首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the dynamics and interaction of two swimming bacteria, modeled by self-propelled dumbbell-type structures. We focus on alignment dynamics of a coplanar pair of elongated swimmers, which propel themselves either by “pushing” or “pulling” both in three- and quasi-two-dimensional geometries of space. We derive asymptotic expressions for the dynamics of the pair, which complemented by numerical experiments, indicate that the tendency of bacteria to swim in or swim off depends strongly on the position of the propulsion force. In particular, we observe that positioning of the effective propulsion force inside the dumbbell results in qualitative agreement with the dynamics observed in experiments, such as mutual alignment of converging bacteria.  相似文献   

2.
Genomic DNA Amplification from a Single Bacterium   总被引:11,自引:0,他引:11       下载免费PDF全文
Genomic DNA was amplified about 5 billion-fold from single, flow-sorted bacterial cells by the multiple displacement amplification (MDA) reaction, using 29 DNA polymerase. A 662-bp segment of the 16S rRNA gene could be accurately sequenced from the amplified DNA. MDA methods enable new strategies for studying nonculturable microorganisms.  相似文献   

3.
Bacterial motility is associated to a wide range of biological processes and it plays a key role in the virulence of many pathogens. Here we describe a method to distinguish the dynamic properties of bacteria by analyzing the statistical functions derived from the trajectories of a bacterium trapped by a single optical beam. The approach is based on the model of the rotation of a solid optically trapped sphere. The technique is easily implemented in a biological laboratory, since with only a small number of optical and electronic components a simple biological microscope can be converted into the required analyzer. To illustrate the functionality of this method, we probed several serovar Typhimurium mutants that differed from the wild-type with respect to their swimming patterns. In a further application, the motility dynamics of the Typhimurium mutant were characterized.  相似文献   

4.
5.
6.
Because arrays of motile cilia drive fluids for a range of processes, the versatile mechano-chemical mechanism coordinating them has been under scrutiny. The protist Paramecium presents opportunities to compare how groups of cilia perform two distinct functions, swimming propulsion and nutrient uptake. We present how the body cilia responsible for propulsion and the oral-groove cilia responsible for nutrient uptake respond to changes in their mechanical environment accomplished by varying the fluid viscosity over a factor of 7. Analysis with a phenomenological model of trajectories of swimmers made neutrally buoyant with magnetic forces combined with high-speed imaging of ciliary beating reveal that the body cilia exert a nearly constant propulsive force primarily by reducing their beat frequency as viscosity increases. By contrast, the oral-groove cilia beat at a nearly constant frequency. The existence of two extremes of motor response in a unicellular organism prompts unique investigations of factors controlling ciliary beating.  相似文献   

7.
Because arrays of motile cilia drive fluids for a range of processes, the versatile mechano-chemical mechanism coordinating them has been under scrutiny. The protist Paramecium presents opportunities to compare how groups of cilia perform two distinct functions, swimming propulsion and nutrient uptake. We present how the body cilia responsible for propulsion and the oral-groove cilia responsible for nutrient uptake respond to changes in their mechanical environment accomplished by varying the fluid viscosity over a factor of 7. Analysis with a phenomenological model of trajectories of swimmers made neutrally buoyant with magnetic forces combined with high-speed imaging of ciliary beating reveal that the body cilia exert a nearly constant propulsive force primarily by reducing their beat frequency as viscosity increases. By contrast, the oral-groove cilia beat at a nearly constant frequency. The existence of two extremes of motor response in a unicellular organism prompts unique investigations of factors controlling ciliary beating.  相似文献   

8.
A bacterium that grows in oil was tested for survival at elevated temperatures in menstruums of varying water content. For each doubling of the water concentration, the surviving fraction decreased by a factor of approximately 3.0. A minimum value of 0.02% water is required before enhanced killing occurs.  相似文献   

9.
10.
Positioning of sea cages at sites with high water current velocities expose the fish to a largely unknown environmental challenge. In this study we observed the swimming behaviour of Atlantic salmon (Salmo salar L.) at a commercial farm with tidal currents altering between low, moderate and high velocities. At high current velocities the salmon switched from the traditional circular polarized group structure, seen at low and moderate current velocities, to a group structure where all fish kept stations at fixed positions swimming against the current. This type of group behaviour has not been described in sea cages previously. The structural changes could be explained by a preferred swimming speed of salmon spatially restricted in a cage in combination with a behavioural plasticity of the fish.  相似文献   

