首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microgene Polymerization Reaction (MPR) is used as an experimental system to artificially simulate evolution of short, non-repetitive homo-duplex DNA into multiply-repetitive products that can code for functional proteins. Blunt-end ligation by DNA polymerase is crucial in expansion of homo-duplexes (HDs) into head-to-tail multiple repeats in MPR. The propagation mechanism is known, but formation of the initial doublet (ID) by juxtaposing two HDs and polymerization through the gap has been ambiguous. Initiation events with pairs of HDs using Real-Time PCR were more frequent at higher HD concentrations and slightly below the melting temperature. A process molecularity of about 3.1, calculated from the amplification efficiency and the difference in PCR cycles at which propagation was detected at varying HD concentrations, led to a simple mechanism for ID formation: the gap between two HDs is bridged by a third. Considering thermodynamic aspects of the presumed intermediate “nucleation complex” can predict relative propensity for the process with other HDs.  相似文献   

2.
Here we have developed a sensitive DNA amplified detection method based on isothermal strand-displacement polymerization reaction. This method takes advantage of both the hybridization property of DNA and the strand-displacement property of polymerase. Importantly, we demonstrate that our method produces a circular polymerization reaction activated by the target, which essentially allows it to self-detect. Functionally, this DNA system consists of a hairpin fluorescence probe, a short primer and polymerase. Upon recognition and hybridization with the target ssDNA, the stem of the hairpin probe is opened, after which the opened probe anneals with the primer and triggers the polymerization reaction. During this process of the polymerization reaction, a complementary DNA is synthesized and the hybridized target is displaced. Finally, the displaced target recognizes and hybridizes with another probe, triggering the next round of polymerization reaction, reaching a target detection limit of 6.4 × 10−15 M.  相似文献   

3.
Polymerase chain reaction engineering   总被引:1,自引:0,他引:1  
A mathematical model for polymerase chain reaction (PCR) is developed, taking into account the three steps in this process: melting of DNA; primer annealing; and DNA synthesis (polymerization). Activity and deactivation of the polymerase enzyme as a function of temperature is incorporated in the kinetic model to get a better understanding of the amplification of DNA. Computer simulation of the model is carried out to determine the effects of various parameters, such as the cycle number, initial DNA concentration (copynumber), initial enzyme concentration, extension time, temperature ramp, and enzyme deactivation on the DNA generation. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 359-366, 1997.  相似文献   

4.
A unified kinetic pathway for the enzyme-catalyzed polymerization and degradation of poly(ε-caprolactone) was developed. This model tracks the complete distribution of individual chain lengths, both enzyme-bound and in solution, and successfully predicts monomer conversion and the molecular mass distribution as a function of reaction time. As compared to reported experimental data for polymerization reactions, modeled kinetics generate similar trends, with ring-opening rates and water concentration as key factors to controlling molecular mass distributions. Water is critically important by dictating the number of linear chains in solution, shifting the molecular mass distribution at which propagation and degradation equilibrate. For the enzymatic degradation of poly(ε-caprolactone), the final reaction product is also consistent with the equilibrium dictated by the propagation and degradation rates. When the modeling framework described here is used, further experiments can be designed to isolate key reaction steps and provide methods for improving the efficiency of enzyme polymerization.  相似文献   

5.
P E Prevelige  Jr  D Thomas    J King 《Biophysical journal》1993,64(3):824-835
The polymerization of protein subunits into precursor shells empty of DNA is a critical process in the assembly of double-stranded DNA viruses. For the well-characterized icosahedral procapsid of phage P22, coat and scaffolding protein subunits do not assemble separately but, upon mixing, copolymerize into double-shelled procapsids in vitro. The polymerization reaction displays the characteristics of a nucleation limited reaction: a paucity of intermediate assembly states, a critical concentration, and kinetics displaying a lag phase. Partially formed shell intermediates were directly visualized during the growth phase by electron microscopy of the reaction mixture. The morphology of these intermediates suggests that assembly is a highly directed process. The initial rate of this reaction depends on the fifth power of the coat subunit concentration and the second or third power of the scaffolding concentration, suggesting that pentamer of coat protein and dimers or trimers of scaffolding protein, respectively, participate in the rate-limiting step.  相似文献   

