首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In skinned rat cardiac fibres, mitochondrial affinity for endogenous ADP generated by creatine kinase and Ca2+-activated ATPases is higher than for exogenous ADP added to the surrounding medium, suggesting that mitochondria are functionally coupled to creatine kinase and ATPases. Such a coupling may be weaker or absent in ectothermic vertebrate cardiac cells, because they typically have less elaborate intracellular membrane structures, higher glycolytic capacity and lower working temperature. Therefore, we examined skinned cardiac fibres from rainbow trout at 10 °C. The apparent mitochondrial affinity for endogenous ADP was obtained by stimulation with ATP and recording of the release of ADP into the surrounding medium. The apparent affinity for endogenous ADP was much higher than for exogenous ADP suggesting a functional coupling between mitochondria and ATPases. The apparent affinity for exogenous ADP and ATP was increased by creatine or an increase in Ca2+-activity, which should increase intrafibrillar turnover of ATP to ADP. In conclusion, ADP seems to be channelled from creatine kinase and ATPases to mitochondria without being released to the surrounding medium. Thus, despite difference in structure, temperature and metabolic capacity, trout myocardium resembles that of rat with regard to the regulation of mitochondrial respiration.Abbreviations ACR acceptor control ratio - ANT adenine nucleotide translocase - KM ADP apparent mitochondrial affinity for ADP - KM ATP apparent mitochondrial affinity for ATP - LDH lactate dehydrogenase - VADP ADP-stimulated respiration rate - VADP max maximal ADP-stimulated respiration rate - VATP ATP-stimulated respiration rate - VATP max maximal ATP-stimulated respiration rate - V0 basal respiration rate in the absence of ADPCommunicated by G. Heldmaier  相似文献   

2.
An intricate network of reactions is involved in matching energy supply with demand in the heart. This complexity arises because energy production both modulates and is modulated by the electrophysiological and contractile activity of the cardiac myocyte. Here, we present an integrated mathematical model of the cardiac cell that links excitation-contraction coupling with mitochondrial energy generation. The dynamics of the model are described by a system of 50 ordinary differential equations. The formulation explicitly incorporates cytoplasmic ATP-consuming processes associated with force generation and ion transport, as well as the creatine kinase reaction. Changes in the electrical and contractile activity of the myocyte are coupled to mitochondrial energetics through the ATP, Ca2+, and Na+ concentrations in the myoplasmic and mitochondrial matrix compartments. The pseudo steady-state relationship between force and oxygen consumption at various stimulus frequencies and external Ca2+ concentrations is reproduced in both model simulations and direct experiments in cardiac trabeculae under normoxic conditions, recapitulating the linearity between cardiac work and respiration in the heart. Importantly, the model can also reproduce the rapid time-dependent changes in mitochondrial NADH and Ca2+ in response to abrupt changes in workload. The steady-state and dynamic responses of the model were conferred by ADP-dependent stimulation of mitochondrial oxidative phosphorylation and Ca2+ -dependent regulation of Krebs cycle dehydrogenases, illustrating how the model can be used as a tool for investigating mechanisms underlying metabolic control in the heart.  相似文献   

3.
The importance of the creatine kinase system in the cardiac muscle of ectothermic vertebrates is unclear. Mammalian cardiac muscle seems to be structurally organized in a manner that compartmentalizes the intracellular environment as evidenced by the substantially higher mitochondrial apparent Km for ADP in skinned fibres compared to isolated mitochondria. A mitochondrial fraction of creatine kinase is functionally coupled to the mitochondrial respiration, and the transport of phosphocreatine and creatine as energy equivalents of ATP and ADP, respectively, increases the mitochondrial apparent ADP affinity, i.e. lowers the Km. This function of creatine kinase seems to be absent in hearts of frog species. To find out whether this applies to hearts of ectothermic vertebrate species in general, we investigated the effect of creatine on the mitochondrial respiration of saponin-skinned fibres from the ventricle of rainbow trout, Atlantic cod and freshwater turtle. For all three species, the apparent Km for ADP appeared to be substantially higher than for isolated mitochondria. Creatine lowered this Km in trout and turtle, thus indicating a functional coupling between mitochondrial creatine kinase and respiration. However, creatine had no effect on Km in cod ventricle. In conclusion, the creatine kinase-system in trout and turtle hearts seems to fulfil the same functions as in the mammalian heart, i.e. facilitating energy transport and communication between cellular compartments. In cod heart, however, this does not seem to be the case.Abbreviations ACR acceptor control ratio - CK creatine kinase - PCr creatine phosphate - VADP ADP-stimulated respiration rate - Vmax maximal respiration rate - V0 respiration rate in the absence of ADPCommunicated by: G. Heidmaier  相似文献   

