver-amplified several times of magnitude by being exposed to an AMG developer, i.e. a normal photographic developer enriched with silver ions. The present monograph attempts to provide a review of the autometallographic silver amplification techniques known today and their use in biology. After achieving a stronghold in histochemistry by Timm's introduction of the "silver-sulphide staining" in 1958, the AMG technique has evolved and expanded into several different areas of research, including immunocytochemistry, tracing of enzymes at LM and EM levels, blot staining, retrograde axonal tracing of zinc-enriched (ZEN) neurons, counterstaining of semithin sections, enhancement of histochemical reaction products, marking of phagocytotic cells, staining of myelin, tracing of gold ions released from gold implants, and visualization of capillaries. General technical comments, protocols for the current AMG methods and a summary of the most significant scientific results obtained by this wide variety of AMG histochemical approaches are included in the present article.  相似文献   

9.
We describe a new automatic technique for the study of intracellular mobility. It is based on the visualization of colloidal gold particles by video-enhanced contrast light microscopy (nanometer video microscopy) combined with modern tracking algorithms and image processing hardware. The approach can be used for determining the complete statistics of saltatory motility of a large number of individual moving markers. Complete distributions of jump time, jump velocity, stop time, and orientation can be generated. We also show that this method allows one to study the characteristics of random motion in the cytoplasm of living cells or on cell membranes. The concept is illustrated by two studies. First we present the motility of colloidal gold in an in vitro system of microtubules and a protein extract containing a kinesin-like factor. The algorithm is thoroughly tested by manual tracking of the videotapes. The second study involves the motion of gold particles microinjected in the cytoplasm of PTK-2 cells. Here the results are compared to a study using the spreading of colloidal gold particles after microinjection.  相似文献   

10.
Autometallography: tissue metals demonstrated by a silver enhancement kit   总被引:1,自引:0,他引:1  
In biological tissue, minute accumulations of gold, silver, mercury and zinc can be visualized by a technique whereby metallic silver is precipitated on tiny accumulations of the two noble metals, or on selenites or sulphides of all four metals. In the present study a silver enhancement kit, primarily intended for the amplification of colloidal gold particles, has been used to demonstrate these catalytic tissue metals. Sections from animals exposed intravitally to aurothiomalatate, silver lactate, mercury chloride, sodium selenite or perfused with sodium sulphide were subjected to a commercial silver enhancement kit (IntenSE, Janssen Pharmaceutica). It was found that the kit performs adequately to the silver lactate gum arabic developer and to the photographic emulsion technique. The kit can be used as a silver enhancement medium for the demonstration of zinc by the Neo-Timm and selenium methods and for demonstration of gold, silver, and mercury in tissues from animals intravitally exposed to these metals. It can also be used for counterstaining silver treated osmium fixed tissues embedded in plastic.  相似文献   

11.
Summary Video-enhanced microscopy allows the detection and tracking of individual colloidal gold particles. The analysis of immunogold reactions can also be conducted as a function of time and thus allows the study of dynamic events in living cells. The direct visualization in real time is reported of the reaction of immunogold particles with a surface antigen. This time-resolved immunocytochemistry was achieved by continuous observation of living cells infected with a virus (respiratory syncytial virus) following their incubation with colloidal gold (30 nm) coated with antiviral antibodies. The progress of the immunoreaction was visualized as a sequential deposition of individual gold granules on the viral particles until saturation was reached after 60 min. Binding of colloidal gold was an irreversible event as no elution or dislocation of surface-bound granules took place. Comparative imaging of colloidal gold particles by electron microscopy and by video microscopy demonstrated that the video-imaged immunoreactions represented events involving single gold particles; their signal was sometimes clearly enhanced by secondary depositions taking place in close proximity, i.e. at a distance below the lateral resolution of the light microscope. Our experiments demonstrate that video-enhanced microscopy provides a powerful tool for studying antibody-antigen reactions with a high spatial and temporal resolution.  相似文献   

12.
Video-enhanced microscopy allows the detection and tracking of individual colloidal gold particles. The analysis of immunogold reactions can also be conducted as a function of time and thus allows the study of dynamic events in living cells. The direct visualization in real time is reported of the reaction of immunogold particles with a surface antigen. This time-resolved immunocytochemistry was achieved by continuous observation of living cells infected with a virus (respiratory syncytial virus) following their incubation with colloidal gold (30 nm) coated with antiviral antibodies. The progress of the immunoreaction was visualized as a sequential deposition of individual gold granules on the viral particles until saturation was reached after 60 min. Binding of colloidal gold was an irreversible event as no elution or dislocation of surface-bound granules took place. Comparative imaging of colloidal gold particles by electron microscopy and by video microscopy demonstrated that the video-imaged immunoreactions represented events involving single gold particles; their signal was sometimes clearly enhanced by secondary depositions taking place in close proximity, i.e. at a distance below the lateral resolution of the light microscope. Our experiments demonstrate that video-enhanced microscopy provides a powerful tool for studying antibody-antigen reactions with a high spatial and temporal resolution.  相似文献   

