首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In cells, the expression of Gag protein, one of the major structural proteins of retroviruses, is sufficient for budding virus-like particles (VLPs) from the cell surface. We have previously reported that spheroplasts of Saccharomyces cerevisiae expressing HIV-1 Gag proteins from an episomal plasmid constitutively released a large amount of VLPs into culture media; however, commercially available ELISA kits which detect mature capsid of HIV-1 could not detect uncleaved 55-kDa Gag proteins released from budding yeast. We therefore developed a method to quantitate VLP levels released from budding yeast by using fusion protein from HIV-1 Gag and Firefly Luciferase. This system is useful for screening cellular factor(s) involved in retrovirus budding from S. cerevisiae.  相似文献   

2.
The four ESCRT (endocytic sorting complexes required for transport) complexes (ESCRT-0, -I, -II, and -III) normally operate sequentially in the trafficking of cellular cargo. HIV-1 Gag trafficking and release as virus-like particles (VLPs) require the participation of ESCRTs; however, its use of ESCRTs is selective and nonsequential. Specifically, Gag trafficking to release sites on the plasma membrane does not require ESCRT-0 or -II. It is known that a bypass of ESCRT-0 is achieved by the direct linkage of the ESCRT-I component, Tsg101, to the primary L domain motif (PTAP) in Gag and that bypass of ESCRT-II is achieved by the linkage of Gag to ESCRT-III through the adaptor protein Alix. However, the mechanism by which Gag suppresses the interaction of bound ESCRT-I with ESCRT-II is unknown. Here we show (i) that VLP release requires the steady-state level of Sprouty 2 (Spry2) in COS-1 cells, (ii) that Spry2 binds the ESCRT-II component Eap20, (iii) that binding Eap20 permits Spry2 to disrupt ESCRT-I interaction with ESCRT-II, and (iv) that coexpression of Gag with a Spry2 fragment that binds Eap20 increases VLP release. Spry2 also facilitated release of P7L-Gag (i.e., release in the absence of Tsg101 binding). In this case, rescue required the secondary L domain (YPX(n)L) in HIV-1 Gag that binds Alix and the region in Spry2 that binds Eap20. The results identify Spry2 as a novel cellular factor that facilitates release driven by the primary and secondary HIV-1 Gag L domains.  相似文献   

3.
The retroviral structural protein, Gag, is capable of independently assembling into virus-like particles (VLPs) in living cells and in vitro. Immature VLPs of human immunodeficiency virus type 1 (HIV-1) and of Rous sarcoma virus (RSV) are morphologically distinct when viewed by transmission electron microscopy (TEM). To better understand the nature of the Gag-Gag interactions leading to these distinctions, we constructed vectors encoding several RSV/HIV-1 chimeric Gag proteins for expression in either insect cells or vertebrate cells. We used TEM, confocal fluorescence microscopy, and a novel correlative scanning EM (SEM)-confocal microscopy technique to study the assembly properties of these proteins. Most chimeric proteins assembled into regular VLPs, with the capsid (CA) domain being the primary determinant of overall particle diameter and morphology. The presence of domains between matrix and CA also influenced particle morphology by increasing the spacing between the inner electron-dense ring and the VLP membrane. Fluorescently tagged versions of wild-type RSV, HIV-1, or murine leukemia virus Gag did not colocalize in cells. However, wild-type Gag proteins colocalized extensively with chimeric Gag proteins bearing the same CA domain, implying that Gag interactions are mediated by CA. A dramatic example of this phenomenon was provided by a nuclear export-deficient chimera of RSV Gag carrying the HIV-1 CA domain, which by itself localized to the nucleus but relocalized to the cytoplasm in the presence of wild type HIV-1 Gag. Wild-type and chimeric Gag proteins were capable of coassembly into a single VLP as viewed by correlative fluorescence SEM if, and only if, the CA domain was derived from the same virus. These results imply that the primary selectivity of Gag-Gag interactions is determined by the CA domain.  相似文献   

