首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The aim of this study was to investigate whether the presence of endogenous estradiol alters the effects of a high-fat (HF) diet on activity/expression of the cardiac Na+/K+-ATPase, via PI3K/IRS and RhoA/ROCK signalling cascades in female rats. For this study, female Wistar rats (8 weeks old, 150–200 g) were fed a standard diet or a HF diet (balanced diet for laboratory rats enriched with 42% fat) for 10 weeks. The results show that rats fed a HF diet exhibited a decrease in phosphorylation of the α1 subunit of Na+/K+-ATPase by 30% (p < 0.05), expression of total α1 subunit of Na+/K+-ATPase by 31% (p < 0.05), and association of IRS1 with p85 subunit of PI3K by 42% (p < 0.05), while the levels of cardiac RhoA and ROCK2 were significantly increased by 84% (p < 0.01) and 62% (p < 0.05), respectively. Our results suggest that a HF diet alters cardiac Na+/K+-ATPase expression via molecular mechanisms involving RhoA/ROCK and IRS-1/PI3K signalling in female rats.  相似文献   

2.
Vibrio cholerae is the bacterial causative agent of the human disease cholera. Non-pathogenic bacterium can be converted to pathogenic following infection by a filamentous phage, CTXΦ, that carries the cholera toxin encoding genes. A crucial step during phage infection requires a direct interaction between the CTXΦ minor coat protein (pIIICTX) and the C-terminal domain of V. cholerae TolA protein (TolAIIIvc). In order to get a better understanding of TolA function during the infection process, we have initiated a study of the V. cholerae TolAIII domain by 2D and 3D heteronuclear NMR. With the exception of the His-tag (H123–H128), 97 % of backbone 1H, 15N and 13C resonances were assigned and the side chain assignments for 92 % of the protein were obtained (BMRB deposit with accession number 25689).  相似文献   

3.
4.
5.
The Na+/H+ antiporters play an important role in salt tolerance in plants. However, the functions of OsNHXs in rice except OsNHX1 have not been well studied. Using the gain- and loss-of-function strategies, we studied the potential role of OsNHX2 in salt tolerance in rice. Overexpression of OsNHX2 (OsNHX2-OE) in rice showed the significant tolerance to salt stress than wild-type plants and OsNHX2 knockdown transgenic plants (OsNHX2-KD). Under salt treatments of 300-mM NaCl for 5 days, the plant fresh weights, relative water percentages, shoot heights, Na+ contents, K+ contents, and K+/Na+ ratios in leaves of OsNHX2-OE transgenic plants were higher than those in wild-type plants, while no differences were detected in roots. K+/Na+ ratios in rice leaf mesophyll cells and bundle sheath cells were higher in OsNHX2-OE transgenic plants than in wild-type plants and OsNHX2-KD transgenic plants. Our data indicate that OsNHX2 plays an important role in salt stress based on leaf mesophyll cells and bundle sheath cells and can be served in genetically engineering crop plants with enhanced salt tolerance.  相似文献   

6.
7.

Background

Coronary artery spasm may be the underlying mechanism in up to 10% of cases of acute coronary syndrome (ACS) and sudden cardiac death. Asian individuals exhibit a 3-times greater incidence of spasm than Caucasians; this is likely due to different types of mechanisms. Consequently, solid data is limited about the long-term prognosis in Caucasian patients presenting with ACS and/or out-of-hospital cardiac arrest (OHCA) caused by coronary spasm.

Methods

Between 2002 and 2015, thirty Caucasian patients with coronary artery spasm presenting with ACS (N = 29) and/or OHCA (N = 11) were enrolled in this prospective registry. Follow-up, consisting of regular outpatient visits, was conducted with a mean follow-up period of 7.5 ± 3.3 years. Outcomes included presence of stable angina pectoris, recurrence of ACS, occurrence of implantable cardioverter defibrillator (ICD) shocks and death.

Results

The majority of patients (60%) remained asymptomatic during the entire follow-up period. At the end of the follow-up period only 3 patients still experienced stable angina (10%). Only 2 patients (7%) had a recurrent cardiac event, in which the ICD provided appropriate shock therapy. Half of the patients treated with stenting (N = 6), required re-interventions.

