首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent biochemical studies evaluated the affinity of histones to DNA in the context of nucleosome core particle (NCP). These have indicated a concentration-dependence for nucleosome stability. However, when studying chromatin the preferred templates are nucleosome arrays (NA) and not the NCP. Biochemical methods are poorly suited for structural analysis of chromatin. To overcome that technical hindrance, and investigate the effect of concentration on stability of the histone–DNA interactions, we have applied the multigel Quantitative Agarose Gel Electrophoresis (QAGE) method to in vitro-assembled nucleosomal arrays. The results demonstrated the method to be extremely valuable for the evaluation of the effect of low concentration on NA. However, QAGE is a fairly time-demanding and complex method. To maximize the efficiency of use of this technology, we devised a protocol that allowed for multiple sets of templates to be analyzed simultaneously. Briefly, samples can be loaded at regular intervals and analyzed individually for their molecular composition. The technique presented in this study describes the calibration steps and proof of concept necessary to validate the use of multiple loading of multigel to evaluate the composition of nucleosomal arrays as a function of concentration.  相似文献   

2.
We have studied the sample concentration-dependent and external stress-dependent stability of native and reconstituted nucleosomal arrays. Whereas upon stretching a single chromatin fiber in a solution of very low chromatin concentration the statistical distribution of DNA length released upon nucleosome unfolding shows only one population centered around approximately 25 nm, in nucleosome stabilizing conditions a second population with average length of approximately 50 nm was observed. Using radioactively labeled histone H3 and H2B, we demonstrate that upon lowering the chromatin concentration to very low values, first the linker histones are released, followed by the H2A-H2B dimer, whereas the H3-H4 tetramer remains stably attached to DNA even at the lowest concentration studied. The nucleosomal arrays reconstituted on a 5 S rDNA tandem repeat exhibited similar behavior. This suggests that the 25-nm disruption length is a consequence of the histone H2A-H2B dimer dissociation from the histone octamer. In nucleosome stabilizing conditions, a full approximately 145 bp is constrained in the nucleosome. Our data demonstrate that the nucleosome stability and histone octamer integrity can be severely degraded in experiments where the sample concentration is low.  相似文献   

3.
Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these ‘proto-chromatosomes’ are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.  相似文献   

4.
Core histone octamers that are repetitively spaced along a DNA molecule are called nucleosomal arrays. Nucleosomal arrays are obtained in one of two ways: purification from in vivo sources, or reconstitution in vitro from recombinant core histones and tandemly repeated nucleosome positioning DNA. The latter method has the benefit of allowing for the assembly of a more compositionally uniform and precisely positioned nucleosomal array. Sedimentation velocity experiments in the analytical ultracentrifuge yield information about the size and shape of macromolecules by analyzing the rate at which they migrate through solution under centrifugal force. This technique, along with atomic force microscopy, can be used for quality control, ensuring that the majority of DNA templates are saturated with nucleosomes after reconstitution. Here we describe the protocols necessary to reconstitute milligram quantities of length and compositionally defined nucleosomal arrays suitable for biochemical and biophysical studies of chromatin structure and function.  相似文献   

5.
Recent biochemical studies evaluated the affinity of histones to DNA in the context of nucleosome core particle (NCP). These have indicated a concentration-dependence for nucleosome stability. However, when studying chromatin the preferred templates are nucleosome arrays (NA) and not the NCP. Biochemical methods are poorly suited for structural analysis of chromatin. To overcome that technical hindrance, and investigate the effect of concentration on stability of the histone-DNA interactions, we have applied the multigel Quantitative Agarose Gel Electrophoresis (QAGE) method to in vitro-assembled nucleosomal arrays. The results demonstrated the method to be extremely valuable for the evaluation of the effect of low concentration on NA. However, QAGE is a fairly time-demanding and complex method. To maximize the efficiency of use of this technology, we devised a protocol that allowed for multiple sets of templates to be analyzed simultaneously. Briefly, samples can be loaded at regular intervals and analyzed individually for their molecular composition. The technique presented in this study describes the calibration steps and proof of concept necessary to validate the use of multiple loading of multigel to evaluate the composition of nucleosomal arrays as a function of concentration.  相似文献   