4.
V-type ATPases are multi-protein complexes, which acidify cellular compartments in eukaryotes. They pump protons against an ion gradient, driven by a mechano-chemical framework that exploits ATP hydrolysis as an energy source. This process drives the rotation of the so-called c-ring, a membrane embedded complex in the Vo-domain of the V-type ATPase, resulting in translocation of protons across the membrane. One way in which the enzyme is regulated is by disassembly and reassembly of the V1-domain with the Vo-domain, which inactivates and reactivates the enzyme, respectively. Recently, structural data for the isolated Vo-domain from S. cerevisiae in an inactivated state were reported, suggesting the location of previously unobserved proton access pathways within the cytoplasmic and luminal compartments of the stator subunit a in Vo. However, the structural rationale for this inactivation remained unclear. In this study, the water accessibility pathway at the cytoplasmic side is confirmed, and novel insights into the role of the luminal channel with respect to the inactivation mechanism are obtained, using atomic-resolution molecular dynamics simulations. The results show that protonation of the key-glutamate, located in the c-ring of the Vo-domain, and facing the luminal compartment is preserved, when residing in the V1-depleted state. Maintaining the protonation of this essential glutamate is necessary to lock the luminal channel in the inactive, solvent-free state. Based on these theoretical observations and previous experimental results, a model of the proton translocation mechanism in the Vo-domain from V-type ATPases is proposed.  相似文献   

5.
Various analogs of adenosine 5′-triphosphate with a modified terminal phosphate group have been tested in energy-requiring reactions with intact mitochondria and submitochondrial particles.It is shown that the fluorophosphate analog ATP(γF) is a strong inhibitor of mitochondrial respiration and of energy requiring reactions which involve the participation of high energy intermediates, generated aerobically by the respiratory chain. On the other hand, ATP(γF) does not affect the ATPase activity of intact or disrupted mitochondria and is less effective in inhibiting ATP-driven reactions.The imidophosphate analog AMP-P(NH)P also inhibits the partial reactions of oxidative phosphorylation, but does not affect ATP synthesis from ADP and Pi. In contrast to ATP(γF), it is a strong inhibitor of both soluble and membrane-bound mitochondrial ATPases.The biological implication of the complementary effects of ATP(γF) and AMP-P(NH)P on mitochondria-catalysed reactions is discussed while suggesting the use of such nucleotide analogs as specific tools for the study of ATP-forming and ATP-utilizing reactions in mitochondria.  相似文献   

6.
ATP can be produced in the cytosol by glycolytic conversion of glucose (GLC) into pyruvate. The latter can be metabolized into lactate, which is released by the cell, or taken up by mitochondria to fuel ATP production by the tricarboxylic acid cycle and oxidative phosphorylation (OXPHOS) system. Altering the balance between glycolytic and mitochondrial ATP generation is crucial for cell survival during mitoenergetic dysfunction, which is observed in a large variety of human disorders including cancer. To gain insight into the kinetic properties of this adaptive mechanism we determined here how acute (30 min) inhibition of OXPHOS affected cytosolic GLC homeostasis. GLC dynamics were analyzed in single living C2C12 myoblasts expressing the fluorescent biosensor FLII12Pglu-700μδ6 (FLII). Following in situ FLII calibration, the kinetic properties of GLC uptake (V1) and GLC consumption (V2) were determined independently and used to construct a minimal mathematical model of cytosolic GLC dynamics. After validating the model, it was applied to quantitatively predict V1 and V2 at steady-state (i.e., when V1 = V2 = Vsteady-state) in the absence and presence of OXPHOS inhibitors. Integrating model predictions with experimental data on lactate production, cell volume, and O2 consumption revealed that glycolysis and mitochondria equally contribute to cellular ATP production in control myoblasts. Inhibition of OXPHOS induced a twofold increase in Vsteady-state and glycolytic ATP production flux. Both in the absence and presence of OXPHOS inhibitors, GLC was consumed at near maximal rates, meaning that GLC consumption is rate-limiting under steady-state conditions. Taken together, we demonstrate here that OXPHOS inhibition increases steady-state GLC uptake and consumption in C2C12 myoblasts. This activation fully compensates for the reduction in mitochondrial ATP production, thereby maintaining the balance between cellular ATP supply and demand.  相似文献   