4.
It is now well accepted that the structural protein Pr55(Gag) is sufficient by itself to produce HIV-1 virus-like particles (VLPs). This polyprotein precursor contains different domains including matrix, capsid, SP1, nucleocapsid, SP2 and p6. In the present study, we wanted to determine by mutagenesis which region(s) is essential to the production of VLPs when Pr55(Gag) is inserted in a mammalian expression vector, which allows studying the protein of interest in the absence of other viral proteins. To do so, we first studied a minimal Pr55(Gag) sequence called Gag min that was used previously. We found that Gag min fails to produce VLPs when expressed in an expression vector instead of within a molecular clone. This failure occurs early in the cell at the assembly of viral proteins. We then generated a series of deletion and substitution mutants, and examined their ability to produce VLPs by combining biochemical and microscopic approaches. We demonstrate that the matrix region is not necessary, but that the efficiency of VLP production depends strongly on the presence of its basic region. Moreover, the presence of the N-terminal domain of capsid is required for VLP production when Gag is expressed alone. These findings, combined with previous observations indicating that HIV-1 Pr55(Gag)-derived VLPs act as potent stimulators of innate and acquired immunity, make the use of this strategy worth considering for vaccine development.  相似文献   

5.
Characterization of bright particles at low concentrations by fluorescence fluctuation spectroscopy (FFS) is challenging, because the event rate of particle detection is low and fluorescence background contributes significantly to the measured signal. It is straightforward to increase the event rate by flow, but the high background continues to be problematic for fluorescence correlation spectroscopy. Here, we characterize the use of photon-counting histogram analysis in the presence of flow. We demonstrate that a photon-counting histogram efficiently separates the particle signal from the background and faithfully determines the brightness and concentration of particles independent of flow speed, as long as undersampling is avoided. Brightness provides a measure of the number of fluorescently labeled proteins within a complex and has been used to determine stoichiometry of protein complexes in vivo and in vitro. We apply flow-FFS to determine the stoichiometry of the group specific antigen protein within viral-like particles of the human immunodeficiency virus type-1 from the brightness. Our results demonstrate that flow-FFS is a sensitive method for the characterization of complex macromolecular particles at low concentrations.  相似文献   

6.
The structural precursor polyprotein of human immunodeficiency virus type 1, Pr55(gag), contains a proline-rich motif (PTAP) called the "late domain" in its C-terminal p6 region that directs release of mature virus-like particles (VLPs) from the plasma membranes of gag-transfected COS-1 cells. The motif binds Tsg101 (vacuolar protein-sorting protein 23, or Vps23), which functions in endocytic trafficking. Here, we show that accumulation of the wild-type (wt) Gag precursor in a fraction of COS-1 cytoplasm enriched in multivesicular bodies and small particulate components of the plasma membrane (P100) is p6 dependent. Cleavage intermediates and mature CA mainly partitioned with more rapidly sedimenting larger material enriched in components of lysosomes and early endosomes (P27), and this also was p6 dependent. Expression of truncated or full-length Tsg101 proteins interfered with VLP assembly and Gag accumulation in the P100 fraction. This correlated with reduced accumulation of Gag tagged with green fluorescent protein (Gag-GFP) at the plasma membrane and colocalization with the tagged Tsg101 in perinuclear early endosomes, as visualized by confocal microscopy. Fractionation analysis and confocal examination both indicated that the N-terminal region of Tsg101, which contains binding sites for PTAP and ubiquitin (Ub), was required for Gag trafficking to the plasma membrane. Expression of FLAG-tagged Tsg101 with a deletion in the Ub-binding pocket inhibited VLP release almost completely and to a significantly greater extent than expression of the wt tagged Tsg101 protein or Tsg101-FLAG containing a deletion in the PTAP-binding region. The results demonstrate that Gag associates with endosomal trafficking compartments and indicate that efficient release of virus particles from the plasma membrane requires both the PTAP- and Ub-binding functions of Tsg101 to recruit the cellular machinery required for budding.  相似文献   

7.
Applied Microbiology and Biotechnology - Gag polyprotein from HIV-1 is able to generate virus-like particles (VLPs) when recombinantly expressed in animal cell platforms. HIV-1 VLP production in...  相似文献   