13.
Antisera against purified autolytic N-acetylmuramyl-L-alanine amidase from Bacillus subtilis 168 were prepared in rabbits. They neutralized the enzymatic action of the purified amidase acting on isolated sodium dodecyl sulfate (SDS)-treated walls from the same organism. They also inhibited the lysis of native walls, but only after the walls lysed partially. Amidase adsorbed to insoluble walls still combined with antibody. Antisera did not stop the lysis of whole cells. Lowicryl HM20 sections of both strain 168 and its autolytic mutant strain FJ6 were prepared by the progressive-lowering-of-temperature technique, immunolabeled with the antisera, and visualized with colloidal gold particles as markers. The highest concentration of gold particles seemed to be in the septa of dividing cells, followed by the side walls. There was some labeling of the cytoplasm. Adsorption of sera with SDS-treated walls reduced the overall labeling of sections considerably but did not alter the relative intracellular distribution of particles. The results for strains 168 and FJ6 were similar. Labeling of SDS-treated walls unexpectedly revealed the presence of a wall-bound amidase fraction.  相似文献   

14.
A new procedure is presented for the light microscopic demonstration of specific sugar sequences of oligosaccharides in glycoconjugates by lectins combined with the colloidal gold marker system. Tissue sections from aldehyde-fixed and paraffin embedded rat kidney were stained either in a one-step method with lectin directly bound to particles of colloidal gold or in a two-step method using non-labeled lectin and glycoprotein labeled with colloidal gold. In both methods the presence of lectin-binding sites in the tissue sections is revealed by the appearance of a red coloration that is due to the accumulation of gold particles. The high specificity of the technique is combined with a good sensitivity and resolution as demonstrated by a differential plasma membrane staining in renal epithelial cells. The lectin-gold or glycoprotein-gold complexes remain stable for months and produce a permanent nonbleaching staining.  相似文献   

15.
Summary Low density lipoproteins (LDL) were conjugated to colloidal gold to visualize the route for internalization of LDL in the cultured cells of human term placenta. Cells were obtained from placental villi (caesarian section) by a standard trypsin-DNase dispersion method followed in some cases by a Percoll gradient centrifugation step. Employing electron microscopy it was observed that after 3 days of culture, cells obtained by trypsin-DNAse dispersion were a mixture of macrophages, mononucleated cells and large multinucleated cells. When the cells were incubated for 3 days after the Percoll purification, essentially multinucleated cells identical to the syncytiotrophoblast were present. The number of LDL receptor was increased by preincubation in medium with lipoprotein depleted serum. In binding experiments cells incubated at 4° C for 2 h with medium containing gold LDL conjugates showed gold LDL attached to the plasma membrane without characteristic localization. After incubation with gold LDL at 37° C for various times, the three cellular types showed ligand internalization. Gold LDL endocytosis involved first coated pits but also uncoated plasmalemmal invaginations. Then gold LDL was further observed in coated and non coated vesicles, smooth walled endosomes, multivesicular bodies and tubular vesicles. Lastly free gold particles were observed in lysosome like dense bodies. These results prove the internalization of gold LDL conjugates by human cultured placental cells, particularly by syncytiotrophoblast like multinucleated cells. This accumulation of LDL (the major cholesterol carrying protein in humans) is recognised to be responsable for the exogenous cholesterol supply indispensable to the progesterone biosynthesis and cellular growth of the placenta.  相似文献   

16.
Low density lipoproteins (LDL) were conjugated to colloidal gold to visualize the route for internalization of LDL in the cultured cells of human term placenta. Cells were obtained from placental villi (caesarian section) by a standard trypsin-DNase dispersion method followed in some cases by a Percoll gradient centrifugation step. Employing electron microscopy it was observed that after 3 days of culture, cells obtained by trypsin-DNase dispersion were a mixture of macrophages, mononucleated cells and large multinucleated cells. When the cells were incubated for 3 days after the Percoll purification, essentially multinucleated cells identical to the syncytiotrophoblast were present. The number of LDL receptor was increased by preincubation in medium with lipoprotein depleted serum. In binding experiments cells incubated at 4 degrees C for 2 h with medium containing gold LDL conjugates showed gold LDL attached to the plasma membrane without characteristic localization. After incubation with gold LDL at 37 degrees C for various times, the three cellular types showed ligand internalization. Gold LDL endocytosis involved first coated pits but also uncoated plasmalemmal invaginations. Then gold LDL was further observed in coated and non coated vesicles, smooth walled endosomes, multivesicular bodies and tubular vesicles. Lastly free gold particles were observed in lysosome like dense bodies. These results prove the internalization of gold LDL conjugates by human cultured placental cells, particularly by syncytiotrophoblast like multinucleated cells. This accumulation of LDL (the major cholesterol carrying protein in humans) is recognised to be responsible for the exogenous cholesterol supply indispensable to the progesterone biosynthesis and cellular growth of the placenta.  相似文献   

