首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the mechanisms of peptide-induced membrane disorder is critical to the design of novel antimicrobial and cell-penetrating peptides. One means of quantifying local structure and order/disorder is through the orientational order parameter, typically obtained using various spectroscopic approaches. We report here on the use of an image-based means of tracking the order parameter in supported lipid bilayers during peptide-induced disordering. By coupling polarized total internal reflection fluorescence microscopy with in situ atomic force microscopy, it is now possible to track changes in order parameter associated with peptide binding and insertion, as well as lipid headgroup and acyl chain reordering, while simultaneously resolving molecular-scale topographical changes. Interactions between the model antimicrobial peptide, indolicidin, and its fluorescent analog, TAMRA-indolicidin, with model eukaryotic (DOPC:DSPC:cholesterol) and prokaryotic (DOPE/DOPG) membranes were tracked using the fluorescent lipid reporters, DiI-C20 and BODIPY-PC. Changes in the order parameter upon membrane binding and insertion provided insights into the orientation of the peptide and the role of membrane chemistry and composition on insertion dynamics and membrane restructuring.  相似文献   

2.
Despite the considerable information available with regards to the structure of the clostridial neurotoxins, and their inherent threat as biological warfare agents, the mechanisms underpinning their interactions with and translocation through the cell membrane remain poorly understood. We report herein the results of an in situ scanning probe microscopy study of the interaction of tetanus toxin C-fragment (Tet C) with supported planar lipid bilayers containing the ganglioside receptor G(T1b). Our results show that Tet C preferentially binds to the surface of fluid phase domains within biphasic membranes containing G(T1b) and that with an extended incubation period these interactions lead to dramatic changes in the morphology of the lipid bilayer, including the formation of 40-80 nm diameter circular cavities. Combined atomic force microscopy/total internal reflection fluorescence microscopy experiments confirmed the presence of Tet C in the membrane after extended incubation. These morphological changes were found to be dependent upon the presence of G(T1b) and the solution pH.  相似文献   

3.
Single-vesicle fusion assays in vitro are useful tools for examining mechanisms of membrane fusion at the molecular level mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). This approach allows the experimentalist to define the lipid and protein composition of the two fusing membranes and perform experiments under highly controlled conditions. In previous experiments, in which we reconstituted a SNARE acceptor complex into supported membranes and observed the docking and fusion of fluorescently labeled synaptobrevin proteoliposomes by total internal reflection fluorescence microscopy with millisecond time resolution, we were able to determine the optimal number of SNARE complexes needed for fast fusion. Here, we utilize this assay in combination with polarized total internal reflection fluorescence microscopy to investigate topology changes that vesicles undergo after the onset of fusion. The theory that describes the fluorescence intensity during the transformation of a single vesicle from a spherical particle to a flat membrane patch is developed and confirmed by experiments with three different fluorescent probes. Our results show that on average, the fusing vesicles flatten and merge into the planar membrane within 8 ms after fusion starts.  相似文献   

4.
The atomic force microscope has developed into a powerful tool in structural biology allowing information to be acquired at submolecular resolution on the protruding structures of membrane proteins. It is now a complementary technique to X-ray crystallography and electron microscopy for structure determination of individual membrane proteins after extraction, purification and reconstitution into lipid bilayers. Moving on from the structures of individual components of biological membranes, atomic force microscopy has recently been demonstrated to be a unique tool to identify in situ the individual components of multi-protein assemblies and to study the supramolecular architecture of these components allowing the efficient performance of a complex biological function.Here, recent atomic force microscopy studies of native membranes of different photosynthetic bacteria with different polypeptide contents are reviewed. Technology, advantages, feasibilities, restrictions and limits of atomic force microscopy for the acquisition of highly resolved images of up to 10 Å lateral resolution under native conditions are discussed. From a biological point of view, the new insights contributed by the images are analysed and discussed in the context of the strongly debated organisation of the interconnected network of membrane-associated chlorophyll-protein complexes composing the photosynthetic apparatus in different species of purple bacteria.  相似文献   