Conclusion

Coronary spasm with ACS and/or OHCA in a Caucasian patient cohort has a relatively benign prognosis in the majority of patients in long-term follow-up, if treated appropriately with medical therapy. Both the role of ICD in OHCA secondary to coronary spasm, and the efficacy of stenting to treat vasospastic angina, warrant further study in large-sized prospective clinical trials.
  相似文献   

8.
Electrophysiological effects produced by selective activation of M3 cholinoreceptors were studied in isolated left atrium preparations from rat using the standard sharp glass microelectrode technique. The stimulation of M3 receptors was obtained by application of muscarinic agonist pilocarpine (10?5 M) in the presence of selective M2 antagonist methoctramine (10?7 M). Stimulation of M3 receptors induced marked reduction of action potential duration by 14.4 ± 2.4% and 16.1 ± 2.5% of control duration measured at 50 and 90% of repolarization, respectively. This effect was completely abolished by selective M3 blocker 4-DAMP (10?8 M). In isolated myocytes obtained from the rat left atrium, similar pharmacological stimulation of M3 receptors led to suppression of peak L-type calcium current by 13.9 ± 2.6% of control amplitude (measured at +10 mV), but failed to affect K+ currents I to, I Kur, and I Kir. In the absence of M2 blocker methoctramine, pilocarpine (10?5 M) produced stronger attenuation of I CaL and induced an increase in I Kir. This additive inward rectifier current could be abolished by highly selective blocker of Kir3.1/3.4 channels tertiapin-Q (10?6 M) and therefore was identified as I KACh. Thus, in the rat atrial myocardium activation of M3 receptors leads to shortening of action potentials via suppression of I CaL, but does not enhance the major potassium currents involved in repolarization. Joint stimulation of M2 and M3 receptors produces stronger action potential shortening due to M2-mediated activation of I KACh.  相似文献   

9.
One important mechanism plants use to cope with salinity is keeping the cytosolic Na+ concentration low by sequestering Na+ in vacuoles, a process facilitated by Na+/H+ exchangers (NHX). There are eight NHX genes (NHX1 through NHX8) identified and characterized in Arabidopsis thaliana. Bioinformatics analyses of the known Arabidopsis genes enabled us to identify six Medicago truncatula NHX genes (MtNHX1, MtNHX2, MtNHX3, MtNHX4, MtNHX6, and MtNHX7). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving A. thaliana, Glycine max, Phaseolus vulgaris, and M. truncatula revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment, M. truncatula exhibited ~?20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl? contents increased by 152 and 162%, respectively. Na+ exclusion may be responsible for the relatively smaller increase in Na+ concentration in roots under salt stress as compared to Cl?. Decline in tissue K+ concentration under salinity was not surprising as some antiporters play an important role in transporting both Na+ and K + . MtNHX1, MtNHX6, and MtNHX7 display high expression in roots and leaves. MtNHX3, MtNHX6, and MtNHX7 were induced in roots under salinity stress. Expression analysis results indicate that sequestering Na+ into vacuoles may not be the principal component trait of the salt tolerance mechanism in M. truncatula and other component traits may be pivotal.  相似文献   

10.
11.
Ribosomal protein S1 of Mycobacterium tuberculosis (MtRpsA) binds to ribosome and mRNA, and plays significant role in the regulation of translation initiation, conventional protein synthesis and transfer-messenger RNA (tmRNA) mediated trans-translation. It has been identified as the target of pyrazinoic acid (POA), a bactericidal moiety from hydrolysis of pyrazinamide, which is a mainstay of combination therapy for tuberculosis. POA prevented the interactions between the C-terminal S1 domain of MtRpsA (residues 280–368, MtRpsACTD_S1) and tmRNA; so that POA can inhibit the trans-translation, which is a key component of multiple quality control pathways in bacteria. However, the details of molecular mechanism and dynamic characteristics for MtRpsACTD_S1 interactions with POA, tmRNA or mRNA are still unclear. Here we present the 1H, 15N, 13C resonance assignments of MtRpsACTD_S1 as well as the secondary structure information based on backbone chemical shifts, which lay foundation for further solution structure determination, dynamic properties characterization and interactions investigation between MtRpsACTD_S1 and tmRNA, RNA or POA.  相似文献   

12.
Human uracil N-glycosylase isoform 2—UNG2 consists of an N-terminal intrinsically disordered regulatory domain (UNG2 residues 1–92, 9.3 kDa) and a C-terminal structured catalytic domain (UNG2 residues 93–313, 25.1 kDa). Here, we report the backbone 1H, 13C, and 15N chemical shift assignment as well as secondary structure analysis of the N-and C-terminal domains of UNG2 representing the full-length UNG2 protein.  相似文献   

13.
High salinity is the one of important factors limiting plant growth and crop production. Many NHX-type antiporters have been reported to catalyze K+/H+ exchange to mediate salt stress. This study shows that an NHX gene from Arachis hypogaea L. has an important role in K+ uptake and transport, which affects K+ accumulation and plant salt tolerance. When overexpressing AhNHX1, the growth of tobacco seedlings is improved with longer roots and a higher fresh weight than the wild type (WT) under NaCl treatment. Meanwhile, when exposed to NaCl stress, the transgenic seedlings had higher K+/H+ antiporter activity and their roots got more K+ uptake. NaCl stress could induce higher K+ accumulation in the roots, stems, and leaves of transgenic tobacco seedlings but not Na+ accumulation, thus, leading to a higher K+/Na+ ratio in the transgenic seedlings. Additionally, the AKT1, HAK1, SKOR, and KEA genes, which are involved in K+ uptake or transport, were induced by NaCl stress and kept higher expression levels in transgenic seedlings than in WT seedlings. The H+-ATPase and H+-PPase activities were also higher in transgenic seedlings than in the WT seedlings under NaCl stress. Simultaneously, overexpression of AhNHX1 increased the relative distribution of K+ in the aerial parts of the seedlings under NaCl stress. These results showed that AhNHX1 catalyzed the K+/H+ antiporter and enhanced tobacco tolerance to salt stress by increasing K+ uptake and transport.  相似文献   

