首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conserved bacteriophage ATP-based DNA translocation motors consist of a multimeric packaging terminase docked onto a unique procapsid vertex containing a portal ring. DNA is translocated into the empty procapsid through the portal ring channel to high density. In vivo the T4 phage packaging motor deals with Y- or X-structures in the replicative concatemer substrate by employing a portal-bound Holliday junction resolvase that trims and releases these DNA roadblocks to packaging. Here using dye-labeled packaging anchored 3.7-kb Y-DNAs or linear DNAs, we demonstrate FRET between the dye-labeled substrates and GFP portal-containing procapsids and between GFP portal and single dye-labeled terminases. We show using FRET-fluorescence correlation spectroscopy that purified T4 gp49 endonuclease VII resolvase can release DNA compression in vitro in prohead portal packaging motor anchored and arrested Y-DNA substrates. In addition, using active terminases labeled at the N- and C-terminal ends with a single dye molecule, we show by FRET distance of the N-terminal GFP-labeled portal protein containing prohead at 6.9 nm from the N terminus and at 5.7 nm from the C terminus of the terminase. Packaging with a C-terminal fluorescent terminase on a GFP portal prohead, FRET shows a reduction in distance to the GFP portal of 0.6 nm in the arrested Y-DNA as compared with linear DNA; the reduction is reversed by resolvase treatment. Conformational changes in both the motor proteins and the DNA substrate itself that are associated with the power stroke of the motor are consistent with a proposed linear motor employing a terminal-to-portal DNA grip-and-release mechanism.  相似文献   

2.
DNA transport is an essential life process. From chromosome separation during cell division or sporulation, to DNA virus ejection or encapsidation, to horizontal gene transfer, it is ubiquitous in all living organisms. Directed DNA translocation is often energetically unfavorable and requires an active process that uses energy, namely the action of molecular motors. In this review we present recent advances in the understanding of three molecular motors involved in DNA transport in prokaryotes, paying special attention to recent studies using single-molecule techniques. We first discuss DNA transport during cell division, then packaging of DNA in phage capsids, and then DNA import during bacterial transformation.  相似文献   

3.
《Biophysical journal》2020,118(9):2103-2116
Molecular motors that translocate DNA are ubiquitous in nature. During morphogenesis of double-stranded DNA bacteriophages, a molecular motor drives the viral genome inside a protein capsid. Several models have been proposed for the three-dimensional geometry of the packaged genome, but very little is known of the signature of the molecular packaging motor. For instance, biophysical experiments show that in some systems, DNA rotates during the packaging reaction, but most current biophysical models fail to incorporate this property. Furthermore, studies including rotation mechanisms have reached contradictory conclusions. In this study, we compare the geometrical signatures imposed by different possible mechanisms for the packaging motors: rotation, revolution, and rotation with revolution. We used a previously proposed kinetic Monte Carlo model of the motor, combined with Brownian dynamics simulations of DNA to simulate deterministic and stochastic motor models. We find that rotation is necessary for the accumulation of DNA writhe and for the chiral organization of the genome. We observe that although in the initial steps of the packaging reaction, the torsional strain of the genome is released by rotation of the molecule, in the later stages, it is released by the accumulation of writhe. We suggest that the molecular motor plays a key role in determining the final structure of the encapsidated genome in bacteriophages.  相似文献   

4.
Biomotors were once described into two categories: linear motor and rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24 h, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, and T7 as well as bacterial DNA translocase FtsK and SpoIIIE or the large eukaryotic dsDNA viruses such as mimivirus and vaccinia virus as examples to elucidate the puzzles. These motors use ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, that is the size of dsDNA, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-chiral arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism that avoids DNA coiling in translocating the lengthy genomic dsDNA helix could be advantageous for cell replication such as bacterial binary fission and cell mitosis without the need for topoisomerase or helicase to consume additional energy.  相似文献   

5.
Tailed bacteriophages and herpesviruses consist of a structurally well conserved dodecameric portal at a special 5-fold vertex of the capsid. The portal plays critical roles in head assembly, genome packaging, neck/tail attachment, and genome ejection. Although the structures of portals from phages φ29, SPP1, and P22 have been determined, their mechanistic roles have not been well understood. Structural analysis of phage T4 portal (gp20) has been hampered because of its unusual interaction with the Escherichia coli inner membrane. Here, we predict atomic models for the T4 portal monomer and dodecamer, and we fit the dodecamer into the cryo-electron microscopy density of the phage portal vertex. The core structure, like that from other phages, is cone shaped with the wider end containing the “wing” and “crown” domains inside the phage head. A long “stem” encloses a central channel, and a narrow “stalk” protrudes outside the capsid. A biochemical approach was developed to analyze portal function by incorporating plasmid-expressed portal protein into phage heads and determining the effect of mutations on head assembly, DNA translocation, and virion production. We found that the protruding loops of the stalk domain are involved in assembling the DNA packaging motor. A loop that connects the stalk to the channel might be required for communication between the motor and the portal. The “tunnel” loops that project into the channel are essential for sealing the packaged head. These studies established that the portal is required throughout the DNA packaging process, with different domains participating at different stages of genome packaging.  相似文献   