5.
The formation of fibrillar aggregates has long been associated with neurodegenerative disorders such as Alzheimer and Parkinson diseases. Although fibrils are still considered important to the pathology of these disorders, it is now widely understood that smaller amyloid oligomers are the toxic entities along the misfolding pathway. One characteristic shared by the majority of amyloid oligomers is the ability to disrupt membranes, a commonality proposed to be responsible for their toxicity, although the mechanisms linking this to cell death are poorly understood. Here, we describe the physical basis for the cytotoxicity of oligomers formed by the prion protein (PrP)-derived amyloid peptide PrP(106–126). We show that oligomers of this peptide kill several mammalian cells lines, as well as mouse cerebellar organotypic cultures, and we also show that they exhibit antimicrobial activity. Physical perturbation of model membranes mimicking bacterial or mammalian cells was investigated using atomic force microscopy, polarized total internal reflection fluorescence microscopy, and NMR spectroscopy. Disruption of anionic membranes proceeds through a carpet or detergent model as proposed for other antimicrobial peptides. By contrast, when added to zwitterionic membranes containing cholesterol-rich ordered domains, PrP(106–126) oligomers induce a loss of domain separation and decreased membrane disorder. Loss of raft-like domains may lead to activation of apoptotic pathways, resulting in cell death. This work sheds new light on the physical mechanisms of amyloid cytotoxicity and is the first to clearly show membrane type-specific modes of action for a cytotoxic peptide.  相似文献   

6.
Actin is a multifunctional eukaryotic protein with a globular monomer form that polymerizes into a thin, linear microfilament in cells. Through interactions with various actin-binding proteins (ABPs), actin plays an active role in many cellular processes, such as cell motility and structure. Microscopy techniques are powerful tools for determining the role and mechanism of actin–ABP interactions in these processes. In this article, we describe the basic concepts of fluorescent speckle microscopy, total internal reflection fluorescence microscopy, atomic force microscopy, and cryoelectron microscopy and review recent studies that utilize these techniques to visualize the binding of actin with ABPs.  相似文献   

7.
The atomic force microscope has developed into a powerful tool in structural biology allowing information to be acquired at submolecular resolution on the protruding structures of membrane proteins. It is now a complementary technique to X-ray crystallography and electron microscopy for structure determination of individual membrane proteins after extraction, purification and reconstitution into lipid bilayers. Moving on from the structures of individual components of biological membranes, atomic force microscopy has recently been demonstrated to be a unique tool to identify in situ the individual components of multi-protein assemblies and to study the supramolecular architecture of these components allowing the efficient performance of a complex biological function. Here, recent atomic force microscopy studies of native membranes of different photosynthetic bacteria with different polypeptide contents are reviewed. Technology, advantages, feasibilities, restrictions and limits of atomic force microscopy for the acquisition of highly resolved images of up to 10 A lateral resolution under native conditions are discussed. From a biological point of view, the new insights contributed by the images are analysed and discussed in the context of the strongly debated organisation of the interconnected network of membrane-associated chlorophyll-protein complexes composing the photosynthetic apparatus in different species of purple bacteria.  相似文献   

8.
Ceramide-induced alterations in the lateral organization of membrane proteins can be involved in several biological contexts, ranging from apoptosis to viral infections. In order to investigate such alterations in a simple model, we used a combined approach of atomic force microscopy, scanning fluorescence correlation spectroscopy and confocal fluorescence imaging to study the partitioning of different membrane components in sphingomyelin/dioleoyl-phosphatidylcholine/cholesterol/ceramide supported bilayers. Such model membranes exhibit coexistence of liquid-disordered, liquid-ordered (raft-like) and ceramide-rich lipid phases. Our results show that components with poor affinity toward the liquid-ordered phase, such as several fluorescent lipid analogues or the synaptic protein Synaptobrevin 2, are excluded from ceramide-rich domains. Conversely, we show for the first time that the raft-associated protein placental alkaline phosphatase (GPI-PLAP) and the ganglioside GM1 are enriched in such domains, while exhibiting a strong decrease in lateral diffusion. Analogue modulation of the local concentration and dynamics of membrane proteins/receptors by ceramide can be of crucial importance for the biological functions of cell membranes.  相似文献   