6.
In a previous electron microscopic study of early fibrin polymers processed by freeze drying and rotatory shadowing, a large proportion of loosely constructed, frequently branching linear molecular chains was observed; their structural organization was inconsistent with a half-staggered double-stranded model for fibrin polymerization. These conflicting results prompted us to investigate the structure of early fibrin polymers prepared according to a large variety of methods currently used for electron microscopy of macromolecules. By use of a systematic random sampling procedure, fibrin polymers were photographically recorded. They were classified according to their morphological form, and the frequency of occurrence of each configuration was determined. Half-staggered double-stranded forms accounted for less than 1% of all types encountered. Interpretation of the structural organization manifested in the diverse polymer forms observed necessitated the construction of a new interlocked single-strand model for fibrin polymerization. The fibrin polymerization process combines simultaneous propagation of linear growth, branching, and lateral interlocking (leading to lateral association), resulting in the rapid formation of a fibrin network. The structural pattern developing during growth of fibrin polymers appears to be determined principally by the enzymatic mechanism and not solely by the intrinsic molecular structure of fibrinogen. The validity of the interlocked single-strand model was tested by selective fibrinopeptide-B-releasing experiments. Under such activation conditions, the polymer forms predicted according to this and the half-staggered double-strand models should differ; the structures observed were indeed consistent with the interlocked single-strand hypothesis. The compatibility of existing data with this model is discussed.  相似文献   

7.
In this study the effect of the propagation coefficient on the molar distribution function in a modified shell model for micellar systems was examined. The sharpness of the micelle size distribution boundary was found to depend less on the degree of polymerization, n, than on the propagation coefficient, P. Although Kegeles (J. Phys. Chem. 83 (1979) 1728) has reported a marked sharpening of the distribution boundary when P = 2.0. we found the boundary to be fairly broad at this point. However, as values of the propagation coefficient were increased from 3 to 10, the micelle distribution boundary became increasingly sharp. The possibility of such a change in the reaction boundary arising from a structural transition, accompanied by a change in the rate of dissociation of monomer from the shell, is also discussed.  相似文献   

8.
The addition reaction to N-methyl-(S)-alanine or N-methyl-(S)-phenylalanine N-car-boxyanhydride (NCA) of 3-methyl-5-substituted hydantoin (HDT) catalyzed by a tertiary amine was investigated as a model reaction for the propagation reaction of NCA according to the activated-NCA mechanism. Several activated HDTs having the (S)-configuration of the asymmetric carbon atom were found to react more rapidly than their activated enantiomers. This experimental result indicates that the enantiomer selection by terminal-unit control takes place in the propagation reaction according to the activated-NCA mechanism in which an activated NCA is added to a terminal acylated NCA ring of the growing chain. The enantiomer excess of the HDT recovered from the reaction mixture of N-methyl-(S)-phenylalanine NCA and racemic HDTs activated by a tertiary amine was determined. The extent of the enantiomer selection in the polymerization was found to be 3–10 times as large as that in the model reaction. From these results, it was concluded that the chirality of the penultimate unit, as well as that of the terminal NCA ring, plays an important role in determining the enantiomer selection in the NCA polymerization.  相似文献   

9.
Rad51 protein is a well known protagonist of homologous recombination in eukaryotic cells. Rad51 polymerization on single-stranded DNA and its role in presynaptic filament formation have been extensively documented. Rad51 polymerizes also on double-stranded DNA but the significance of this filament formation remains unclear. We explored the behavior of Saccharomyces cerevisiae Rad51 on dsDNA and the influence of nucleosomes on Rad51 polymerization mechanism to investigate its putative role in chromatin accessibility to recombination machinery. We combined biochemical approaches, transmission electron microscopy (TEM) and atomic force microscopy (AFM) for analysis of the effects of the Rad51 filament on chromatinized templates. Quantitative analyses clearly demonstrated the occurrence of chromatin remodeling during nucleoprotein filament formation. During Rad51 polymerization, recombinase proteins moved all the nucleosomal arrays in front of the progressing filament. This polymerization process had a powerful remodeling effect, as Rad51 destabilized the nucleosomes along considerable stretches of DNA. Similar behavior was observed with RecA. Thus, recombinase polymerization is a powerful mechanism of chromatin remodeling. These remarkable features open up new possibilities for understanding DNA recombination and reveal new types of ATP-dependent chromatin dynamics.  相似文献   