6.
Transport of DNA into preformed procapsids is a general strategy for genome packing inside virus particles. In most viruses, this task is accomplished by a complex of the viral packaging ATPase with the portal protein assembled at a specialized vertex of the procapsid. Such molecular motor translocates DNA through the central tunnel of the portal protein. A central question to understand this mechanism is whether the portal is a mere conduit for DNA or whether it participates actively on DNA translocation. The most constricted part of the bacteriophage SPP1 portal tunnel is formed by twelve loops, each contributed from one individual subunit. The position of each loop is stabilized by interactions with helix alpha-5, which extends into the portal putative ATPase docking interface. Here, we have engineered intersubunit disulfide bridges between alpha-5s of adjacent portal ring subunits. Such covalent constraint blocked DNA packaging, whereas reduction of the disulfide bridges restored normal packaging activity. DNA exit through the portal in SPP1 virions was unaffected. The data demonstrate that mobility between alpha-5 helices is essential for the mechanism of viral DNA translocation. We propose that the alpha-5 structural rearrangements serve to coordinate ATPase activity with the positions of portal tunnel loops relative to the DNA double helix.  相似文献   

7.
Molecular motors drive genome packaging into preformed procapsids in many double-stranded (ds)DNA viruses. Here, we present optical tweezers measurements of single DNA molecule packaging in bacteriophage lambda. DNA-gpA-gpNu1 complexes were assembled with recombinant gpA and gpNu1 proteins and tethered to microspheres, and procapsids were attached to separate microspheres. DNA binding and initiation of packaging were observed within a few seconds of bringing these microspheres into proximity in the presence of ATP. The motor was observed to generate greater than 50 picoNewtons (pN) of force, in the same range as observed with bacteriophage phi29, suggesting that high force generation is a common property of viral packaging motors. However, at low capsid filling the packaging rate averaged approximately 600 bp/s, which is 3.5-fold higher than phi29, and the motor processivity was also threefold higher, with less than one slip per genome length translocated. The packaging rate slowed significantly with increasing capsid filling, indicating a buildup of internal force reaching 14 pN at 86% packaging, in good agreement with the force driving DNA ejection measured in osmotic pressure experiments and calculated theoretically. Taken together, these experiments show that the internal force that builds during packaging is largely available to drive subsequent DNA ejection. In addition, we observed an 80 bp/s dip in the average packaging rate at 30% packaging, suggesting that procapsid expansion occurs at this point following the buildup of an average of 4 pN of internal force. In experiments with a DNA construct longer than the wild-type genome, a sudden acceleration in packaging rate was observed above 90% packaging, and much greater than 100% of the genome length was translocated, suggesting that internal force can rupture the immature procapsid, which lacks an accessory protein (gpD).  相似文献   

8.
DNA packaging in tailed bacteriophages and other viruses requires assembly of a complex molecular machine at a specific vertex of the procapsid. This machine is composed of the portal protein that provides a tunnel for DNA entry, an ATPase that fuels DNA translocation (large terminase subunit), and most frequently, a small terminase subunit. Here we characterized the interaction between the terminase ATPase subunit of bacteriophage SPP1 (gp2) and the procapsid portal vertex. We found, by affinity pulldown assays with purified proteins, that gp2 interacts with the portal protein, gp6, independently of the terminase small subunit gp1, DNA, or ATP. The gp2-procapsid interaction via the portal protein depends on gp2 concentration and requires the presence of divalent cations. Competition experiments showed that isolated gp6 can only inhibit gp2-procapsid interactions and DNA packaging at gp6:procapsid molar ratios above 10-fold. Assays with gp6 carrying mutations in distinct regions of its structure that affect the portal-induced stimulation of ATPase and DNA packaging revealed that none of these mutations impedes gp2-gp6 binding. Our results demonstrate that the SPP1 packaging ATPase binds directly to the portal and that the interaction is stronger with the portal embedded in procapsids. Identification of mutations in gp6 that allow for assembly of the ATPase-portal complex but impair DNA packaging support an intricate cross-talk between the two proteins for activity of the DNA translocation motor.  相似文献   