9.
Combining scanning probe and optical microscopy represents a powerful approach for investigating structure-function relationships and dynamics of biomolecules and biomolecular assemblies, often in situ and in real-time. This platform technology allows us to obtain three-dimensional images of individual molecules with nanometer resolution, while simultaneously characterizing their structure and interactions though complementary techniques such as optical microscopy and spectroscopy. We describe herein the practical strategies for the coupling of scanning probe and total internal reflection fluorescence microscopy along with challenges and the potential applications of such platforms, with a particular focus on their application to the study of biomolecular interactions at membrane surfaces.  相似文献   

10.
Myosin is the molecular motor in muscle-binding actin and executing a power stroke by rotating its lever arm through an angle of approximately 70 degrees to translate actin against resistive force. A green fluorescent protein (GFP)-tagged human cardiac myosin regulatory light chain (HCRLC) was constructed to study in situ lever arm orientation one molecule at a time by polarized fluorescence emitted from the GFP probe. The recombinant protein physically and functionally replaced the native RLC on myosin lever arms in the thick filaments of permeabilized skeletal muscle fibers. Detecting single molecules in fibers where myosin concentration reaches 300 microM is accomplished using total internal reflection fluorescence microscopy. With total internal reflection fluorescence, evanescent field excitation, supercritical angle fluorescence detection, and CCD detector pixel size limits detection volume to just a few attoliters. Data analysis manages both the perturbing effect of the TIR interface on probe emission and the effect of high numerical aperture collection of light. The natural myosin concentration gradient in a muscle fiber allows observation of fluorescence polarization from C-term GFP-tagged HCRLC exchanged myosin from regions in the thick filament containing low and high myosin concentrations. In rigor, cross-bridges at low concentration at the end of the thick filament maintain GFP dipole moments at two distinct polar angles relative to the fiber symmetry axis. The lower angle, where the dipole is nearly parallel to fiber axis, is more highly populated than the alternative, larger angle. Cross-bridges at higher concentration in the center of the thick filament are oriented in a homogeneous band at approximately 45 degrees to the fiber axis. The data suggests molecular crowding impacts myosin conformation, implying mutual interactions between cross-bridges alter how the muscle generates force. The GFP-tagged RLC is a novel probe to assess single-lever-arm orientation characteristics in situ.  相似文献   

11.
Interactions of the hydrophobic anticancer drug tamoxifen (TAM) with lipid model membranes were studied using calcein-encapsulated vesicle leakage, attenuated total reflection Fourier transform infrared (FTIR) spectroscopy, small-angle neutron scattering (SANS), atomic force microscopy (AFM) based force spectroscopy, and all-atom molecular dynamics (MD) simulations. The addition of TAM enhances membrane permeability, inducing calcein to translocate from the interior to the exterior of lipid vesicles. A large decrease in the FTIR absorption band’s magnitude was observed in the hydrocarbon chain region, suggesting suppressed bond vibrational dynamics. Bilayer thickening was determined from SANS data. Force spectroscopy measurements indicate that the lipid bilayer area compressibility modulus KA is increased by a large amount after the incorporation of TAM. MD simulations show that TAM decreases the lipid area and increases chain order parameters. Moreover, orientational and positional analyses show that TAM exhibits a highly dynamic conformation within the lipid bilayer. Our detailed experimental and computational studies of TAM interacting with model lipid membranes shed new light on membrane modulation by TAM.  相似文献   