17.
Particles of colloidal gold were coated with poly-L-lysine to prepare cationic colloidal gold. Monodispersed colloidal gold with a particle diameter of 5, 8, or 15 nm and poly-L-lysine with a molecular weight of 350,000 or 1500-8000 were used. The resulting complexes were used to label red blood cell membranes. The labeling was sensitive to neuraminidase treatment or acid hydrolysis, demonstrating that cationic colloidal gold binds preferentially to anionic cell surface constituents. Cationic colloidal gold can be used at physiological pH values and ionic strength, as well as at low pH values, making it a flexible probe for detection of anionic cellular components.  相似文献   

18.
The routes of movement of mesectoderm cells in mammalian embryos have not yet been investigated experimentally due to technical problems. However, the recent development of in vitro culture methods have made an experimental approach to this problem in mouse and rat embryos possible. We have used combined lectin and colloidalgold (WGA-Au) probe as a nontraumatic, easily detectable mesectaderm marker. The probe is introduced into the amniotic cavity by microinjection. All of the cells lining the cavity, including the mesectoderm precursors, phagocytose the colloidal gold, which is then stored in membrane bound vesicles. The probe remains inside the target mesectoderm cells after their migration into the mesoderm compartment. Vesicles containing gold are detectable in both ultrathin and semithin sections. The applicability of WGA-HRP as a probe was also assessed because of the many properties it shares with WGA-Au, but it proved to be unsatisfactory for this purpose because it is transfed between cells and also to the extracellular spaces.  相似文献   

19.
We have suggested in a previous study using 2-nm colloidal gold labeled-testosterone-bovine serum albumin (testosterone-BSA-gold) that 2-nm gold labeled-steroid hormone-BSA conjugates would be a useful tool for analyzing the mechanism of steroid hormone action (39). In this study, we examined whether hydrocortisone-BSA conjugate (hydrocortisone-BSA) showed a similar distribution to radiolabeled hydrocortisone in vivo, by injecting 2-nm colloidal gold labeled-hydrocortisone-BSA (hydrocortisone-BSA-gold) into the rat tail vein. The hydrocortisone-BSA-gold with silver enhancement became visible as silver deposits under electron microscopy in the nuclei of hepatocytes and hepatic stellate cells but not in Kupffer cells in the liver, and in the thymocytes and thymic reticuloepithelial cells in the thymus of a rat killed 2 h postinjection. The percentage of nuclei showing deposits in the non-target cells, the epithelial cells of the seminal vesicle, was similar to the value in the seminal vesicle of a control rat injected with BSA labeled with 2-nm colloidal gold as reported previously. In the hepatocytes and thymocytes of a control rat not injected, the percentages of nuclei showing deposits were similar to those in the rat injected with testosterone-BSA-gold or BSA-gold as reported previously, but lower than those in the rat injected with hydrocortisone-BSA-gold. These results suggest that hydrocortisone-BSA-gold is useful for the morphological study of hydrocortisone target cells, and imply that BSA conjugated with hydrocortisone can enter the target cell nuclei of the rat. The present study further indicates that the fate of gold labeled-steroid hormone-BSA conjugates may be decided at the cell membrane level.  相似文献   

20.
In the present article we review several postembedding cytochemical techniques using the colloidal gold marker. Owing to the high atomic number of gold, the colloidal gold particles are electron dense. They are spherical in shape and can be prepared in sizes from 1 to 25 nm, which renders this marker among the best for electron microscopy. In addition, because it can be bound to several molecules, this marker has the advantage of being extremely versatile. Combined to immunoglobulins or immunoglobulin-binding proteins (protein A), it has been applied successfully in immunocytochemistry. Colloidal gold particles 5-15 nm in size are excellent for postembedding cytochemistry. Particles of smaller size, such as 1 nm, must be silver enhanced to be visualized by transmission electron microscopy. We have elected to review the superiority of indirect immunocytochemical approaches using IgG-gold or protein A-gold (protein G-gold and protein AG-gold). Lectins or enzymes can be tagged with colloidal gold particles, and the corresponding lectin-gold and enzyme-gold techniques have specific advantages and great potential. Using an indirect digoxigenin-tagged nucleotide and an antidigoxigenin probe, colloidal gold technology can also be used for in situ hybridization at the electron microscope level. Affinity characteristics lie behind all cytochemical techniques and several molecules displaying high affinity properties can also be beneficial for colloidal gold electron microscopy cytochemistry. All of these techniques can be combined in various ways to produce multiple labelings of several binding sites on the same tissue section. Colloidal gold is particulate and can easily be counted; thus the cytochemical signal can be evaluated quantitatively, introducing further advantages to the use of the colloidal gold marker. Finally, several combinations and multiple step procedures have been designed to amplify the final signal which renders the techniques more sensitive. The approaches reviewed here have been applied successfully in different fields of cell and molecular biology, cell pathology, plant biology and pathology, microbiology and virology. The potential of the approaches is emphasized in addition to different ways to assess specificity, sensitivity and accuracy of results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号