11.
《Anthrozo?s》2013,26(2):81-85
ABSTRACT

The present investigation aimed to explore the psychological effects for humans of swimming with dolphins as opposed to swimming in the ocean without dolphins. It was hypothesized that people swimming with dolphins would experience significantly greater levels of well-being and reduced levels of anxiety than those who swam without dolphins. Participants were sampled from Perth's UnderWater World marine park and at the Bunbury Dolphin Discovery Centre, Australia. Participants completed well-being and anxiety measures before and after their swim. Well-being was greater in participants who swam with dolphins than in those who did not, both before and after their swim. However, well-being increased to the same extent in both groups. In contrast, anxiety decreased for participants swimming with dolphins but not in those who swam without dolphins. The findings suggest that anticipation of a new and exciting experience, and swimming, itself increase well-being. In addition, swimming specifically with dolphins may lower anxiety. Whether these effects are responsible for the therapeutic benefits associated with human–dolphin interactions requires further investigation.  相似文献   

12.
It has been demonstrated that exercise is one of the stresses known to increase the aldosterone secretion. Both potassium and angiotensin II (Ang II) levels are shown to be correlated with aldosterone production during exercise, but the mechanism is still unclear. In an in vivo study, male rats were catheterized via right jugular vein (RJV), and divided into four groups namely water immersion, swimming, lactate infusion (13 mg/kg/min) and pyruvate infusion (13 mg/kg/min) groups. Each group was treated for 10 min. Blood samples were collected at 0, 10, 15, 30, 60 and 120 min from RJV after administration. In an in vitro study, rat zona glomerulosa (ZG) cells were challenged by lactate (1–10 mM) in the presence or absence of Ang II (10−8 M) for 60 min. The levels of aldosterone in plasma and medium were measured by radioimmunoassay. Cell lysates were analyzed by immunoblotting assay. After exercise and lactate infusion, plasma levels of aldosterone and lactate were significantly higher than those in the control group. Swimming for 10 min significantly increased the plasma Ang II levels in male rats. Administration of lactate plus Ang II significantly increased aldosterone production and enhanced protein expression of steroidogenic acute regulatory protein (StAR) in ZG cells. These results demonstrated that acute exercise led to the increase of both aldosterone and Ang II secretion, which is associated with lactate action on ZG cells and might be dependent on the activity of renin-angiotensin system.  相似文献   

13.
14.
力竭游泳对大鼠心肌线粒体钙运输的影响   总被引:1,自引:0,他引:1  
 力竭游泳对大鼠心肌线粒体钙运输的影响丁树哲,王文信,连克杰,许豪文(华东师范大学体育系运动生化实验室,上海200062)线粒体钙运输在细胞功能调节方面有重要作用.线粒体通过摄取与释放钙,对其跨膜质子、不依赖底物及产物抑制的ATP合成、磷酸化偶联等均有...  相似文献   

15.
Motility is a critical function needed for nutrient acquisition, biofilm formation, and the avoidance of harmful chemicals and predators. Flagellar motility is one of the most pressure-sensitive cellular processes in mesophilic bacteria; therefore, it is ecologically relevant to determine how deep-sea microbes have adapted their motility systems for functionality at depth. In this study, the motility of the deep-sea piezophilic bacterium Photobacterium profundum SS9 was investigated and compared with that of the related shallow-water piezosensitive strain Photobacterium profundum 3TCK, as well as that of the well-studied piezosensitive bacterium Escherichia coli. The SS9 genome contains two flagellar gene clusters: a polar flagellum gene cluster (PF) and a putative lateral flagellum gene cluster (LF). In-frame deletions were constructed in the two flagellin genes located within the PF cluster (flaA and flaC), the one flagellin gene located within the LF cluster (flaB), a component of a putative sodium-driven flagellar motor (motA2), and a component of a putative proton-driven flagellar motor (motA1). SS9 PF flaA, flaC, and motA2 mutants were defective in motility under all conditions tested. In contrast, the flaB and motA1 mutants were defective only under conditions of high pressure and high viscosity. flaB and motA1 gene expression was strongly induced by elevated pressure plus increased viscosity. Direct swimming velocity measurements were obtained using a high-pressure microscopic chamber, where increases in pressure resulted in a striking decrease in swimming velocity for E. coli and a gradual reduction for 3TCK which proceeded up to 120 MPa, while SS9 increased swimming velocity at 30 MPa and maintained motility up to a maximum pressure of 150 MPa. Our results indicate that P. profundum SS9 possesses two distinct flagellar systems, both of which have acquired dramatic adaptations for optimal functionality under high-pressure conditions.  相似文献   