14.
15.
16.
The tonoplast and plasma membrane localized sodium (potassium)/proton antiporters have been shown to play an important role in plant resistance to salt stress. In this study, AtNHX1 and AtNHX3, two tonoplast Na+(K+)/H+ antiporter encoding genes from Arabidopsis thaliana, were expressed in poplar to investigate their biological functions in the resistance to abiotic stresses in woody plants. Transgenic poplar plants expressing either gene exhibited increased resistance to both salt and water-deficit stresses. Compared to the wild type (WT) plants, transgenic plants accumulated more sodium and potassium ions in the presence of 100 mM NaCl and showed reduced electrolyte leakage in the leaves under water stress. Furthermore, the proton-translocating and cation-dependent H+ (Na+/H+ or K+/H+) exchange activities in the tonoplast vesicles isolated from the leaves of transgenic plants were higher than in those isolated from WT plants. Therefore, constitutive expression of either AtNHX1 or AtNHX3 genetically modified the salt and water stress tolerance of transgenic poplar plants, providing a potential tool for engineering tree species with enhanced resistance to multiple abitotic stresses.  相似文献   

17.
18.
19.

Introduction

The Elongator complex, comprising six subunits (Elp1p-Elp6p), is required for formation of 5-carbamoylmethyl (ncm5) and 5-methoxycarbonylmethyl (mcm5) side chains on wobble uridines in 11 out of 42 tRNA species in Saccharomyces cerevisiae. Loss of these side chains reduces the efficiency of tRNA decoding during translation, resulting in pleiotropic phenotypes. Overexpression of hypomodified \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \), which in wild-type strains are modified with mcm5s2U, partially suppress phenotypes of an elp3Δ strain.

Objectives

To identify metabolic alterations in an elp3Δ strain and elucidate whether these metabolic alterations are suppressed by overexpression of hypomodified \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \).

Method

Metabolic profiles were obtained using untargeted GC-TOF-MS of a temperature-sensitive elp3Δ strain carrying either an empty low-copy vector, an empty high-copy vector, a low-copy vector harboring the wild-type ELP3 gene, or a high-copy vector overexpressing \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \). The temperature sensitive elp3Δ strain derivatives were cultivated at permissive (30 °C) or semi-permissive (34 °C) growth conditions.

Results

Culturing an elp3Δ strain at 30 or 34 °C resulted in altered metabolism of 36 and 46 %, respectively, of all metabolites detected when compared to an elp3Δ strain carrying the wild-type ELP3 gene. Overexpression of hypomodified \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \) suppressed a subset of the metabolic alterations observed in the elp3Δ strain.

Conclusion

Our results suggest that the presence of ncm5- and mcm5-side chains on wobble uridines in tRNA are important for metabolic homeostasis.
  相似文献   

20.
While the role of the vacuolar NHX Na+/H+ exchangers in plant salt tolerance has been demonstrated on numerous occasions, their control over cytosolic ionic relations has never been functionally analysed in the context of subcellular Na+ and K+ homeostasis. In this work, PutNHX1 and SeNHX1 were cloned from halophytes Puccinellia tenuiflora and Salicornia europaea and transiently expressed in Arabidopsis wild type Col-0 and the nhx1 mutant. Phylogentic analysis, topological prediction, analysis of evolutionary conservation, the topology structure and analysis of hydrophobic or polar regions of PutNHX1 and SeNHX1 indicated that they are unique tonoplast Na+/H+ antiporters with characteristics for salt tolerance. As a part of the functional assessment, cytosolic and vacuolar Na+ and K+ in different root tissues and ion fluxes from root mature zone of Col-0, nhx1 and their transgenic lines were measured. Transgenic lines sequestered large quantity of Na+ into root cell vacuoles and also promoted high cytosolic and vacuolar K+ accumulation. Expression of PutNHX1 and SeNHX1 led to significant transient root Na+ uptake in the four transgenic lines upon recovery from salt treatment. In contrast, the nhx1 mutant maintained a prolonged Na+ efflux and the nhx1:PutNHX1 and nhx1:SeNHX1 lines started to actively pump Na+ out of the cell. Overall, our findings suggest that PutNHX1 and SeNHX1 improve Na+ sequestration in the vacuole and K+ retention in the cytosol and vacuole of root cells of Arabidopsis, and that they interact with other regulatory mechanisms to provide a highly orchestrated regulation of ionic relations among intracellular cell compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号