9.
Phage DNA packaging occurs by DNA translocation into a prohead. Terminases are enzymes which initiate DNA packaging by cutting the DNA concatemer, and they are closely fitted structurally to the portal vertex of the prohead to form a ‘packasome’. Analysis among a number of phages supports an active role of the terminases in coupling ATP hydrolysis to DNA translocation through the portal. In phage T4 the small terminase subunit promotes a sequence-specific terminase gene amplification within the chromosome. This link between recombination and packaging suggests a DNA synapsis mechanism by the terminase to control packaging initiation, formally homologous to eukaryotic chromosome segregation.  相似文献   

10.
We study the packaging of DNA into a bacteriophage capsid using computer simulation, specifically focusing on the potential impact of twist on the final packaged conformation. We perform two dynamic simulations of packaging a polymer chain into a spherical confinement: one where the chain end is rotated as it is fed, and one where the chain is fed without end rotation. The final packaged conformation exhibits distinct differences in these two cases: the packaged conformation from feeding with rotation exhibits a spool-like character that is consistent with experimental and previous theoretical work, whereas feeding without rotation results in a folded conformation inconsistent with a spool conformation. The chain segment density shows a layered structure, which is more pronounced for packaging with rotation. However, in both cases, the conformation is marked by frequent jumps of the polymer chain from layer to layer, potentially influencing the ability to disentangle during subsequent ejection. Ejection simulations with and without Brownian forces show that Brownian forces are necessary to achieve complete ejection of the polymer chain in the absence of external forces.  相似文献   

11.
Tailed bacteriophages use powerful molecular motors to package the viral genome into a preformed capsid. Packaging at a rate of up to ~2000 bp/s and generating a power density twice that of an automobile engine, the phage T4 motor is the fastest and most powerful reported to date. Central to DNA packaging are dynamic interactions among the packaging components, capsid (gp23), portal (gp20), motor (gp17, large "terminase"), and regulator (gp16, small terminase), leading to precise orchestration of the packaging process, but the mechanisms are poorly understood. Here we analyzed the interactions between small and large terminases of T4-related phages. Our results show that the gp17 packaging ATPase is maximally stimulated by homologous, but not heterologous, gp16. Multiple interaction sites are identified in both gp16 and gp17. The specificity determinants in gp16 are clustered in the diverged N- and C-terminal domains (regions I-III). Swapping of diverged region(s), such as replacing C-terminal RB49 region III with that of T4, switched ATPase stimulation specificity. Two specificity regions, amino acids 37-52 and 290-315, are identified in or near the gp17-ATPase "transmission" subdomain II. gp16 binding at these sites might cause a conformational change positioning the ATPase-coupling residues into the catalytic pocket, triggering ATP hydrolysis. These results lead to a model in which multiple weak interactions between motor and regulator allow dynamic assembly and disassembly of various packaging complexes, depending on the functional state of the packaging machine. This might be a general mechanism for regulation of the phage packaging machine and other complex molecular machines.  相似文献   

12.
Linear DNAs of any sequence can be packaged into empty viral procapsids by the phage T4 terminase with high efficiency in vitro. Packaging substrates of 5 kbp and 50 kbp, terminated by energy transfer dye pairs, were constructed from plasmid and λ phage DNAs. Nuclease and fluorescence correlation spectroscopy (FCS) assays showed that ∼ 20% of the substrate DNA was packaged and that the DNA dye ends of the packaged DNA were protected from nuclease digestion. Upon packaging, both 5-kbp and  50-kbp DNAs produced comparable fluorescence resonance energy transfer (FRET) between Cy5 and Cy5.5 double-dye terminated DNAs. Single-molecule FRET (sm-FRET) and photobleaching analysis shows that FRET is intramolecular rather than intermolecular upon packaging of most procapsids and demonstrates that single-molecule detection allows mechanistic analysis of packaging in vitro. FRET-FCS and sm-FRET measurements are comparable and show that both the 5-kbp and the  50-kbp packaged DNA ends are held within 8-9 nm of each other, within the dimensions of the long axis of the procapsid portal. The calculated distribution of FRET distances is relatively narrow for both FRET-FCS and sm-FRET, suggesting that the two packaged DNA ends are held at the same fixed distance relative to each other in most capsids. Because one DNA end is known to be positioned for ejection through the portal, it can be inferred that both DNAs ends are held in proximity to the portal entrance and ejection channel. The analysis suggests that a DNA loop, rather than a DNA end, is translocated by the packaging motor to fill the procapsid.  相似文献   

