首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heart failure with preserved ejection fraction (HFpEF) represents a complex and heterogeneous clinical syndrome, which is increasingly prevalent and associated with poor outcome. In contrast to heart failure with reduced ejection fraction (HFrEF), modern heart failure pharmacotherapy did not improve outcome in HFpEF, which was attributed to incomplete understanding of HFpEF pathophysiology, patient heterogeneity and lack of insight into primary pathophysiological processes. HFpEF patients are frequently elderly females and patients demonstrate a high prevalence of non-cardiac comorbidities, which independently adversely affect myocardial structural and functional remodelling. Furthermore, although diastolic left ventricular dysfunction represents the dominant abnormality in HFpEF, numerous ancillary mechanisms are frequently present, which also negatively impact on cardiovascular reserve. Over the past decade, clinical and translational research has improved insight into HFpEF pathophysiology and the importance of comorbidities and patient heterogeneity. Recently, a new paradigm for HFpEF was proposed, which states that comorbidities drive myocardial dysfunction and remodelling in HFpEF through coronary microvascular inflammation. Regarding the conceptual framework of HFpEF treatment, emphasis may need to shift from a ‘one fits all’ strategy to an individualised approach based on phenotypic patient characterisation and diagnostic and pathophysiological stratification of myocardial disease processes. This review will describe these novel insights from a pathophysiological standpoint.  相似文献   

2.
Heart failure with preserved ejection fraction (HFpEF) is the most common type of HF in older adults. Although no pharmacological therapy has yet improved survival in HFpEF, exercise training (ExT) has emerged as the most effective intervention to improving functional outcomes in this age‐related disease. The molecular mechanisms by which ExT induces its beneficial effects in HFpEF, however, remain largely unknown. Given the strong association between aging and HFpEF, we hypothesized that ExT might reverse cardiac aging phenotypes that contribute to HFpEF pathophysiology and additionally provide a platform for novel mechanistic and therapeutic discovery. Here, we show that aged (24–30 months) C57BL/6 male mice recapitulate many of the hallmark features of HFpEF, including preserved left ventricular ejection fraction, subclinical systolic dysfunction, diastolic dysfunction, impaired cardiac reserves, exercise intolerance, and pathologic cardiac hypertrophy. Similar to older humans, ExT in old mice improved exercise capacity, diastolic function, and contractile reserves, while reducing pulmonary congestion. Interestingly, RNAseq of explanted hearts showed that ExT did not significantly modulate biological pathways targeted by conventional HF medications. However, it reversed multiple age‐related pathways, including the global downregulation of cell cycle pathways seen in aged hearts, which was associated with increased capillary density, but no effects on cardiac mass or fibrosis. Taken together, these data demonstrate that the aged C57BL/6 male mouse is a valuable model for studying the role of aging biology in HFpEF pathophysiology, and provide a molecular framework for how ExT potentially reverses cardiac aging phenotypes in HFpEF.  相似文献   

3.
Heart failure with preserved ejection fraction (HFpEF) is a growing healthcare burden worldwide and its prevalence is increasing. Diagnosing HFpEF is challenging and relies upon the presence of symptoms and/or signs of heart failure, preserved left ventricular systolic function, and evidence of diastolic dysfunction. Current diagnostic algorithms mainly rely on echocardiography (E/e’) and biomarkers (NT-proBNP). However, only a minority of patients with HFpEF are identified, and especially HFpEF patients at an early stage of the disease are easily missed. We propose to incorporate invasive stress testing, by means of right heart catheterisation at rest and during exercise, and accurate assessment of right ventricular function, by means of cardiac magnetic resonance imaging. These additions to the current diagnostic work-up will improve diagnostic sensitivity and accurate staging of HFpEF patients.  相似文献   