8.
Gomez CY  Hope TJ 《Journal of virology》2006,80(17):8796-8806
Human immunodeficiency virus type 1 (HIV-1) assembly requires the converging of thousands of structural proteins on cellular membranes to form a tightly packed immature virion. The Gag polyprotein contains all of the determinants important for viral assembly and must move around in the cell in order to form particles. This work has focused on Gag mobility in order to provide more insights into the dynamics of particle assembly. Key to these studies was the use of several fluorescently labeled Gag derivatives. We used fluorescence recovery after photobleaching as well as photoactivation to determine Gag mobility. Upon expression, Gag can be localized diffusely in the cytoplasm, associated with the plasma membrane, or in virus-like particles (VLPs). Here we show that Gag VLPs are primarily localized in the plasma membrane and do not colocalize with CD63. We have shown using full-length Gag as well as truncation mutants fused to green fluorescent protein that Gag is highly mobile in live cells when it is not assembled into VLPs. Results also showed that this mobility is highly dependent upon cholesterol. When cholesterol is depleted from cells expressing Gag, mobility is significantly decreased. Once cholesterol was replenished, Gag mobility returned to wild-type levels. Taken together, results from these mobility studies suggest that Gag is highly mobile and that as the assembly process proceeds, mobility decreases. These studies also suggest that Gag assembly must occur in cholesterol-rich domains in the plasma membrane.  相似文献   

9.
The functionally exchangeable L domains of HIV-1 and Rous sarcoma virus (RSV) Gag bind Tsg101 and Nedd4, respectively. Tsg101 and Nedd4 function in endocytic trafficking, and studies show that expression of Tsg101 or Nedd4 fragments interfere with release of HIV-1 or RSV Gag, respectively, as virus-like particles (VLPs). To determine whether functional exchangeability reflects use of the same trafficking pathway, we tested the effect on RSV Gag release of co-expression with mutated forms of Vps4, Nedd4 and Tsg101. A dominant-negative mutant of Vps4A, an AAA ATPase required for utilization of endosomal sorting proteins that was shown previously to interfere with HIV-1 budding, also inhibited RSV Gag release, indicating that RSV uses the endocytic trafficking machinery, as does HIV. Nedd4 and Tsg101 interacted in the presence or absence of Gag and, through its binding of Nedd4, RSV Gag interacted with Tsg101. Deletion of the N-terminal region of Tsg101 or the HECT domain of Nedd4 did not prevent interaction; however, three-dimensional spatial imaging suggested that the interaction of RSV Gag with full-length Tsg101 and N-terminally truncated Tsg101 was not the same. Co-expression of RSV Gag with the Tsg101 C-terminal fragment interfered with VLP release minimally; however, a significant fraction of the released VLPs was tethered to each other. The results suggest that, while Tsg101 is not required for RSV VLP release, alterations in the protein interfere with VLP budding/fission events. We conclude that RSV and HIV-1 Gag direct particle release through independent ESCRT-mediated pathways that are linked through Tsg101-Nedd4 interaction.  相似文献   

10.
The human immunodeficiency virus type 1 (HIV-1) Pr55gag precursors were previously shown to assemble and bud efficiently as noninfectious virus-like particles (VLPs) when expressed in baculovirus-infected insect cells. In this study, we examined the abilities of foreign antigens to be incorporated on the outer surface of HIV-1 Gag particles. We have used a dual recombinant baculovirus, expressing the HIV-1 Gag gene and gD gene under the control of the P10 and polyhedrin promoters, respectively, to obtain hybrid VLPs. Transmission electron microscopy of insect cells infected with the dual recombinant revealed very large aggregates of particles budding from the cell membrane. The release of VLPs into the culture medium was clearly different for a recombinant baculovirus producing solely HIV-1 Gag, for which particles were uniformly distributed all around the cell surface. Biochemical analysis of hybrid particles indicated that glycoprotein gD was packaged into HIV-1 Gag VLPs. Moreover, the carboxy-terminal p6 region of Gag polyprotein and the glycoprotein gD intracytoplasmic domain were not required for gD incorporation. The experiments described here clearly demonstrate that glycoprotein gD can be packaged with HIV-1 Gag particles and released from insect cells.  相似文献   