6.
7.
We describe the cloning and analysis of Drosophila nucleosome assembly protein 1 (dNAP-1), a core histone-binding protein that functions with other chromatin assembly activities in a Drosophila chromatin assembly factor 1-containing fraction (dCAF-1 fraction) in the ATP-facilitated assembly of regularly spaced nucleosomal arrays from purified core histones and DNA. Purified, recombinant dNAP-1 acts cooperatively with a factor(s) in the dCAF-1 fraction in the efficient and DNA replication-independent assembly of chromatin. In the presence of histone H1, the repeat length of the chromatin is similar to that of native chromatin from Drosophila embryos. By coimmunoprecipitation analysis, dNAP-1 was found to be associated with histones H2A and H2B in a crude whole-embryo extract, which suggests that dNAP-1 is bound to the histones in vivo. Studies of the localization of dNAP-1 in the Drosophila embryo revealed that the factor is present in the nucleus during S phase and is predominantly cytoplasmic during G2 phase. These data suggest that NAP-1 acts as a core histone shuttle which delivers the histones from the cytoplasm to the chromatin assembly machinery in the nucleus. Thus, NAP-1 appears to be one component of a multifactor chromatin assembly machinery that mediates the ATP-facilitated assembly of regularly spaced nucleosomal arrays.  相似文献   

8.
Nucleoplasmin (NP), a histone chaperone, acts as a reservoir for histones H2A-H2B in Xenopus laevis eggs and can displace sperm nuclear basic proteins and linker histones from the chromatin fiber of sperm and quiescent somatic nuclei. NP has been proposed to mediate the dynamic exchange of histones during the expression of certain genes and assists the assembly of nucleosomes by modulating the interaction between histones and DNA. Here, solution structural models of full-length NP and NP complexes with the functionally distinct nucleosomal core and linker histones are presented for the first time, providing a picture of the physical interactions between the nucleosomal and linker histones with NP core and tail domains. Small-angle X-ray scattering and isothermal titration calorimetry reveal that NP pentamer can accommodate five histones, either H2A-H2B dimers or H5, and that NP core and tail domains are intimately involved in the association with histones. The analysis of the binding events, employing a site-specific cooperative model, reveals a negative cooperativity-based regulatory mechanism for the linker histone/nucleosomal histone exchange. The two histone types bind with drastically different intrinsic affinity, and the strongest affinity is observed for the NP variant that mimicks the hyperphosphorylated active protein. The different “affinity windows” for H5 and H2A-H2B might allow NP to fulfill its histone chaperone role, simultaneously acting as a reservoir for the core histones and a chromatin decondensing factor. Our data are compatible with the previously proposed model where NP facilitates nucleosome assembly by removing the linker histones and depositing H2A-H2B dimers onto DNA.  相似文献   

9.
Widlund HR  Vitolo JM  Thiriet C  Hayes JJ 《Biochemistry》2000,39(13):3835-3841
Modulation of nucleosome stability in chromatin plays an important role in eukaryotic gene expression. The core histone N-terminal tail domains are believed to modulate the stability of wrapping nucleosomal DNA and the stability of the chromatin filament. We analyzed the contribution of the tail domains to the stability of nucleosomes containing selected DNA sequences that are intrinsically straight, curved, flexible, or inflexible. We find that the presence of the histone tail domains stabilizes nucleosomes containing DNA sequences that are intrinsically straight or curved. However, the tails do not significantly contribute to the free energy of nucleosome formation with flexible DNA. Interestingly, hyperacetylation of the core histone tail domains does not recapitulate the effect of tail removal by limited proteolysis with regard to nucleosome stability. We find that acetylation of the tails has the same minor effect on nucleosome stability for all the selected DNA sequences. A comparison of histone partitioning between long donor chromatin, acceptor DNA, and free histones in solution shows that the core histone tails mediate internucleosomal interactions within an H1-depleted chromatin fiber amounting to an average free energy of about 1 kcal/mol. Thus, such interactions would be significant with regard to the free energies of sequence-dependent nucleosome positioning. Last, we analyzed the contribution of the H2A/H2B dimers to nucleosome stability. We find that the intact nucleosome is stabilized by 900 cal/mol by the presence of the dimers regardless of sequence. The biological implications of these observations are discussed.  相似文献   

10.
11.
12.
To better understand the basis for heat shock-induced chromatin condensation in Achlya, a further characterization of the histones of this organism was carried out. The nucleosomal location (i.e., core vs linker), partial peptide map, and electrophoretic behavior of each Achlya histone was determined and compared to the well-characterized histones of rabbit kidney. The results of this and previous studies suggest that in Achlya, no nucleosome linker-associated histone analogous to histone H1 of higher eucaryotes is observed and that the Achlya histone designated alpha is a novel nucleosomal core histone. These observations may reflect the existence of a mechanism of stress-induced chromatin condensation which does not involve histone H1.  相似文献   