4.
Sedentary aging leads to increased cardiovascular stiffening, which can be ameliorated by sufficient amounts of lifelong exercise training. An even more extreme form of cardiovascular stiffening can be seen in heart failure with preserved ejection fraction (HFpEF), which comprises ~40~50% of elderly patients diagnosed with congestive heart failure. There are two major interrelated hypotheses proposed to explain heart failure in these patients: 1) increased left ventricular (LV) diastolic stiffness and 2) increased arterial stiffening. The beat-to-beat dynamic Starling mechanism, which is impaired with healthy human aging, reflects the interaction between ventricular and arterial stiffness and thus may provide a link between these two mechanisms underlying HFpEF. Spectral transfer function analysis was applied between beat-to-beat changes in LV end-diastolic pressure (LVEDP; estimated from pulmonary artery diastolic pressure with a right heart catheter) and stroke volume (SV) index. The dynamic Starling mechanism (transfer function gain between LVEDP and the SV index) was impaired in HFpEF patients (n = 10) compared with healthy age-matched controls (n = 12) (HFpEF: 0.23 ± 0.10 ml·m?2·mmHg?1 and control: 0.37 ± 0.11 ml·m?2·mmHg?1, means ± SD, P = 0.008). There was also a markedly increased (3-fold) fluctuation of LV filling pressures (power spectral density of LVEDP) in HFpEF patients, which may predispose to pulmonary edema due to intermittent exposure to higher pulmonary capillary pressure (HFpEF: 12.2 ± 10.4 mmHg2 and control: 3.8 ± 2.9 mmHg2, P = 0.014). An impaired dynamic Starling mechanism, even more extreme than that observed with healthy aging, is associated with marked breath-by-breath LVEDP variability and may reflect advanced ventricular and arterial stiffness in HFpEF, possibly contributing to reduced forward output and pulmonary congestion.  相似文献   

5.
Biomarkers are widely used and studied in heart failure. Most studies have described the utility and performance of biomarkers in sub-studies of randomised clinical trials, where the vast majority of the patients suffered from heart failure with reduced ejection fraction (HFrEF), and not with preserved ejection fraction (HFpEF). As a result, there is a scarcity of data describing the levels, dynamics, clinical and biochemical correlates, and biology of biomarkers in patients suffering from HFpEF, whereas HFpEF is in fact a very frequent clinical entity. This article discusses the value of different biomarkers in HFpEF. We describe various aspects of natriuretic peptide measurements in HFpEF patients, with a focus on diagnosis, prognosis and the risk prediction of developing heart failure. Further, we will discuss several emerging biomarkers such as galectin-3 and suppression of tumorigenicity 2, and recently discovered ones such as growth differentiation factor-15 and syndecan-1.  相似文献   

6.
7.
BackgroundThis review aims to determine if patients who undergo atrial fibrillation (AF) ablation with heart failure with preserved ejection fraction (HFpEF) do better, or worse or the same compared to patients with heart failure with reduced ejection fraction (HFrEF).MethodsA search of MEDLINE and EMBASE was performed using the search terms: “atrial fibrillation”, “ablation” and terms related to HFpEF and HFrEF in order to identify studies that evaluated one or more of i) AF recurrence, ii) periprocedural complications and iii) adverse outcomes at follow up for patients with HFpEF and HFrEF who underwent AF ablation. Data was extracted from included studies and statistically pooled to evaluate adverse events and AF recurrence.Results5 studies were included in this review and the sample size of the studies ranged from 91 to 521 patients with heart failure. There was no significant difference in the pooled rate for no AF or symptom recurrence after AF ablation comparing patients with HFpEF vs HFrEF (RR 1.07 95%CI 0.86–1.33, p = 0.15). The most common complications were access site complications/haematoma/bleeding which occurred in similar proportion in each group; HFpEF (3.1%) and HFrEF (3.1%). In terms of repeat ablations, two studies were pooled to yield a rate of 78/455 (17.1%) for HFpEF vs 24/279 (8.6%) for HFrEF (p = 0.001.ConclusionsHeart failure patients with preserved or reduced ejection fraction have similar risk of AF or symptom recurrence after AF ablation but two studies suggest that patients with HFpEF are more likely to have repeat ablations.  相似文献   