11.
12.
Expression of a retroviral protein, Gag, in mammalian cells is sufficient for assembly of immature virus-like particles (VLPs). VLP assembly is mediated largely by interactions between the capsid (CA) domains of Gag molecules but is facilitated by binding of the nucleocapsid (NC) domain to nucleic acid. We have investigated the role of SP1, a spacer between CA and NC in HIV-1 Gag, in VLP assembly. Mutational analysis showed that even subtle changes in the first 4 residues of SP1 destroy the ability of Gag to assemble correctly, frequently leading to formation of tubes or other misassembled structures rather than proper VLPs. We also studied the conformation of the CA-SP1 junction region in solution, using both molecular dynamics simulations and circular dichroism. Consonant with nuclear magnetic resonance (NMR) studies from other laboratories, we found that SP1 is nearly unstructured in aqueous solution but undergoes a concerted change to an α-helical conformation when the polarity of the environment is reduced by addition of dimethyl sulfoxide (DMSO), trifluoroethanol, or ethanol. Remarkably, such a coil-to-helix transition is also recapitulated in an aqueous medium at high peptide concentrations. The exquisite sensitivity of SP1 to mutational changes and its ability to undergo a concentration-dependent structural transition raise the possibility that SP1 could act as a molecular switch to prime HIV-1 Gag for VLP assembly. We suggest that changes in the local environment of SP1 when Gag oligomerizes on nucleic acid might trigger this switch.  相似文献   

13.
Heterologous expression of HIV-1 Gag in a variety of host cells results in its packaging into virus-like particles (VLPs) that are subsequently released into the extracellular milieu. This phenomenon represents a useful tool for probing cellular factors required for viral budding and has contributed to the discovery of roles for ubiquitin ligases and the endosomal sorting complexes required for transport (ESCRTs) in viral budding. These factors are highly conserved throughout eukaryotes and have been studied extensively in the yeast Saccharomyces cerevisiae, a model eukaryote previously utilized as a host for the production of VLPs. We used heterologous expression of HIV Gag in yeast spheroplasts to examine the role of ESCRTs and associated factors (Rsp5, a HECT ubiquitin ligase of the Nedd4 family; Bro1, a homolog of Alix; and Vps4, the AAA-ATPase required for ESCRT function in all contexts/organisms investigated) in the generation of VLPs. Our data reveal: 1) characterized Gag-ESCRT interaction motifs (late domains) are not required for VLP budding, 2) loss of function alleles of the essential HECT ubiquitin ligase Rsp5 do not display defects in VLP formation, and 3) ESCRT function is not required for VLP formation from spheroplasts. These results suggest that the egress of HIV Gag from yeast cells is distinct from the most commonly described mode of exit from mammalian cells, instead mimicking ESCRT-independent VLP formation observed in a subset of mammalian cells. As such, budding of Gag from yeast cells appears to represent ESCRT-independent budding relevant to viral replication in at least some situations. Thus the myriad of genetic and biochemical tools available in the yeast system may be of utility in the study of this aspect of viral budding.  相似文献   

14.
15.
We have previously shown that the expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in Saccharomyces cerevisiae spheroplasts produces Gag virus-like particles (VLPs) at the plasma membrane, indicating that yeast has all the host factors necessary for HIV-1 Gag assembly. Here we expand the study by using diverse primate lentiviral Gags and show that yeast does not support the production of HIV-2 or simian immunodeficiency virus SIVmac Gag VLPs but allows the production of SIVagm and SIVmnd Gag VLPs. Particle budding was observed at the surfaces of cells expressing SIVagm and SIVmnd Gags, but cells expressing HIV-2 and SIVmac Gags showed only membrane-ruffling structures, although they were accompanied with electron-dense submembrane layers, suggesting arrest at an early stage of particle budding. Comparison of HIV-1 and HIV-2 Gag expression revealed broadly equivalent levels of intracellular Gag expression and Gag N-terminal myristoylation in yeast. Both Gags showed the same membrane-binding ability and were incorporated into lipid raft fractions at a physiological concentration of salt. HIV-2 Gag, however, failed to form a high-order multimer and easily dissociated from the membrane, phenomena which were not observed in higher eukaryotic cells. A series of chimeric Gags between HIV-1 and HIV-2 and Gag mutants with amino acid substitutions revealed that a defined region in helix 2 of HIV-2 MA (located on the membrane-binding surface of MA) affects higher-order Gag assembly and particle production in yeast. Together, these data suggest that yeast may lack a host factor(s) for HIV-2 and SIVmac Gag assembly.  相似文献   