16.
Magnetotactic bacteria comprise a phylogenetically diverse group that is capable of synthesizing intracellular magnetic particles. Although various morphotypes of magnetotactic bacteria have been observed in the environment, bacterial strains available in pure culture are currently limited to a few genera due to difficulties in their enrichment and cultivation. In order to obtain genetic information from uncultured magnetotactic bacteria, a genome preparation method that involves magnetic separation of cells, flow cytometry, and multiple displacement amplification (MDA) using φ29 polymerase was used in this study. The conditions for the MDA reaction using samples containing 1 to 100 cells were evaluated using a pure-culture magnetotactic bacterium, “Magnetospirillum magneticum AMB-1,” whose complete genome sequence is available. Uniform gene amplification was confirmed by quantitative PCR (Q-PCR) when 100 cells were used as a template. This method was then applied for genome preparation of uncultured magnetotactic bacteria from complex bacterial communities in an aquatic environment. A sample containing 100 cells of the uncultured magnetotactic coccus was prepared by magnetic cell separation and flow cytometry and used as an MDA template. 16S rRNA sequence analysis of the MDA product from these 100 cells revealed that the amplified genomic DNA was from a single species of magnetotactic bacterium that was phylogenetically affiliated with magnetotactic cocci in the Alphaproteobacteria. The combined use of magnetic separation, flow cytometry, and MDA provides a new strategy to access individual genetic information from magnetotactic bacteria in environmental samples.Magnetotactic bacteria synthesize nanosized intracellular magnetic particles, also referred to as magnetosomes, by accumulating iron ions from the environment. Since the first report on the identification of magnetotactic bacteria (2), the morphological and phylogenetic diversity of these organisms has been observed in various aquatic environments (12, 25, 27, 30). However, bacterial strains available in pure culture are currently limited to a few genera. Desulfovibrio magneticus strain RS-1 is the only isolate of magnetotactic bacteria that is classified among the Deltaproteobacteria (13, 23), while Magnetospirillum spp., marine magnetic vibrio strain MV-1, and “Magnetococcus strain MC-1” are phylogenetically affiliated within the Alphaproteobacteria group (24, 27). This limitation is mainly because not much is known about their metabolic requirements, culturing conditions, and obligate coculture requirements.Isolation and enrichment of magnetotactic bacteria are generally conducted by applying a magnetic field to a container containing a sediment sample from the environment. The capillary racetrack method is a highly selective enrichment technique that separates magnetotactic bacteria from other contaminants (31). The magnetic separation method that involves the use of a large glass apparatus is efficient and suitable for analyzing samples containing more than 100 ml of sediment and water (12, 16). These techniques have been applied to investigate community structure and phylogenetic diversity of uncultured magnetotactic bacteria in the environment based on 16S rRNA analyses (3, 7, 26, 29). In a recent study, DNA isolation enabling gene cloning was examined by magnetically collecting a large number of magnetotactic cells from environmental samples, and two gene fragments, probably containing parts of magnetosome islands (MAIs) derived from magnetotactic bacteria of the Alphaproteobacteria, were identified (12). However, this approach allows only for sequence gene information to be obtained from a heterogeneous bacterial community in the sample.Multiple displacement amplification (MDA) can generate microgram quantities of high-quality DNA sample from a few femtograms of DNA template (5, 6). We previously revealed that MDA is a powerful tool for whole-genome amplification from the metagenome of an uncultured bacterial community (32). Studies have been conducted to determine the efficacy of MDA for analyzing genomic DNA preparations from a limited number of bacterial cells (14, 17, 21, 22, 28). Complete genomic sequencing of an uncultured gut symbiont in termites has been achieved using MDA products amplified from approximately 1,000 cells (9). Partial genome sequencing using MDA products from a single uncultured cell has also been reported (17, 22). Such targeted genome analyses using MDA products from a single cell or genetically identical microorganisms is advantageous because it allows the assignment of individual genes to the corresponding microorganisms.In this study, an improved genome preparation method involving racetrack purification and flow cytometry followed by MDA was investigated by using a small number of uncultured magnetotactic bacteria. This method can be used for the identification of new genes from rare magnetotactic bacteria in environmental samples.  相似文献   