8.
目的:分析和比较射血分数保留的心力衰竭(HFp EF)、射血分数中间值(HFmr EF)及射血分数降低的老年心力衰竭(HFr EF)患者临床特征的差异。方法:选取2017年9月至2018年8月哈尔滨市第一医院收治的老年慢性心力衰竭患者共287例,根据心动超声所测左室舒张末期内径(LVEF)值将其分为3组:HFpEF组175例、HFmr EF组50例和HFr EF组62例。比较各组患者一般情况、心动超声检查结果、血清学指标的差异。结果:(1)与HFr EF组患者比较,HFpEF组患者年龄、性别、吸烟史、体重指数(BMI)、原发冠心病、高血压、2型糖尿病患者比例、房颤发生率及心功能分级构成比均具有统计学差异(P0.05);(2)与HFr EF组相比较,HFpEF组患者的E/A比值,左房内径、肺动脉内径、LVEDD较小,而室间隔厚度较厚(P0.05);(3)与HFr EF组患者相比,HFpEF组血清总胆固醇、甘油三酯较高;血肌酐、血尿素氮、血尿酸、超敏C反应蛋白、N-末端脑钠肽前体水平较低,具有统计学差异(P0.05)。结论:老年HFpEF心力衰竭患者以女性居多,体重指数较大,以向心性肥胖为主,血压水平较高,心功能II级者比例高,有明显的舒张功能不全,易发生房性心律失常,房颤发生率高,主要病因为高血压。  相似文献   

9.
目的:探讨射血分数保留的心衰(HFpEF)、射血分数中间范围的心衰(HFmr EF)和射血分数下降的心衰(HFr EF)患者临床特征及左心室重塑的差别。方法:选取2013年2月1日至2016年12月31日在我院心内住院的308名心力衰竭患者作为研究对象,根据入院后首次心脏彩超结果,按左室射血分数(LVEF)将入选的心力衰竭患者分为HFr EF组、HFmr EF组和HFpEF组,回顾性分析所有患者的临床一般资料、化验结果、超声数据和用药情况,对比分析3组患者的临床特征及左心室重塑的差别。结果:HFpEF组为123例(39.9%),HFmr EF组为98例(31.5%),HFr EF组为88例(28.6%);其中HFpEF组女性比例高于HFr EF组(59.4%vs.38.6%,P0.05),高血压和房颤患病率HFpEF组高于HFr EF组(P0.05);HFpEF组左心室重构类型以向心性重塑为主,HFr EF组则以离心性重塑为主;HFmr EF组女性比例及高血压、房颤患病率等临床特征及左心室重塑类型分布则介于HFpEF组与HFr EF之间。结论:HFpEF,HFmr EF与HFr EF组患者临床特点及左心室重塑类型分布显著不同,应对不同左室射血分数的心力衰竭患者采取更有针对性的治疗措施。  相似文献   

10.
Heart failure with preserved ejection fraction (HFpEF) is a complex disease associated with multiple co-morbidities, where impaired cardiac mechanics are often the end effect. At the cellular level, cardiac mechanics can be pharmacologically manipulated by altering calcium signalling and the sarcomere. However, the link between cellular level modulations and whole organ pump function is incompletely understood. Our goal is to develop and use a multi-scale computational cardiac mechanics model of the obese ZSF1 HFpEF rat to identify important biomechanical mechanisms that underpin impaired cardiac function and to predict how whole-heart mechanical function can be recovered through altering cellular calcium dynamics and/or cellular contraction. The rat heart was modelled using a 3D biventricular biomechanics model. Biomechanics were described by 16 parameters, corresponding to intracellular calcium transient, sarcomere dynamics, cardiac tissue and hemodynamics properties. The model simulated left ventricular (LV) pressure-volume loops that were described by 14 scalar features. We trained a Gaussian process emulator to map the 16 input parameters to each of the 14 outputs. A global sensitivity analysis was performed, and identified calcium dynamics and thin and thick filament kinetics as key determinants of the organ scale pump function. We employed Bayesian history matching to build a model of the ZSF1 rat heart. Next, we recovered the LV function, described by ejection fraction, peak pressure, maximum rate of pressure rise and isovolumetric relaxation time constant. We found that by manipulating calcium, thin and thick filament properties we can recover 34%, 28% and 24% of the LV function in the ZSF1 rat heart, respectively, and 39% if we manipulate all of them together. We demonstrated how a combination of biophysically based models and their derived emulators can be used to identify potential pharmacological targets. We predicted that cardiac function can be best recovered in ZSF1 rats by desensitising the myofilament and reducing the affinity to intracellular calcium concentration and overall prolonging the sarcomere staying in the active force generating state.  相似文献   