16.
Fluorescence fluctuation spectroscopy (FFS) quantifies the interactions of fluorescently-labeled proteins inside living cells by brightness analysis. However, the study of cytoplasmic proteins that interact with the plasma membrane is challenging with FFS. If the cytoplasmic section is thinner than the axial size of the observation volume, cytoplasmic and membrane-bound proteins are coexcited, which leads to brightness artifacts. This brightness bias, if not recognized, leads to erroneous interpretation of the data. We have overcome this challenge by introducing dual-color z-scan FFS and the addition of a distinctly colored reference protein. Here, we apply this technique to study the cytoplasmic interactions of the Gag proteins from human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1). The Gag protein plays a crucial role in the assembly of retroviruses and is found in both membrane and cytoplasm. Dual-color z-scans demonstrate that brightness artifacts are caused by a dim nonpunctate membrane-bound fraction of Gag. We perform an unbiased brightness characterization of cytoplasmic Gag by avoiding the membrane-bound fraction and reveal previously unknown differences in the behavior of the two retroviral Gag species. HIV-1 Gag exhibits concentration-dependent oligomerization in the cytoplasm, whereas HTLV-1 Gag lacks significant cytoplasmic Gag-Gag interactions.  相似文献   

17.
HIV Gag polymerizes on the plasma membrane to form virus like particles (VLPs) that have similar diameters to wild-type viruses. We use multicolor, dual-penetration depth, total internal reflection fluorescence microscopy, which corrects for azimuthal movement, to image the assembly of individual VLPs from the time of nucleation to the recruitment of VPS4 (a component of the endosomal sorting complexes required for transport, and which marks the final stage of VLP assembly). Using a mathematical model for assembly and maximum-likelihood comparison of fits both with and without pauses, we detect pauses during Gag polymerization in 60% of VLPs. Pauses range from 2 to 20 min, with an exponentially distributed duration that is independent of cytosolic Gag concentration. VLPs assembled with late domain mutants of Gag (which do not recruit the key endosomal sorting complexes required for transport proteins Alix or TSG101) exhibit similar pause distributions. These pauses indicate that a single rate-limiting event is required for continuation of assembly. We suggest that pauses are either related to incorporation of defects in the hexagonal Gag lattice during VLP assembly or are caused by shortcomings in interactions of Gag with essential and still undefined cellular components during formation of curvature on the plasma membrane.  相似文献   

18.
During assembly and budding of retroviruses, host cell proteins are incorporated into viral particles. Identification of virion-associated proteins may help pinpoint key cellular components required for virus production and function. The cellular protein annexin 2 (Anx2) is incorporated into HIV-1 particles, and knockdown of Anx2 has been reported to cause defects in Gag processing and infectivity of HIV-1 particles in macrophages. Here, we tested whether Anx2 was required for HIV-1 production in other cell types capable of producing HIV-1 virions. Endogenous Anx2 levels were knocked down by ∼98% using lentivirus encoding short hairpin RNAs (shRNAs) or small interfering RNAs (siRNAs) targeting Anx2. Under these conditions, there was no reduction in HIV-1 virus-like particle (VLP) production in either COS-1, 293T, or Jurkat T cells or primary human monocyte-derived macrophages (MDMs). Murine embryonic fibroblasts derived from Anx2−/− mice produced the same levels of VLPs as matched cells from wild-type mice. The calcium-mediated spike in VLP production still occurred in Anx2-depleted COS-1 cells, and there was no apparent alteration in the intracellular Gag localization. Overexpression of Anx2 in trans had no effect on Gag processing or VLP production. Neither Anx2 depletion nor Anx2 overexpression altered the infectivity of HIV-1 particles produced by COS-1 or 293T cells. However, supernatants containing virus from Anx2 siRNA-treated primary human MDMs exhibited decreased infectivity. These data indicate that Anx2 is not required for HIV-1 assembly or Gag processing but rather plays a cell type-dependent role in regulating production of infectious HIV-1 by macrophages.The Gag polyprotein generates the key structural proteins for all retroviruses. Gag is necessary and sufficient for the formation of virus-like particles (VLPs), which are morphologically similar to immature virions. Following its synthesis in the cytoplasm, HIV-1 Gag is trafficked to sites of particle production on membranes. Viral particle production depends on Gag-membrane interactions mediated by the myristoylated MA domain of Gag (18, 22, 31) and Gag-Gag interactions mediated by the CA and NC domains. Budding and release of the new virion are mediated by the Gag p6 domain. For successful particle production to occur, HIV-1 Gag must also interact with numerous host cell proteins and protein complexes. Identification of these interactions provides a crucial window into determining Gag trafficking intermediates as well as clues to the mechanism of virion production.The host cell protein annexin 2 (Anx2) has recently attracted attention for its potential to regulate key processes in both cells and viruses (9, 14, 17, 24). Anx2 belongs to a family of conserved calcium-regulated proteins and interacts with actin, membranes, and negatively charged phospholipids. The major protein binding partner for Anx2 is p11, also known as S100A10. Two populations of Anx2 have been identified: a heterotetrameric complex with two molecules of Anx2 and two molecules of p11 (found predominantly at the plasma membrane) and a monomeric form found mainly in the cytoplasm. Anx2 performs multiple functions in the cell, including regulation of actin-based dynamics, fibrinolysis, calcium-mediated exocytosis, and transport of intermediates from early to late endosomes (10, 14-16) Anx2 also enhances binding and fusion of cytomegalovirus with phospholipid membranes (21). In addition, Anx2 can be detected within influenza virus particles (28), where it has been shown to aid in virus replication (9).Several lines of evidence suggest that Anx2 may play a role in HIV-1 biogenesis. Both Anx2 and its binding partner p11 are incorporated in HIV-1 particles produced by macrophages (2). Anx2 interacts with Gag in macrophages, and annexin 2 knockdown has been reported to cause defective Gag processing and reduced infectivity of the released particles (24). Blockade of Anx2 function, with either anti-Anx2 antibody or small interfering RNA (siRNA)-mediated knockdown, results in suppression of HIV-1 infection in macrophages (11). Anx2 also binds to Gag in 293T cells, and expression of Anx2 in trans in these cells has been reported to lead to increased Gag processing and HIV-1 production (7). Taken together, these findings suggest that Anx2 might play a universal role in Gag trafficking and particle production. To test this hypothesis, we exploited methods to efficiently knock down Anx2 expression and determined the effect of Anx2 knockdown in a variety of cell lines capable of producing HIV-1 virions. Here we show that, in the absence of Anx2 expression, HIV-1 Gag is expressed, trafficked, and capable of mediating viral particle formation in a manner similar to that of control cells expressing Anx2. However, a cell type-dependent effect of Anx2 depletion on HIV-1 infectivity was detected in primary human monocyte-derived macrophages (MDMs). These findings suggest that Anx2 might be a macrophage-specific host cell factor that regulates HIV-1 infectivity.  相似文献   