13.
The relationships between the core histone N termini and linker histones during chromatin assembly and salt-dependent chromatin condensation were investigated using defined chromatin model systems reconstituted from tandemly repeated 5 S rDNA, histone H5, and either native "intact" core histone octamers or "tailless" histone octamers lacking their N-terminal domains. Nuclease digestion and sedimentation studies indicate that H5 binding and the resulting constraint of entering and exiting nucleosomal DNA occur to the same extent in both tailless and intact chromatin arrays. However, despite possessing a normal chromatosomal structure, tailless chromatin arrays can neither condense into extensively folded structures nor cooperatively oligomerize in MgCl(2). Tailless nucleosomal arrays lacking linker histones also are unable to either fold extensively or oligomerize, demonstrating that the core histone N termini perform the same functions during salt-dependent condensation regardless of whether linker histones are components of the array. Our results further indicate that disruption of core histone N termini function in vitro allows a linker histone-containing chromatin fiber to exist in a decondensed state under conditions that normally would promote extensive fiber condensation. These findings have key implications for both the mechanism of chromatin condensation, and the regulation of genomic function by chromatin.  相似文献   

14.
15.
The ATPase ISWI can be considered the catalytic core of several multiprotein nucleosome remodeling machines. Alone or in the context of nucleosome remodeling factor, the chromatin accessibility complex (CHRAC), or ACF, ISWI catalyzes a number of ATP-dependent transitions of chromatin structure that are currently best explained by its ability to induce nucleosome sliding. In addition, ISWI can function as a nucleosome spacing factor during chromatin assembly, where it will trigger the ordering of newly assembled nucleosomes into regular arrays. Both nucleosome remodeling and nucleosome spacing reactions are mechanistically unexplained. As a step toward defining the interaction of ISWI with its substrate during nucleosome remodeling and chromatin assembly we generated a set of nucleosomes lacking individual histone N termini from recombinant histones. We found the conserved N termini (the N-terminal tails) of histone H4 essential to stimulate ISWI ATPase activity, in contrast to other histone tails. Remarkably, the H4 N terminus, but none of the other tails, was critical for CHRAC-induced nucleosome sliding and for the generation of regularity in nucleosomal arrays by ISWI. Direct nucleosome binding studies did not reflect a dependence on the H4 tail for ISWI-nucleosome interactions. We conclude that the H4 tail is critically required for nucleosome remodeling and spacing at a step subsequent to interaction with the substrate.  相似文献   

16.
The release of acetylated histones from chick oviduct chromatin was analyzed by hydroxylapatite column chromatography. By raising of the NaCl concentration, acetylated histones were eluted from hydroxylapatite-bound chromatin depending on their release from nucleosomal DNA. Electrophoresis on acid-urea gel showed that hyperacetylated forms of histone H4 were eluted at a lower NaCl concentration than non-acetylated or hypoacetylated H4, suggesting that hyperacetylated H4 has decreased stability in nucleosomes. However, under milder ionic conditions which do not induce dissociation between histones and DNA, polyacrylamide gel electrophoresis of purified nucleosome cores showed no evidence for their unfolding or for increased accessibility by high mobility group protein-17.  相似文献   

17.
Binding of linker histones to the core nucleosome   总被引:1,自引:0,他引:1  
Binding of chicken erythrocyte linker histones H1/H5 to the core nucleosome has been studied. Histones H1/H5 bind very efficiently to the isolated core nucleosome in vitro. The binding of linker histones to the core nucleosome is associated with aggregation of the particles. Approximately one molecule of linker histone binds per core nucleosome in the aggregates, irrespective of the concentration of the linker histones and the salt used. Histone H5 shows greater binding affinity to the core nucleosome as compared to H1. The carboxyl-terminal fragment of the linker histones binds strongly to the core nucleosome while the binding of the central globular domain is weak. Each core nucleosome is capable of binding two molecules of carboxyl-terminal fragment of linker histone. The core nucleosome containing one molecule of carboxyl-terminal fragment of linker histone requires higher salt concentration for aggregation while the core nucleosome containing two molecules of carboxyl-terminal fragment of linker histone can self-associate even at lower salt concentrations. On the basis of these results we are proposing a novel mechanism for the condensation of chromatin by linker histones and other related phenomena.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号