11.
近年来,射血分数保留型心力衰竭(HFpEF)的防治进展已成为国内外心血管医生关注的热点。HFpEF的防治是一个长期、综合的过程,虽然在规范化药物治疗方面有所进步,但是HFpEF患者的症状仍未得到理想控制。因此,以合理防治为主的全周期健康管理模式对HFpEF患者具有极其重要的意义。随着对HFpEF患者长期随访管理及预后相关研究的深入,慢性病轨迹模式逐步成为具有良好前景的规范化管理模式。科学、合理的慢性病轨迹模式管理可以更好地控制HFpEF患者症状,持续改善其生活质量。本文就慢性病轨迹模式管理在HFpEF患者中的最新进展做一综述。  相似文献   

12.

Background

Chronic heart failure (CHF) with preserved left ventricular (LV) ejection fraction (HFpEF) is observed in half of all patients with CHF and carries the same poor prognosis as CHF with reduced LV ejection fraction (HFrEF). In contrast to HFrEF, there is no established therapy for HFpEF. Chronic inflammation contributes to cardiac fibrosis, a crucial factor in HFpEF; however, inflammatory mechanisms and mediators involved in the development of HFpEF remain unclear. Therefore, we sought to identify novel inflammatory mediators involved in this process.

Methods and Results

An analysis by multiplex-bead array assay revealed that serum interleukin-16 (IL-16) levels were specifically elevated in patients with HFpEF compared with HFrEF and controls. This was confirmed by enzyme-linked immunosorbent assay in HFpEF patients and controls, and serum IL-16 levels showed a significant association with indices of LV diastolic dysfunction. Serum IL-16 levels were also elevated in a rat model of HFpEF and positively correlated with LV end-diastolic pressure, lung weight and LV myocardial stiffness constant. The cardiac expression of IL-16 was upregulated in the HFpEF rat model. Enhanced cardiac expression of IL-16 in transgenic mice induced cardiac fibrosis and LV myocardial stiffening accompanied by increased macrophage infiltration. Treatment with anti-IL-16 neutralizing antibody ameliorated cardiac fibrosis in the mouse model of angiotensin II-induced hypertension.

Conclusion

Our data indicate that IL-16 is a mediator of LV myocardial fibrosis and stiffening in HFpEF, and that the blockade of IL-16 could be a possible therapeutic option for HFpEF.  相似文献   

13.
Phosphodiesterase-5 (PDE5) is highly expressed in the pulmonary vasculature, but its expression in the myocardium is controversial. Cyclic guanosine monophosphate (cGMP) activates protein kinase G (PKG), which has been hypothesized to blunt cardiac hypertrophy and negative remodeling in heart failure. Although PDE5 has been suggested to play a significant role in the breakdown of cGMP in cardiomyocytes and hence PKG regulation in the myocardium, the RELAX trial, which tested effect of PDE5 inhibition on exercise capacity in patients with heart failure with preserved ejection fraction (HFpEF) failed to show a beneficial effect. These results highlight the controversy regarding the role and expression of PDE5 in the healthy and failing heart. This study used one- and two-dimensional electrophoresis and Western blotting to examine PDE5 expression in mouse (before and after trans-aortic constriction), dog (control and HFpEF) as well as human (healthy and failing) heart. We were unable to detect PDE5 in any cardiac tissue lysate, whereas PDE5 was present in the murine and bovine lung samples used as positive controls. These results indicate that if PDE5 is expressed in cardiac tissue, it is present in very low quantities, as PDE5 was not detected in either humans or any model of heart failure examined. Therefore in cardiac muscle, it is unlikely that PDE5 is involved the regulation of cGMP-PKG signaling, and hence PDE5 does not represent a suitable drug target for the treatment of cardiac hypertrophy. These results highlight the importance of rigorous investigation prior to clinical trial design.  相似文献   