19.
The human immunodeficiency virus type 1 (HIV-1) Gag protein is a major target antigen for cytotoxic-T-lymphocyte-based vaccine strategies because of its high level of conservation. The murine model has been used extensively to evaluate potential HIV-1 vaccines. However, the biology of HIV-1 Gag is somewhat different in human and murine tissues. The ability of HIV-1 Gag to form virus-like particles (VLPs) in human cells is severely curtailed in murine cells. Hence, it is not known whether immunizing mice with expression vectors encoding HIV-1 Gag provides an accurate assessment of the immunogenicity of these candidate vaccines in primates. In this report, we made use of a chimeric Moloney murine leukemia virus (MMLV)-HIV-1 Gag in which the p17 matrix domain of HIV-1 was replaced with the p15 matrix and p12 domains from MMLV. Murine cells expressing this construct released significant amounts of VLPs. The construct preserved H-2d-restricted antigenic determinants in the remaining portion of HIV-1 Gag, allowing immunogenicity studies to be performed with mice. We demonstrated that immunizing mice with plasmid DNA or adenoviral vectors encoding this chimeric Gag did not significantly increase the HIV-1 Gag-specific cellular or humoral immune response when compared to immunization with a myristoylation-incompetent version of the construct. Thus, the release of VLPs formed in vivo may not play a major role in the immunogenicity of vectors expressing HIV-1 Gag constructs.  相似文献   

20.
HIV-1, an enveloped RNA virus, produces viral particles that are known to be much more heterogeneous in size than is typical of non-enveloped viruses. We present here a novel strategy to study HIV-1 Viral Like Particles (VLP) assembly by measuring the size distribution of these purified VLPs and subsequent viral cores thanks to Atomic Force Microscopy imaging and statistical analysis. This strategy allowed us to identify whether the presence of viral RNA acts as a modulator for VLPs and cores size heterogeneity in a large population of particles. These results are analyzed in the light of a recently proposed statistical physics model for the self-assembly process. In particular, our results reveal that the modulation of size distribution by the presence of viral RNA is qualitatively reproduced, suggesting therefore an entropic origin for the modulation of RNA uptake by the nascent VLP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号