7.
Ischemia-induced shortening of the cardiac action potential and its heterogeneous recovery upon reperfusion are thought to set the stage for reentrant arrhythmias and sudden cardiac death. We have recently reported that the collapse of mitochondrial membrane potential (ΔΨm) through a mechanism triggered by reactive oxygen species (ROS), coupled to the opening of sarcolemmal ATP-sensitive potassium (KATP) channels, contributes to electrical dysfunction during ischemia-reperfusion. Here we present a computational model of excitation-contraction coupling linked to mitochondrial bioenergetics that incorporates mitochondrial ROS-induced ROS release with coupling between the mitochondrial energy state and electrical excitability mediated by the sarcolemmal KATP current (IK,ATP). Whole-cell model simulations demonstrate that increasing the fraction of oxygen diverted from the respiratory chain to ROS production triggers limit-cycle oscillations of ΔΨm, redox potential, and mitochondrial respiration through the activation of a ROS-sensitive inner membrane anion channel. The periods of transient mitochondrial uncoupling decrease the cytosolic ATP/ADP ratio and activate IK,ATP, consequently shortening the cellular action potential duration and ultimately suppressing electrical excitability. The model simulates emergent behavior observed in cardiomyocytes subjected to metabolic stress and provides a new tool for examining how alterations in mitochondrial oxidative phosphorylation will impact the electrophysiological, contractile, and Ca2+ handling properties of the cardiac cell. Moreover, the model is an important step toward building multiscale models that will permit investigation of the role of spatiotemporal heterogeneity of mitochondrial metabolism in the mechanisms of arrhythmogenesis and contractile dysfunction in cardiac muscle.  相似文献   

8.
Degenerative diseases are in part based on elevated production of ROS (reactive oxygen species) in mitochondria, mainly during stress and excessive work under stress (strenuous exercise). The production of ROS increases with increasing mitochondrial membrane potential (ΔΨm). A mechanism is described which is suggested to keep ΔΨm at low values under normal conditions thus preventing ROS formation, but is switched off under stress and excessive work to maximize the rate of ATP synthesis, accompanied by decreased efficiency. Low ΔΨm and low ROS production are suggested to occur by inhibition of respiration at high [ATP]/[ADP] ratios. The nucleotides interact with phosphorylated cytochrome c oxidase (COX), representing the step with the highest flux-control coefficient of mitochondrial respiration. At stress and excessive work neural signals are suggested to dephosphorylate the enzyme and abolish the control of COX activity (respiration) by the [ATP]/[ADP] ratio with consequent increase of ΔΨm and ROS production. The control of COX by the [ATP]/[ADP] ratio, in addition, is proposed to increase the efficiency of ATP production via a third proton pumping pathway, identified in eukaryotic but not in prokaryotic COX. We conclude that ‘oxidative stress’ occurs when the control of COX activity by the [ATP]/[ADP] ratio is switched off via neural signals.  相似文献   

9.
Observations on the relationship between cardiac work rate and the levels of energy metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP), and phosphocreatine (CrP) have not been satisfactorily explained by theoretical models of cardiac energy metabolism. Specifically, the in vivo stability of ATP, ADP, and CrP levels in response to changes in work and respiratory rate has eluded explanation. Here a previously developed model of mitochondrial oxidative phosphorylation, which was developed based on data obtained from isolated cardiac mitochondria, is integrated with a spatially distributed model of oxygen transport in the myocardium to analyze data obtained from several laboratories over the past two decades. The model includes the components of the respiratory chain, the F0F1-ATPase, adenine nucleotide translocase, and the mitochondrial phosphate transporter at the mitochondrial level; adenylate kinase, creatine kinase, and ATP consumption in the cytoplasm; and oxygen transport between capillaries, interstitial fluid, and cardiomyocytes. The integrated model is able to reproduce experimental observations on ATP, ADP, CrP, and inorganic phosphate levels in canine hearts over a range of workload and during coronary hypoperfusion and predicts that cytoplasmic inorganic phosphate level is a key regulator of the rate of mitochondrial respiration at workloads for which the rate of cardiac oxygen consumption is less than or equal to approximately 12 μmol per minute per gram of tissue. At work rates corresponding to oxygen consumption higher than 12 μmol min−1 g−1, model predictions deviate from the experimental data, indicating that at high work rates, additional regulatory mechanisms that are not currently incorporated into the model may be important. Nevertheless, the integrated model explains metabolite levels observed at low to moderate workloads and the changes in metabolite levels and tissue oxygenation observed during graded hypoperfusion. These findings suggest that the observed stability of energy metabolites emerges as a property of a properly constructed model of cardiac substrate transport and mitochondrial metabolism. In addition, the validated model provides quantitative predictions of changes in phosphate metabolites during cardiac ischemia.  相似文献   