10.
A novel method for immobilizing large DNA fragments on a solid surface was developed. A mixed self-assembled monolayer of thiolated single-stranded DNA with inert alkanethiol was generated on a gold (Au) surface through the Au-S reaction. Surface-tethered DNA generated by this method was compatible with various genetic engineering techniques, including hybridization, polymerization, restriction enzyme digestion and ligation. Kinetic control of surface coverage of immobilized DNA was critical for optimizing genetic engineering techniques on solid-phase. Multi-step reaction schemes utilizing various genetic engineering techniques described above were employed for solid-phase gene assembly. We were able to immobilize DNA fragments of up to 1180 bp on a solid surface. Furthermore, we showed that these immobilized genes can be regenerated by PCR. The present work suggests that these types of assembled genes can be used to store and regenerate genes on solid-phase.  相似文献   

11.
The kinetics of E. coli RNA polymerase.   总被引:3,自引:2,他引:1       下载免费PDF全文
Using an assay specific for chain elongation of E. coli RNA polymerase the kinetics of this propagation reaction have been studied. The kinetic behaviour is consistent woth the mathematical model formulated for this multisubstrate enzyme. The effect of increasing salt concentration on the kinetics of the reaction indicated that DNA unwinding is probably a necessary step in the propagation step, although this may not be the rate limiting step under all conditions.  相似文献   

12.
N Tonouchi  H Shoun  T Uozumi    T Beppu 《Nucleic acids research》1986,14(19):7557-7568
The aspartate protease of Mucor pusillus (Mucor pusillus rennin; MPR) is a milk-clotting enzyme used in the cheese industry. The partial amino acid sequence of MPR was determined and oligonucleotide probes were synthesized for cloning of the MPR gene. A clone giving positive hybridization with the probes was selected from the cosmid library. Sequencing of the cloned DNA revealed an open reading frame of 1281 bp without introns which encodes 361 amino acids for the expected MPR with an NH2-terminal extension of 66 amino acids. MPR seems to be synthesized as a prepro enzyme.  相似文献   

13.
Replicative DNA polymerases present an intrinsic proofreading activity during which the DNA primer chain is transferred between the polymerization and exonuclease sites of the protein. The dynamics of this primer transfer reaction during active polymerization remain poorly understood. Here we describe a single‐molecule mechanical method to investigate the conformational dynamics of the intramolecular DNA primer transfer during the processive replicative activity of the Φ29 DNA polymerase and two of its mutants. We find that mechanical tension applied to a single polymerase–DNA complex promotes the intramolecular transfer of the primer in a similar way to the incorporation of a mismatched nucleotide. The primer transfer is achieved through two novel intermediates, one a tension‐sensitive and functional polymerization conformation and a second non‐active state that may work as a fidelity check point for the proofreading reaction.  相似文献   

14.
15.
This paper discusses a two‐state hidden Markov Poisson regression (MPR) model for analyzing longitudinal data of epileptic seizure counts, which allows for the rate of the Poisson process to depend on covariates through an exponential link function and to change according to the states of a two‐state Markov chain with its transition probabilities associated with covariates through a logit link function. This paper also considers a two‐state hidden Markov negative binomial regression (MNBR) model, as an alternative, by using the negative binomial instead of Poisson distribution in the proposed MPR model when there exists extra‐Poisson variation conditional on the states of the Markov chain. The two proposed models in this paper relax the stationary requirement of the Markov chain, allow for overdispersion relative to the usual Poisson regression model and for correlation between repeated observations. The proposed methodology provides a plausible analysis for the longitudinal data of epileptic seizure counts, and the MNBR model fits the data much better than the MPR model. Maximum likelihood estimation using the EM and quasi‐Newton algorithms is discussed. A Monte Carlo study for the proposed MPR model investigates the reliability of the estimation method, the choice of probabilities for the initial states of the Markov chain, and some finite sample behaviors of the maximum likelihood estimates, suggesting that (1) the estimation method is accurate and reliable as long as the total number of observations is reasonably large, and (2) the choice of probabilities for the initial states of the Markov process has little impact on the parameter estimates.  相似文献   

16.
RecA binds to single-stranded (ss) DNA to form?a helical filament that catalyzes strand exchange with a homologous double-stranded (ds) DNA. The study of strand exchange in ensemble assays is limited by the diffusion limited homology search process, which masks the subsequent strand exchange reaction. We developed a single-molecule fluorescence assay with a few base-pair and millisecond resolution that can separate initial docking from the subsequent propagation of joint molecule formation. Our data suggest that propagation occurs in 3?bp increments with destabilization of the incoming dsDNA and concomitant pairing with the reference ssDNA. Unexpectedly, we discovered the formation of?a dynamic complex between RecA and the displaced DNA that remains bound transiently after joint molecule formation. This finding could have important implications for the irreversibility of strand exchange. Our model for strand exchange links structural models of RecA to its catalytic function.  相似文献   