17.
The effect of flow turbulence on the swimming speed was studied in perch (Perca fluviatilis) with different body length. The critical flow rate was used as an index of fish swimming performance. The longer was the fish, the higher turbulence was required to decrease the critical flow rate. The mechanism of turbulence impact on fish locomotion relied on the vortex structure of the flow. The torque produced by hydrodynamic forces in a vortex favors fish overturn and loss of balance. Such effect of turbulence was observed when the sizes of the vortex and fish body were similar. The fish uses the pectoral fins to restore the balance, which increases their hydraulic resistance and, together with energy expenditure for spatial balance control, decreases the swimming speed.  相似文献   

18.
We present Monte Carlo simulations illustrating the influence of reorientation of hydrogen bonds in proteins on long-range interprotein electron transfer. The lattice protein model employed mimics the electron donor (or acceptor) interacting with an antiparallel sheet. In addition, we take into account harmonic vibrations of the medium and also the dependence of the coupling matrix element on orientation of hydrogen bonds near the donor and/or acceptor. The results obtained show that the interaction between the tunneling electron and amino-acid residues, which are responsible for the formation of hydrogen bonds, may result in broadening the parabolic dependence of the electron-transfer rate constant on the reaction exothermicity and also in deviations from this dependence especially in the cases when the sheet is linked with the electron donor.  相似文献   

19.
Cell populations of the marine bacterium ANT-300, from either batch or continuous culture with dilution rates ranging from D = 0.015 h−1 to D = 0.200 h−1, were monitored for viability, direct counts, and optical density for 98 days under starvation conditions. Three stages of starvation survival were observed for each of the cell populations. Although direct counts remained at 2 × 107 to 3 × 107 cells ml−1 throughout the starvation period, large fluctuations occurred in cell viability during stage 1 (0 to 14 days) of starvation survival. Stage 2 (14 to 70 days) involved an overall decrease in viability for each of the cell populations; the rate of viability loss was dependent upon the growth rate. Cell viability stabilized at approximately 0.3% of the direct count in stage 3 (70 to 98 days). Long-term starvation corresponded to the prolongation of stage 3 starvation survival. Cell volumes for each of the cell populations decreased with the length of the starvation period. However, the cell volume of starved cells was also dependent more on growth rate than on the length of the time starved. We hypothesize that the cell population with the slowest growth rate is most closely representative of cells found in the oligotrophic marine environment.  相似文献   

20.
Differences in the induction response and the initial two reactions of quinoline degradation between short-term (2 days)- and long-term (60 to 80 days)-starved cells of a subsurface Pseudomonas cepacia strain were examined by using continuous-flow columns. The ability of bacteria that are indigenous to oligotrophic environments to respond to a contaminant was assessed by using long-term starvation to induce a cell physiology that simulates the in situ physiology of the bacteria. With quinoline concentrations of 39 and 155 μM, long-term-starved cells converted quinoline to degradation products more efficiently than did short-term-starved cells. Quinoline concentrations of 155 μM and, to a greater extent, 775 μM had an inhibitory effect on induction in long-term-starved cells. However, only the length of the induction process was affected with these quinoline concentrations; degradation of quinoline at the steady state for long-term-starved cells was equal to or better than that for short-term-starved cells. The induction time for short-term-starved cells did not increase progressively with increasing quinoline concentration. Experiments with starved cells are important for the development of accurate predictive models of contaminant transport in the subsurface because starvation, which induces a cell physiology that simulates the in situ physiology of many bacteria, may affect the induction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号