10.
The effect of ion fluxes across the inner membrane on calcium-independent uncoupling activity of palmitic acid was investigated in experiments on rat liver mitochondria energized by the oxidation of succinate. The following compounds were used as the inductors of ion fluxes: the K+/H+ antiporter nigericin causing transformation of ΔpH into electrical potential difference (Δψ) across the inner membrane; tetraphenylphosphonium (TPP+) that freely crosses phospholipid membranes; protonophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) that induces a flow of H+ from the intermembrane space into the matrix and reduces Δψ and ΔpH. It was found that nigericin at a concentration of 20 nM, which causes an increase in maximal Δψ, partially inhibits the ability of palmitic acid to reduce Δψ and stimulates mitochondrial respiration. A specific inhibitor of the ATP/ADP antiporter (carboxyatractylate) and a substrate of the aspartate/glutamate antiporter (glutamate) increase Δψ and partially inhibit mitochondrial respiration in the presence of palmitic acid. Under these conditions, 10 μM cyclosporin A also inhibits respiration but has no effect on Δψ. The specific uncoupling activity of palmitic acid (V U) and its specific components that characterize participation of the ATP/ADP antiporter (V Catr), aspartate/glutamate antiporter (V Glu), and cyclosporin-A-sensitive system (V CsA) in the palmitic acid-induced uncoupling were estimated. It was shown that nigericin substantially reduces V U, V Catr and V Glu but increases V CsA. TPP+ at a concentration of 20 μM increases V U and V Glu, does not affect V Catr and reduces V CsA. FCCP at concentrations of 20 and 40 nM reduces Δψ by not more than 17% but does not affect V U, V Catr, V Glu and V CsA. The results suggest that the calcium-independent uncoupling effect of palmitic acid in liver mitochondria is caused by the return of protons to the matrix with participation of ADP/ATP and aspartate/glutamate antiporters and owing to activation of cyclosporin A-sensitive electron transport along the respiratory chain without affecting Δψ. The induced ion fluxes across the inner mitochondrial membrane can be considered as a factor of the calcium-independent regulation of uncoupling activity of palmitic acid in liver mitochondria with participation of the ADP/ATP and aspartate/glutamate antiporters and of the cyclosporin A-sensitive electron transport system.  相似文献   

11.
Rikke Birkedal  Hans Gesser 《BBA》2006,1757(7):764-772
In mammalian cardiomyocytes, mitochondria and adjacent ATPases with participation of creatine kinase (CK) constitute functional compartments with an exchange of ADP and ATP delimited from cytosolic bulk solution. The question arises if this extends to ectothermic vertebrates: their low body temperature and thinner cardiomyocytes with a lower density of membrane structures may reduce the need and structural basis for compartmentation. In saponin-skinned cardiac fibres from rainbow trout and Atlantic cod, we investigated mitochondrial respiration induced by endogenous ADP generated by ATPases and its competition for this ADP with pyruvate kinase (PK) in excess. At low Ca2+ activity (pCa = 7.0), PK lowered ATP-induced respiration by 40% in trout and 26% in cod. At high Ca2+ activity (pCa = 5.41), PK had no effect. Additionally, ADP release from the fibres was almost zero but increased drastically upon inhibition of respiration with 1 mM Na-azide. This suggests that fibres are compartmented. PK abolished creatine-stimulated respiration in trout suggesting a less tight coupling of CK to respiration than in mammals. In conclusion, intracellular compartmentation seems to be a general feature of vertebrate cardiomyocytes, whereas the role of CK is unclear, but it seems to be less important for energy transport in species with lower metabolism.  相似文献   