12.
《Biophysical journal》2020,118(10):2434-2447
Diffusion obstacles in membranes have not been directly visualized because of fast membrane dynamics and the occurrence of subresolution molecular complexes. To understand the obstacle characteristics, mobility-based methods are often used as an indirect way of assessing the membrane structure. Molecular movement in biological plasma membranes is often characterized by anomalous diffusion, but the exact underlying mechanisms are still elusive. Imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) is a well-established mobility-based method that provides spatially resolved diffusion coefficient maps and is combined with FCS diffusion law analysis to examine subresolution membrane organization. In recent years, although FCS diffusion law analysis has been instrumental in providing new insights into the membrane structure below the optical diffraction limit, there are certain exceptions and anomalies that require further clarification. To this end, we correlate the membrane structural features imaged by atomic force microscopy (AFM) with the dynamics measured using ITIR-FCS. We perform ITIR-FCS measurements on supported lipid bilayers (SLBs) of various lipid compositions to characterize the anomalous diffusion of lipid molecules in distinct obstacle configurations, along with the high-resolution imaging of the membrane structures with AFM. Furthermore, we validate our experimental results by performing simulations on image grids with experimentally determined obstacle configurations. This study demonstrates that FCS diffusion law analysis is a powerful tool to determine membrane heterogeneities implied from dynamics measurements. Our results corroborate the commonly accepted interpretations of imaging FCS diffusion law analysis, and we show that exceptions happen when domains reach the percolation threshold in a biphasic membrane and a network of domains behaves rather like a meshwork, resulting in hop diffusion.  相似文献   

13.
Supported lipid bilayers are widely used for sensing and deciphering biomolecular interactions with model cell membranes. In this paper, we present a method to form supported lipid bilayers from total lipid extracts of Escherichia coli by vesicle fusion. We show the validity of this method for different types of extracts including those from deuterated biomass using a combination of complementary surface sensitive techniques; quartz crystal microbalance, neutron reflection and atomic force microscopy. We find that the head group composition of the deuterated and the hydrogenated lipid extracts is similar (approximately 75% phosphatidylethanolamine, 13% phosphatidylglycerol and 12% cardiolipin) and that both samples can be used to reconstitute high-coverage supported lipid bilayers with a total thickness of 41 ± 3 Å, common for fluid membranes. The formation of supported lipid bilayers composed of natural extracts of Escherichia coli allow for following biomolecular interactions, thus advancing the field towards bacterial-specific membrane biomimics.  相似文献   

14.
We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor.  相似文献   

15.
Assays for real-time investigation of exocytosis typically measure what is released from the granule. From this, inferences are made about the dynamics of membrane remodeling as fusion progresses from start to finish. We have recently undertaken a different approach to investigate the fusion process, by focusing not primarily on the granule, but rather its partner in exocytosis - the plasma membrane. We have been guided by the idea that biochemical interactions between the granule and plasma membranes before and during fusion, cause changes in membrane conformation. To enable study of membrane conformation, a novel imaging technique was developed combining polarized excitation of an oriented membrane probe 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (diI) with total internal reflection fluorescence microscopy (pTIRFM). Because this technique measures changes in membrane conformation (or deformations) directly, its usefulness persists even after granule cargo reporter (catecholamine, or protein), is no longer present. In this mini-review, we first summarize the workings of pTIRFM. We then discuss the application of the technique to investigate deformations in the membrane preceding fusion, and later, during fusion pore expansion. Finally, we discuss how expansion of the fusion pore may be regulated by the GTPase activity of dynamin.  相似文献   

16.
The integrity of supported phospholipid bilayer membranes is of crucial importance for the investigation of lipid–protein interactions. Therefore we recorded the formation of supported membranes on SiO2 and mica by quartz crystal microbalance and controlled the integrity by atomic force microscopy. This study aims to analyze how membrane defects affect protein–lipid interactions. The experiments focused on a lipid mixture of POPC/DOPC/Chol/POPS/PI(4,5)P2 (37:20:20:20:3) and the binding of the peripheral membrane associated protein annexin A2. We found that formation of a continuous undisturbed bilayer is an indispensable precondition for a reliable determination and quantification of lipid–protein-interactions. If membrane defects were present, protein adsorption causes membrane disruption and lipid detachment on a support thus leading to false determination of binding constants. Our results obtained for PI(4,5)P2 and cholesterol containing supported membranes yield new knowledge to construct functional surfaces that may cover nanoporous substrates, form free standing membranes or may be used for lab-on-a-chip applications.  相似文献   