13.
Uncoating the herpes simplex virus genome   总被引:2,自引:0,他引:2  
Initiation of infection by herpes simplex virus (HSV-1) involves a step in which the parental virus capsid docks at a nuclear pore and injects its DNA into the nucleus. Once "uncoated" in this way, the virus DNA can be transcribed and replicated. In an effort to clarify the mechanism of DNA injection, we examined DNA release as it occurs in purified capsids incubated in vitro. DNA ejection was observed following two different treatments, trypsin digestion of capsids in solution, and heating of capsids after attachment to a solid surface. In both cases, electron microscopic analysis revealed that DNA was ejected as a single double helix with ejection occurring at one vertex presumed to be the portal. In the case of trypsin-treated capsids, DNA release was found to correlate with cleavage of a small proportion of the portal protein, UL6, suggesting that UL6 cleavage may be involved in making the capsid permissive for DNA ejection. In capsids bound to a solid surface, DNA ejection was observed only when capsids were warmed above 4 degrees C. The proportion of capsids releasing their DNA increased as a function of incubation temperature with nearly all capsids ejecting their DNA when incubation was at 37 degrees C. The results demonstrate heterogeneity among HSV-1 capsids with respect to their sensitivity to heat-induced DNA ejection. Such heterogeneity may indicate a similar heterogeneity in the ease with which capsids are able to deliver DNA to the infected cell nucleus.  相似文献   

14.
Bacteriophage DNA packaging results from an ATP-driven translocation of concatemeric DNA into the prohead by the phage terminase complexed with the portal vertex dodecamer of the prohead. Functional domains of the bacteriophage T4 terminase and portal gene 20 product (gp20) were determined by mutant analysis and sequence localization within the structural genes. Interaction regions of the portal vertex and large terminase subunit (gp17) were determined by genetic (terminase-portal intergenic suppressor mutations), biochemical (column retention of gp17 and inhibition of in vitro DNA packaging by gp20 peptides), and immunological (co-immunoprecipitation of polymerized gp20 peptide and gp17) studies. The specificity of the interaction was tested by means of a phage T4 HOC (highly antigenicoutercapsid protein) display system in which wild-type, cs20, and scrambled portal peptide sequences were displayed on the HOC protein of phage T4. Binding affinities of these recombinant phages as determined by the retention of these phages by a His-tag immobilized gp17 column, and by co-immunoprecipitation with purified terminase supported the specific nature of the portal protein and terminase interaction sites. In further support of specificity, a gp20 peptide corresponding to a portion of the identified site inhibited packaging whereas the scrambled sequence peptide did not block DNA packaging in vitro.The portal interaction site is localized to 28 residues in the central portion of the linear sequence of gp20 (524 residues). As judged by two pairs of intergenic portal-terminase suppressor mutations, two separate regions of the terminase large subunit gp17 (central and COOH-terminal) interact through hydrophobic contacts at the portal site. Although the terminase apparently interacts with this gp20 portal peptide, polyclonal antibody against the portal peptide appears unable to access it in the native structure, suggesting intimate association of gp20 and gp17 possibly internalizes terminase regions within the portal in the packasome complex. Both similarities and differences are seen in comparison to analogous sites which have been identified in phages T3 and lambda.  相似文献   

15.
16.
Yang K  Homa F  Baines JD 《Journal of virology》2007,81(12):6419-6433
Herpes simplex virus (HSV) terminase is an essential component of the molecular motor that translocates DNA through the portal vertex in the capsid during DNA packaging. The HSV terminase is believed to consist of the UL15, UL28, and UL33 gene products (pUL15, pUL28, and pUL33, respectively), whereas the HSV type 1 portal vertex is encoded by UL6. Immunoprecipitation reactions revealed that pUL15, pUL28, and pUL33 interact in cytoplasmic and nuclear lysates. Deletion of a canonical nuclear localization signal (NLS) from pUL15 generated a dominant-negative protein that, when expressed in an engineered cell line, decreased the replication of wild-type virus up to 80-fold. When engineered into the genome of recombinant HSV, this mutation did not interfere with the coimmunoprecipitation of pUL15, pUL28, and pUL33 from cytoplasmic lysates of infected cells but prevented viral replication, most nuclear import of both pUL15 and pUL28, and coimmunoprecipitation of pUL15, pUL28, and pUL33 from nuclear lysates. When the pUL15/pUL28 interaction was reduced in infected cells by the truncation of the C terminus of pUL28, pUL28 remained in the cytoplasm. Whether putative terminase components localized in the nucleus or cytoplasm, pUL6 localized in infected cell nuclei, as viewed by indirect immunofluorescence. The finding that the portal and terminase do eventually interact was supported by the observation that pUL6 coimmunoprecipitated strongly with pUL15 and weakly with pUL28 from extracts of infected cells in 1.0 M NaCl. These data are consistent with the hypothesis that the pUL15/pUL28/pUL33 complex forms in the cytoplasm and that an NLS in pUL15 is used to import the complex into the nucleus where at least pUL15 and pUL28 interact with the portal to mediate DNA packaging.  相似文献   