14.
Heart failure (HF) with preserved ejection fraction (HFpEF) is currently the predominant form of HF with a dramatic increase in risk with age. Low‐grade inflammation, as occurs with aging (termed “inflammaging”), is a common feature of HFpEF pathology. Suppression of proinflammatory pathways has been associated with attenuated HFpEF disease severity and better outcomes. From this perspective, inflammasome signaling plays a central role in mediating chronic inflammation and cardiovascular disease progression. However, the causal link between the inflammasome‐immune signaling axis on the age‐dependent progression of HFpEF remains conjectural. In this review, we summarize the current understanding of the role of inflammatory pathways in age‐dependent cardiac function decline. We will also evaluate recent advances and evidence regarding the inflammatory pathway in the pathophysiology of HFpEF, with special attention to inflammasome signaling.  相似文献   

15.
Heart failure with preserved ejection fraction, i.e. HFpEF, is highly prevalent in ageing populations, accounting for more than 50 % of all cases of heart failure in Western societies, and is closely associated with comorbidities such as obesity, diabetes and arterial hypertension. However, all large multicentre trials of potential HFpEF treatments conducted to date have failed to produce positive outcomes. These disappointing results suggest that a ‘one size fits all’ strategy may be ill-suited to HFpEF and support the use of tailored, personalised therapeutic approaches with specific treatments designed for specific comorbidity-related HFpEF phenotypes. The accumulation of a multitude of cardiovascular comorbidities over time leads to increased systemic inflammation, oxidative stress and coronary microvascular endothelial inflammation, eventually resulting in degradation of cyclic guanosine monophosphate (cGMP) via multiple pathways, thereby reducing protein kinase G (PKG) activity. The importance of cGMP-PKG pathway modulation is supported by growing evidence that suggests that this pathway may be a promising therapeutic target, evidence that is mainly based on its role in the phosphorylation of the giant cytoskeletal protein titin. This review will focus on the preclinical and early clinical evidence in the field of cGMP-enhancing therapies and PKG activation.  相似文献   

16.
Background: A significant proportion of heart failure (HF) patients have preserved ejection fraction (EF). Considering that inflammation and oxidative stress are involved in HF evolution, we investigated lipoprotein-associated phospholipase A2 (LpPLA2), an enzyme involved in these pathophysiologic processes in relation to EF. Methods and results: The study included 208 HF patients and 20 healthy controls. HF patients with preserved EF (HFpEF) represented 42.31% of all HF patients. LpPLA2 activity was significantly increased in HF patients when compared with controls and was higher in HFpEF than in HF with reduced EF patients (HFrEF). The incidence of left ventricular hypertrophy was higher in HFpEF than in HFrEF (EF < 50). Conclusion: Confirming its role as a marker of vascular inflammation, LpPLA2 seems to be a biomarker constantly correlated with HF, regardless of etiology. Elevated plasma values of LpPLA2 in HFpEF are consistent with the exacerbated inflammatory status.  相似文献   

17.
In our previous studies, we reported that myeloid differentiation protein 1 (MD1) serves as a negative regulator in several cardiovascular diseases. However, the role of MD1 in heart failure with preserved ejection fraction (HFpEF) and the underlying mechanisms of its action remain unclear. Eight‐week‐old MD1‐knockout (MD1‐KO) and wild‐type (WT) mice served as models of HFpEF induced by uninephrectomy, continuous saline or d‐aldosterone infusion and a 1.0% sodium chloride treatment in drinking water for 4 weeks to investigate the effect of MD1 on HFpEF in vivo. H9C2 cells were treated with aldosterone to evaluate the role of MD1 KO in vitro. MD1 expression was down‐regulated in the HFpEF mice; HFpEF significantly increased the levels of intracellular reactive oxygen species (ROS) and promoted autophagy; and in the MD1‐KO mice, the HFpEF‐induced intracellular ROS and autophagy effects were significantly exacerbated. Moreover, MD1 loss activated the p38‐MAPK pathway both in vivo and in vitro. Aldosterone‐mediated cardiomyocyte autophagy was significantly inhibited in cells pre‐treated with the ROS scavenger N‐acetylcysteine (NAC) or p38 inhibitor SB203580. Furthermore, inhibition with the autophagy inhibitor 3‐methyladenine (3‐MA) offset the aggravating effect of aldosterone‐induced autophagy in the MD1‐KO mice and cells both in vivo and in vitro. Our results validate a critical role of MD1 in the pathogenesis of HFpEF. MD1 deletion exaggerates cardiomyocyte autophagy in HFpEF via the activation of the ROS‐mediated MAPK signalling pathway.  相似文献   