17.
This paper describes experiments intended to decide whether UV lesions in DNA act as absolute blocks to chain elongation by the Escherichia coli DNA polymerase or only slow down the polymerization process. Ultraviolet (UV)-irradiated, single-stranded (SS) circular DNA of bacteriophage øX174 was used as template for the polymerase in a reaction mixture in vitro, under conditions allowing synthesis of not more than one complementary strand per template molecule. The mean length of the newly synthesized complementary strands (as determined by velocity sedimentation in alkaline CsCl gradients), as well as the over-all template activity (as measured by deoxyadenosine monophosphate [dAMP] incorporation) was found to decrease with the number of biologically lethal hits sustained by the irradiated templates. With the increase of time or temperature of reaction, the net synthesis of complementary strands increased (as a consequence of increased initiation), but their mean length remained constant. The mean length of synthesized strands was greater than would be expected if all biologically lethal hits were to block the polymerization process. The lethal hits which serve as blocking lesions are inferred to be pyrimidine dimers because it is possible to obtain synthesis of full-length complementary strands if, when heat-denatured, UV-irradiated, double-stranded replicative form (RF II) DNA of bacteriophage øX174 is used as a template, it is pretreated with yeast photoreactivating enzyme (YPRE) in presence of visible light.  相似文献   

18.
1. The enzymatic mechanism of mutagenic DNA repair is unknown. None of the characterized DNA polymerases is capable of polymerization past non-coding template structures. 2. A hypothesis is proposed according to which polymerization opposite non-coding template structures is catalyzed by the DNA-polymerase-associated 3'-5' exonuclease under conditions which shift the equilibrium of the 3'-5' exonuclease reaction DNAn + H2O in equilibrium DNAn-1 + dNMP to the left, i.e. to the incorporation of deoxynucleoside monophosphates. 3. Conditions which favor the incorporation of dNMP by the reversed 3'-5' exonuclease reaction include a high dNMP concentration, a coupled H2O-consuming reaction and a hydrophobic enzyme environment. 4. The statements of the hypothesis are supported by published work on the biochemistry of DNA polymerases and their associated 3'-5' exonucleases, the genetics of mutagenic DNA repair and the involvement of Escherichia coli DNA polymerase III in this process. 5. The hypothesis offers an explanation of the mutator and antimutator properties of certain genes, in particular of DNA polymerase genes, and also explains how some drugs act mutagenically during DNA replication and antimutagenically against mutagenic DNA repair.  相似文献   

19.
T Horii 《Biochimie》1991,73(2-3):177-185
The RecA protein of E coli promotes a strand exchange reaction in vitro which appears to be similar to homologous genetic recombination in vivo. A model for the mechanism of strand transfer reaction by RecA protein has been proposed by Howard-Flanders et al based on the assumption that the RecA monomer has two distinctive DNA binding sites both of which can bind to ssDNA as well as dsDNA. Here, I propose an alternative model based on the assumption that RecA monomer has a single domain for binding to a polynucleotide chain with a unique polarity. In addition, the model is based on a few mechanical assumptions that, in the presence of ATP, two RecA molecules form a head to head dimer as the basic binding unit to DNA, and that the binding of RecA protein to a polynucleotide chain induces a structural change of RecA protein that causes a higher state of affinity for another RecA molecule that is expressed as cooperativy. The model explains many of the biochemical capabilities of RecA protein including the polar polymerization of RecA protein on single stranded DNA and polar strand transfer of DNA by the protein as well as the formation of a joint DNA molecule in a paranemic configuration. The model also presents the energetics in the strand transfer reaction.  相似文献   

20.
The ribonucleoprotein enzyme telomerase synthesizes one strand of telomeric DNA by copying a template sequence within the RNA moiety of the enzyme. Kinetic studies of this polymerization reaction were used to analyze the mechanism and properties of the telomerase from Tetrahymena thermophila. This enzyme synthesizes TTGGGG repeats, the telomeric DNA sequence of this species, by elongating a DNA primer whose 3' end base pairs with the template-forming domain of the RNA. The enzyme was found to act nonprocessively with short (10- to 12-nucleotide) primers but to become processive as TTGGGG repeats were added. Variation of the 5' sequences of short primers with a common 3' end identified sequence-specific effects which are distinct from those involving base pairing of the 3' end of the primer with the RNA template and which can markedly induce enzyme activity by increasing the catalytic rate of the telomerase polymerization reaction. These results identify an additional mechanistic basis for telomere and DNA end recognition by telomerase in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号