12.
NAD(P)H fluorescence, mitochondrial membrane potential and respiration rate were measured and manipulated in isolated liver cells from fed and starved rats in order to characterize control of mitochondrial respiration and phosphorylation. Increased mitochondrial NADH supply stimulated respiration and this accounted for most of the stimulation of respiration by vasopressin and extracellular ATP. From the response of respiration to NADH it was estimated that the control coefficient over respiration of the processes that supply mitochondrial NADH was about 0.15-0.3 in cells from fed rats. Inhibition of the ATP synthase with oligomycin increased the mitochondrial membrane potential and decreased respiration in cells from fed rats, while the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone had the opposite effect. There was a unique relationship between respiration and membrane potential irrespective of the ATP content of the cells indicating that phosphorylation potential controls respiration solely via phosphorylation (rather than by controlling NADH supply). From the response of respiration to the mitochondrial membrane potential (delta psi M) it was estimated that the control coefficients over respiration rate in cells from fed rats were: 0.29 by the processes that generate delta psi M, 0.49 by the process of ATP synthesis, transport and consumption, and 0.22 by the processes that cycle protons across the inner mitochondrial membrane other than via ATP synthesis (e.g. the passive proton leak). Control coefficients over the rate of mitochondrial ATP synthesis were 0.23, 0.84 and -0.07, respectively, by the same processes. The control distribution in cells from starved rats was similar.  相似文献   

13.
One of the central energy-coupling reactions in living systems is the intraconversion of ATP with a transmembrane proton gradient, carried out by proton-translocating F- and V-type ATPases/synthases. These reversible enzymes can hydrolyze ATP and pump protons, or can use the energy of a transmembrane proton gradient to synthesize ATP from ADP and inorganic phosphate. The stoichiometry of these processes (H+/ATP, or coupling ratio) has been studied in many systems for many years, with no universally agreed upon solution. Recent discoveries concerning the structure of the ATPases, their assembly and the stoichiometry of their numerous subunits, particularly the proton-carrying proteolipid (subunit c) of the FO and V0 sectors, have shed new light on this question and raise the possibility of variable coupling ratios modulated by variable proteolipid stoichiometries.  相似文献   

14.
Polarographical determination of oxygen concentration has shown that in rats with experimental hepatitis induced by combined ethanol and CCl4 administration for 4 weeks, the functioning of the hepatocyte mitochondrial respiratory chain is impaired. Development of liver pathology was accompanied by adipose dystrophy, fibrosis, and an increase of triglycerides and lipid peroxidation products in the liver tissue. The endogenous respiration rate in hepatocytes isolated from the pathologically altered liver was 34% higher than in the control. Cell respiration was not stimulated by the addition of the substrates malate and pyruvate with digitonine. An uncoupler of oxidation and phosphorylation, 2,4-dinitrophenol, increased the hepatocyte oxygen consumption rate by 37%, while addition of the inhibitor of the I complex, rotenone, decreased cell respiration in pathologically altered hepatocytes by 27%. The states 3 (V3) and 4 (V4) of mitochondrial respiration with malate + glutamate as substrates were found to be higher by 70% and 56%, respectively, as compared with the control level. When using malate + glutamate or succinate as substrates, V3 and Vd (dinitrophenol respiration) in the toxic hepatitis hepatocyte mitochondria did not differ from the control, which indicates no uncoupling occurred of the oxidation and phosphorylation processes. Cytochrome c oxidase activity was elevated (+80%) as compared with the control. Administration of the hypolipidemic agent symvastatin simultaneously with ethanol and CCl4 resulted in a reduction of the degree of liver adipose dystrophy, prevented activation of lipid peroxidation, and decreased the hepatocyte endogenous respiration rate. Addition of malate + pyruvate, dinitrophenol or rotenone produced oxygen consumption changes similar to those in the control. However, in mitochondria isolated from the pathologically altered liver, symvastatin induced an uncoupling effect on the respiratory chain in the presence of the substrates malate + glutamate, but did not change the cytochrome c oxidase activity. We suggest that functioning of the NCCR complex in the hepatocyte mitochondria of animals with experimental toxic hepatitis is impaired, which leads to an intensive superoxide anion production at the level of this complex. Under these conditions, the defect of the NADH-coenzyme Q-oxidoreductase is compensated by functioning of other complexes of the respiratory chain (SCCR, coenzyme Q-cytochrome c-reductase, cytochrome c oxidase, and ATP-synthase activities).  相似文献   