17.
Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. The capsid expands after about 10%-25% of the genome is packaged. When the head is full, the motor cuts the concatemeric DNA and dissociates from the head. Conformational changes, particularly in the portal, are thought to drive these sequential transitions. We found that the phage T4 packaging machine is highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Optical tweezers experiments show that single motors can force exogenous DNA into phage heads at the same rate as into proheads. Single molecule fluorescence measurements demonstrate that phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. These results suggest that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features probably led to the evolution of viral genomes that fit capsid volume, a strikingly common phenomenon in double-stranded DNA viruses, and will potentially allow design of a novel class of nanocapsid delivery vehicles.  相似文献   

18.
DNA is packaged into preformed bacteriophage capsids to liquid crystalline density by the action of a portal protein complex. Single molecule packaging studies indicate that this is a new and extremely powerful class of molecular motors.  相似文献   

19.
DNA packaging by double-stranded DNA bacteriophages and herpesviruses is driven by a powerful molecular machine assembled at the portal vertex of the empty prohead. The phage T4 packaging machine consists of three components: dodecameric portal (gp20), pentameric large terminase motor (gp17), and 11- or 12-meric small terminase (gp16). These components dynamically interact and orchestrate a complex series of reactions to produce a DNA-filled head containing one viral genome per head. Here, we analyzed the interactions between the portal and motor proteins using a direct binding assay, mutagenesis, and structural analyses. Our results show that a portal binding site is located in the ATP hydrolysis-controlling subdomain II of gp17. Mutations at key residues of this site lead to temperature-sensitive or null phenotypes. A conserved helix-turn-helix (HLH) that is part of this site interacts with the portal. A recombinant HLH peptide competes with gp17 for portal binding and blocks DNA translocation. The helices apparently provide specificity to capture the cognate prohead, whereas the loop residues communicate the portal interaction to the ATPase center. These observations lead to a hypothesis in which a unique HLH-portal interaction in the symmetrically mismatched complex acts as a lever to position the arginine finger and trigger ATP hydrolysis. Transiently connecting the critical parts of the motor; subdomain I (ATP binding), subdomain II (controlling ATP hydrolysis), and C-domain (DNA movement), the portal-motor interactions might ensure tight coupling between ATP hydrolysis and DNA translocation.  相似文献   

20.
Translocation of double-stranded DNA into a preformed capsid by tailed bacteriophages is driven by powerful motors assembled at the special portal vertex. The motor is thought to drive processive cycles of DNA binding, movement, and release to package the viral genome. In phage T4, there is evidence that the large terminase protein, gene product 17 (gp17), assembles into a multisubunit motor and translocates DNA by an inchworm mechanism. gp17 consists of two domains; an N-terminal ATPase domain (amino acids 1-360) that powers translocation of DNA, and a C-terminal nuclease domain (amino acids 361-610) that cuts concatemeric DNA to generate a headful-size viral genome. While the functional motifs of ATPase and nuclease have been well defined and the ATPase atomic structure has been solved, the DNA binding motif(s) responsible for viral DNA recognition, cutting, and translocation are unknown. Here we report the first evidence for the presence of a double-stranded DNA binding activity in the gp17 ATPase domain. Binding to DNA is sensitive to Mg2+ and salt, but not the type of DNA used. DNA fragments as short as 20 bp can bind to the ATPase but preferential binding was observed to DNA greater than 1 kb. A high molecular weight ATPase-DNA complex was isolated by gel filtration, suggesting oligomerization of ATPase following DNA interaction. DNA binding was not observed with the full-length gp17, or the C-terminal nuclease domain. The small terminase protein, gp16, inhibited DNA binding, which was further accentuated by ATP. The presence of a DNA binding site in the ATPase domain and its binding properties implicate a role in the DNA packaging mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号