18.
Sirtuin 3 (SIRT3) a mitochondrial enzyme that plays an important role in energy homeostasis, cardiac remodeling, and heart failure (HF). The expression of SIRT3 declines with advanced age, cardiovascular, and metabolic diseases. Accumulating evidence suggests that SIRT3 plays a critical role in protecting the heart from cardiac hypertrophy, cardiac dysfunction associated with HF, and in the protection of cardiac cells from stress-mediated cell death. Clinical studies have demonstrated that HF with preserved ejection fraction (HFpEF) in patients present with abnormalities in coronary microcirculation related to endothelial dysfunction and coronary microvascular rarefaction. Although SIRT3-mediated regulation of mitochondrial homeostasis and heart function has been intensively investigated, the effect of SIRT3 on endothelial cell (EC) glycolytic metabolism and microvascular function has not been well studied. ECs utilize glycolysis for generating ATP rather than oxidative phosphorylation to maintain their normal functions and promote angiogenesis and EC–cardiomyocyte interactions. Emerging evidence indicates that SIRT3 is involved in the regulation of endothelial metabolism and angiogenesis and thus affects the development of cardiovascular diseases associated with aging. This review will discuss the current knowledge of SIRT3 and its functional role on endothelial metabolism, cardiac function, and cardiovascular diseases.  相似文献   

19.
《Biomarkers》2013,18(7):587-589
Background: A significant proportion of heart failure (HF) patients have preserved ejection fraction (EF). Considering that inflammation and oxidative stress are involved in HF evolution, we investigated lipoprotein-associated phospholipase A2 (LpPLA2), an enzyme involved in these pathophysiologic processes in relation to EF.

Methods and results: The study included 208 HF patients and 20 healthy controls. HF patients with preserved EF (HFpEF) represented 42.31% of all HF patients. LpPLA2 activity was significantly increased in HF patients when compared with controls and was higher in HFpEF than in HF with reduced EF patients (HFrEF). The incidence of left ventricular hypertrophy was higher in HFpEF than in HFrEF (EF < 50).

Conclusion: Confirming its role as a marker of vascular inflammation, LpPLA2 seems to be a biomarker constantly correlated with HF, regardless of etiology. Elevated plasma values of LpPLA2 in HFpEF are consistent with the exacerbated inflammatory status.  相似文献   

20.
Heart failure (HF) poses a heavy burden on patients, their families and society. The syndrome of HF comes in two types: with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF). The latter is on the increase and predominantly present in women, especially the older ones. There is an urgent need for mortality-reducing drugs in HFpEF, a disease affecting around 5 % of those aged 65 years and over. HFpEF develops in patients with risk factors and comorbidities such as obesity, hypertension, diabetes, COPD, but also preeclampsia. These conditions are likely to drive microvascular disease with involvement of the coronary microvasculature, which may eventually evolve into HFpEF. Currently, the diagnosis of HFPEF relies mainly on echocardiography. There are no biomarkers that can help diagnose female microvascular disease or facilitate the diagnosis of (early stages of) HFpEF. Recently a Dutch consortium was initiated, Queen of Hearts, with support from the Netherlands Heart Foundation, with the aim to discover and validate biomarkers for diastolic dysfunction and HFpEF in women. These biomarkers come from innovative blood-derived sources such as extracellular vesicles and circulating cells. Within the Queen of Hearts consortium, we will pursue female biomarkers that have the potential for further evolution in assays with point of care capabilities. As a spin-off, the consortium will gain knowledge on gender-specific pathology of HFpEF, possibly opening up novel treatment options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号