15.
17β-estradiol (E2) is considered to modulate the ATP synthase activity through direct binding to the oligomycin sensitive-conferring protein. We have previously demonstrated that E2 increases the amplitude of depolarization associated with the addition of ADP to energized mitochondria (i.e., to initiate a phosphorylative cycle) suggesting a direct action on the phosphorylative system of mitochondria. The purpose of the present study was to investigate the underlying mechanisms responsible for this effect. We show here that E2 modulates the activity of mitochondrial ATP synthase by promoting the intrinsic uncoupling (“slipping”) of the ATP synthase. E2 depressed RCR, ADP/O ratio and state 3 respiration, whereas state 4 respiration was increased and VFCCP (uncoupled respiration) remained unaltered. In contrast to the stimulatory effect on state 4 respiration, state 2 respiration and Volig were not affected by E2. The effect of E2 appeared to be directed towards ATP synthase, since glutamate/malate respiration, uncoupled from the electron transport chain, was unaffected by E2. Apparently, E2 allows a proton back-leak through the Fo component of ATP synthase. This action of E2 is dependent on the presence of ATP, is more pronounced at high membrane potentials, and it is reversed by oligomycin (a Fo-ATP synthase inhibitor) but not by resveratrol (a F1-ATP synthase inhibitor). Altogether, our data provide a mechanistic explanation for the effect of E2 at the level of mitochondrial ATP synthase.  相似文献   

16.
Function, structure and regulation of the vacuolar (H+)-ATPases   总被引:2,自引:0,他引:2  
The vacuolar ATPases (or V-ATPases) are ATP-driven proton pumps that function to both acidify intracellular compartments and to transport protons across the plasma membrane. Intracellular V-ATPases function in such normal cellular processes as receptor-mediated endocytosis, intracellular membrane traffic, prohormone processing, protein degradation and neurotransmitter uptake, as well as in disease processes, including infection by influenza and other viruses and killing of cells by anthrax and diphtheria toxin. Plasma membrane V-ATPases are important in such physiological processes as urinary acidification, bone resorption and sperm maturation as well as in human diseases, including osteopetrosis, renal tubular acidosis and tumor metastasis. V-ATPases are large multi-subunit complexes composed of a peripheral domain (V1) responsible for hydrolysis of ATP and an integral domain (V0) that carries out proton transport. Proton transport is coupled to ATP hydrolysis by a rotary mechanism. V-ATPase activity is regulated in vivo using a number of mechanisms, including reversible dissociation of the V1 and V0 domains, changes in coupling efficiency of proton transport and ATP hydrolysis and changes in pump density through reversible fusion of V-ATPase containing vesicles. V-ATPases are emerging as potential drug targets in treating a number of human diseases including osteoporosis and cancer.  相似文献   

17.
The parameters of oxidative phosphorylation and its interaction with creatine kinase (CK)- and adenylate kinase (AK)-phosphotransfer networks in situ were studied in skinned atrial fibers from 59 patients undergoing coronary artery bypass surgery, valve replacement/correction and atrial septal defect correction. In atria, the mitochondrial CK and AK are effectively coupled to oxidative phosphorylation, the MM-CK is coupled to ATPases and there exists a direct transfer of adenine nucleotides between mitochondria and ATPases. Elimination of cytoplasmic ADP with exogenous pyruvate kinase was not associated with a blockade of the stimulatory effects of creatine and AMP on respiration, neither could it abolish the coupling of MM-CK to ATPases and direct transfer of adenine nucleotides. Thus, atrial energy metabolism is compartmentalized so that mitochondria form functional complexes with adjacent ATPases. These complexes isolate a part of cellular adenine nucleotides from their cytoplasmic pool for participating in energy transfer via CK- and AK-networks, and/or direct exchange. Compared to atria in sinus rhythm, the fibrillating atria were larger and exhibited increased succinate-dependent respiration relative to glutamate-dependent respiration and augmented proton leak. Thus, alterations in mitochondrial oxidative phosphorylation may contribute to pathogenesis of atrial fibrillation. (Mol Cell Biochem 270: 49–61, 2005)  相似文献   