17.
Understanding the structural organization of biomolecules in cells, sub-cellular compartments or membranes requires non-invasive methods of observation that provide high spatial resolution. Recent advancements in fluorescence microscopy paved the way for novel super-resolution observations with an optical resolution well below the diffraction barrier of light. Here, we demonstrate that commercially available standard fluorescent probes, i.e. Alexa 647 labeled antibodies, can be used as efficient photoswitches. In combination with localization microscopy approaches the method is ideally suited to study the spatial organization of proteins in sub-cellular structures and membranes. The simplicity of the method lies in the fact that standard immunocytochemistry assays together with photoswitchable carbocyanine fluorophores and conventional total internal reflection fluorescence (TIRF) microscopy can be used to achieve a lateral resolution of 20 nm. We demonstrate subdiffraction-resolution fluorescence imaging of intracellular F0F1-ATP synthase and cytochrome c oxidase in the inner membrane of mitochondria. Besides the high localization precision of individual proteins we demonstrate how quantitative data, i.e. the protein distribution in the membrane, can be derived and compared.  相似文献   

18.
The sphingolipid ceramides are known to influence lipid lateral organization in biological membranes. In particular, ceramide-induced alterations of microdomains can be involved in several cell functions, ranging from apoptosis to immune response. We used a combined approach of atomic force microscopy, fluorescence correlation spectroscopy, and confocal fluorescence imaging to investigate the effects of ceramides in model membranes of biological relevance. Our results show that physiological quantities of ceramide in sphingomyelin/dioleoylphosphatidylcholine/cholesterol supported bilayers lead to a significant rearrangement of lipid lateral organization. Our experimental setup allowed a simultaneous characterization of both structural and dynamic modification of membrane microdomains, induced by the presence of ceramide. Formation of similar ceramide-enriched domains and, more general, alterations of lipid-lipid interactions can be of crucial importance for the biological function of cell membranes.  相似文献   

19.
Saposins A, B, C and D are soluble, non-enzymatic proteins that interact with lysosomal membranes to activate the breakdown and transfer of glycosphingolipids. The mechanisms of hydrolase activation and lipid transfer by saposins remain unknown. We have used in situ atomic force microscopy (AFM) with simultaneous confocal fluorescence microscopy to investigate the interactions of saposins with lipid membranes. AFM images of the effect of saposins A, B and C on supported lipid bilayers showed a time and concentration-dependent nucleated spread of membrane transformation. Saposin B produced deep gaps that ultimately filled with granular material, while saposins A and C lead to localized areas of membrane that were reduced in height by approximately 1.5 nm. Fluorescence-labeled saposin C co-localized with the transformed areas of the bilayer, indicating stable binding to the membrane. Fluorescence resonance energy transfer confirmed a direct interaction between saposin C and lipid. Under certain conditions of membrane lipid composition and saposin concentration, extensive bilayer lipid removal was observed. We propose a multi-step mechanism that integrates the structural features and amphipathic properties of the saposin proteins.  相似文献   

20.
《Biophysical journal》2022,121(18):3370-3380
Complexin-1 is an essential protein for neuronal exocytosis that acts to depress spontaneous fusion events while enhancing evoked neurotransmitter release. In addition to binding soluble N-ethylmaleimide-sensitive factor attachment protein receptors, it is well established that complexin associates with membranes in a manner that depends upon membrane curvature. In the present work, we examine the membrane binding of complexin using electron paramagnetic resonance spectroscopy, fluorescence anisotropy, and total internal reflection fluorescence microscopy. The apparent membrane affinity of complexin is found to strongly depend upon the concentration of protein used in the binding assay, and this is a result of a limited number of binding sites for complexin on the membrane interface. Although both the N- and C-terminal regions of complexin associate with the membrane interface, membrane affinity is driven by its C-terminus. Complexin prefers to bind liquid-disordered membrane phases and shows an enhanced affinity toward membranes containing phosphatidylinositol 4-5-bisphosphate (PI(4,5)P2). In the presence of PI(4,5)P2, complexin is displaced from the membrane surface by proteins that bind to or sequester PI(4,5)P2. In particular, the neuronal calcium sensor synaptotagmin-1 displaces complexin from the membrane but only when PI(4,5)P2 is present. Complexin and synaptotagmin compete on the membrane interface in the presence of PI(4,5)P2, and this interaction may play a role in calcium-triggered exocytosis by displacing complexin from its fusion-inhibiting state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号