18.
Kazuki Takeda  Kunio Miki 《EMBO reports》2009,10(11):1228-1234
V‐type ATPases (V‐ATPases) are categorized as rotary ATP synthase/ATPase complexes. The V‐ATPases are distinct from F‐ATPases in terms of their rotation scheme, architecture and subunit composition. However, there is no detailed structural information on V‐ATPases despite the abundant biochemical and biophysical research. Here, we report a crystallographic study of V1‐ATPase, from Thermus thermophilus, which is a soluble component consisting of A, B, D and F subunits. The structure at 4.5 Å resolution reveals inter‐subunit interactions and nucleotide binding. In particular, the structure of the central stalk composed of D and F subunits was shown to be characteristic of V1‐ATPases. Small conformational changes of respective subunits and significant rearrangement of the quaternary structure observed in the three AB pairs were related to the interaction with the straight central stalk. The rotation mechanism is discussed based on a structural comparison between V1‐ATPases and F1‐ATPases.  相似文献   

19.
The aim of the present work was to investigate the mechanisms of oxidative damage of the liver mitochondria under diabetes and intoxication in rats as well as to evaluate the possibility of corrections of mitochondrial disorders by pharmacological doses of melatonin. The experimental (30 days) streptozotocin‐induced diabetes mellitus caused a significant damage of the respiratory activity in rat liver mitochondria. In the case of succinate as a respiratory substrate, the ADP‐stimulated respiration rate V3 considerably decreased (by 25%, p < 0·05) as well as the acceptor control ratio (ACR) V3/V2 markedly diminished (by 25%, p < 0·01). We observed a decrease of the ADP‐stimulated respiration rate V3 by 35% (p < 0·05), with glutamate as substrate. In this case, ACR also decreased (by 20%, p < 0·05). Surprisingly, the phosphorylation coefficient ADP/O did not change under diabetic liver damage. Acute rat carbon tetrachloride‐induced intoxication resulted in considerable decrease of the phosphorylation coefficient because of uncoupling of the oxidation and phosphorylation processes in the liver mitochondria. The melatonin administration during diabetes (10 mg·kg‐1 body weight, 30 days, daily) showed a considerable protective effect on the liver mitochondrial function, reversing the decreased respiration rate V3 and the diminished ACR to the control values both for succinate‐dependent respiration and for glutamate‐dependent respiration. The melatonin administration to intoxicated animals (10 mg·kg−1 body weight, three times) partially increased the rate of succinate‐dependent respiration coupled with phosphorylation. The impairment of mitochondrial respiratory plays a key role in the development of liver injury under diabetes and intoxication. Melatonin might be considered as an effector that regulates the mitochondrial function under diabetes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The urinary bladder depends on intracellular ATP to support a number of essential intracellular processes including contraction. The concentration of ATP is maintained by mitochondrial oxidative phosphorylation, cytosolic glycolysis and the cytosolic activity of creatine kinase, the enzyme that catalysis the rapid transfer of a phosphate from creatine phosphate (CP) to ADP resulting in the formation of ATP.Prior studies in this lab and others have demonstrated that mitochondrial respiration is significantly lower in hypertrophied bladder tissue (induced by partial outlet obstruction of the white New Zealand Rabbit). In addition to decreased mitochondrial respiration, there are significant increases in glycolysis and lactic acid formation in the hypertrophied tissue.In view of the increased glycolysis and decreased mitochondrial function in the hypertrophied tissue, and the importance in creatine kinase in maintaining cytosolic levels of ATP, the current study was designed to determine if outlet obstruction induces any changes in the activity of creatine kinase.The following is a summary of the results: 1) The bladder mass increased from 2.2 ± 0.2 gm to 11.5 ±1.6 gm at 7 days following outlet obstruction. 2) The intracellular concentrations of both ATP and CP were significantly reduced in the bladder tissue following 7 days of obstruction. 3) The percent of protein (per tissue mass) was significantly lower in the obstructed bladders, although the percent of soluble protein was similar. 4) Creatine kinase activity of control bladders showed linear kinetics with a Vmax = 1120 nmoles/mg protein/4 min and Km = 147 µM CP. 2) The creatine kinase activity of obstructed bladders also displayed linear kinetics with a Vmax = 1125 nmoles/mg protein/4 min tissue, and Km = 276 µM CP.These studies demonstrate that whereas both control and obstructed bladders have virtually identical maximum creatine kinase activities, the Km for the obstructed tissue is significantly higher than the Km for the control tissue. This may indicate that under cellular conditions (at sub-maximum substrate concentrations), the creatine kinase activity of the obstructed bladders may be significantly lower than the activity of the control bladders. In addition, the reduced tissue concentrations of ATP and CP would certainly be consistent with the reduced functional response to bethanechol and field stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号