首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The freshwater polyp Hydra has considerable regeneration capabilities. A small fragment of tissue excised from an adult animal is sufficient to regenerate an entire Hydra in the course of a few days. During the initial stages of the regeneration process, the tissue forms a hollow sphere. Then the sphere exhibits shape oscillations in the form of repeated cycles of swelling and collapse. We propose a biophysical model for the swelling mechanism. Our model takes the osmotic pressure difference between Hydra's inner and outer media and the elastic forces of the Hydra shell into account. We validate the model by a comprehensive experimental study including variations in initial medium concentrations, Hydra sphere sizes and temperatures. Numerical simulations of the model provide values for the swelling rates that are in agreement with the ones measured experimentally. Based on our results we argue that the shape oscillations are a consequence of Hydra's osmoregulation.  相似文献   

2.
Tissue morphogenesis comprises the self-organized creation of various patterns and shapes. Although detailed underlying mechanisms are still elusive in many cases, an increasing amount of experimental data suggests that chemical morphogen and mechanical processes are strongly coupled. Here, we develop and test a minimal model of the axis-defining step (i.e., symmetry breaking) in aggregates of the Hydra polyp. Based on previous findings, we combine osmotically driven shape oscillations with tissue mechanics and morphogen dynamics. We show that the model incorporating a simple feedback loop between morphogen patterning and tissue stretch reproduces a wide range of experimental data. Finally, we compare different hypothetical morphogen patterning mechanisms (Turing, tissue-curvature, and self-organized criticality). Our results suggest the experimental investigation of bigger (i.e., multiple head) aggregates as a key step for a deeper understanding of mechanochemical symmetry breaking in Hydra.  相似文献   

3.
The results of a wide variety of transplantation experiments with Hydra, including experiments on animals in various stages of head regeneration, can be accounted for in a quantitatively satisfactory way with a reaction-diffusion model. This model, a proportion-regulating version of the Gierer-Meinhardt model, also accounts for the observed allometry of the head in Hydra. Values can be derived for all nine of the independent parameters of the model using eleven experimental results, and the model with these parameter values predicts the results of six further experiments.  相似文献   

4.
Recent data have shown that a functional NO-cGMP signalling system plays an important role during development and seems to be operative early during the differentiation of embryonic stem cells. The intriguing possibility exists that this role can be evolutionarily conserved between vertebrates and invertebrates. In this paper, we have analyzed the effect of NO-cGMP pathway on the regeneration process in Hydra vulgaris, the most primitive invertebrate possessing a nervous system. Our results indicate that NO production increased during Hydra regeneration. The NOS inhibitor L-NAME reduced the regenerative process and the same effect was obtained by treatment with either the specific guanylate cyclase inhibitor ODQ or the protein kinase G (PKG) inhibitor KT-5823. In contrast, the regeneration process was increased by treating decapitated Hydra with the NO donor NOC-18. Furthermore, we found that cell proliferation was also increased by treating decapitated Hydra with the NO donor NOC-18 and reduced by treatment with the NOS inhibitor L-NAME. Our results strongly suggest that the NO-cGMP-PKG pathway is involved in the control of the proliferative-differentiative patterns of developing and regenerating structures in cnidarians as well as bilaterians.  相似文献   

5.
6.
Differentiation of body column epithelial cells into tentacle epithelial cells in Hydra is accompanied by changes in both cell shape and cell-cell contact. The molecular mechanism by which epithelial cells acquire tentacle cell characteristics is unknown. Here we report that expression of a Hydra homologue of the mammalian IQGAP1 protein is strongly upregulated during tentacle formation. Like mammalian IQGAP, Hydra IQGAP1 contains an N-terminal calponin-homology domain, IQ repeats and a conserved C terminus. In adult polyps a high level of Hydra IQGAP1 mRNA is detected at the basis of tentacles. Consistent with a role in tentacle formation, IQGAP1 expression is activated during head regeneration and budding at a time when tentacles are emerging. The observations support the previous hypothesis that IQGAP proteins are involved in cytoskeletal as well as cell-cell contact rearrangements. Received: 25 January 2000 / Accepted: 2 May 2000  相似文献   

7.
As a member of the phylum Cnidaria, the sister group to all bilaterians, Hydra can shed light on fundamental biological processes shared among multicellular animals. Hydra is used as a model for the study of regeneration, pattern formation, and stem cells. However, research efforts have been hampered by lack of a reliable method for gene perturbations to study molecular function. The development of transgenic methods has revitalized the study of Hydra biology1. Transgenic Hydra allow for the tracking of live cells, sorting to yield pure cell populations for biochemical analysis, manipulation of gene function by knockdown and over-expression, and analysis of promoter function. Plasmid DNA injected into early stage embryos randomly integrates into the genome early in development. This results in hatchlings that express transgenes in patches of tissue in one or more of the three lineages (ectodermal epithelial, endodermal epithelial, or interstitial). The success rate of obtaining a hatchling with transgenic tissue is between 10% and 20%. Asexual propagation of the transgenic hatchling is used to establish a uniformly transgenic line in a particular lineage. Generating transgenic Hydra is surprisingly simple and robust, and here we describe a protocol that can be easily implemented at low cost.  相似文献   

8.
A detailed model for hyposmotic fluid formation in Hydra is presented. We propose that enteron fluid formation occurs in two steps: (1) segregation of an isosmotic fluid in large intercellular vacuoles with (2) subsequent reabsorption of solute in the intercellular channels to form the hyposmotic fluid of the enteron. Intercellular spaces in Hydra have been studied by light microscopy and thin-section electron microscopy, as well as by electrophysiological methods. These spaces are of two types: (1) large vacuoles which are located in the cells of both the epidermis and gastrodermis, being more numerous in the epidermis; and (2) lateral intercellular channels which run from the intercellular vacuoles, leading eventually to the enteron. These vacuoles and channels are highly convoluted, forming a complex three-dimensional network. We suggest that this network is involved in the water balance of Hydra.  相似文献   

9.
10.
Stem cells in Hydra represent one of the phylogenetically most ancient stem cell systems and, therefore, provide information for reconstructing the early history of stem cell control mechanisms. Hydra's interstitial stem cells are multipotent and differentiate into both somatic cell types and germ line cells. Although it is well accepted that cells of the interstitial cell lineage are migratory, the in vivo migratory potential of multipotent interstitial stem cells has never been explored. Combining in vivo tracing of genetically labeled interstitial stem cells and tissue transplantation, we show that in contrast to precursor cells, multipotent interstitial stem cells are stationary. Only when exposed to tissue depleted of the interstitial cell lineage, interstitial stem cells start to migrate and to repopulate emptied stem cell niches. We conclude that multipotent interstitial stem cells in Hydra are static and that microenvironmental cues including signals derived from the interstitial cell lineage or from niche cells can trigger a shift in collective stem cell behavior to start migration.  相似文献   

11.
Twelve-hour continuous pretreatment of regenerating Hydra with 60 μg/ml actinomycin D inhibited the synthesis of RNA by 98%. In such Hydra, hypostome regeneration was found more affected than basal disc regeneration since a complete blockage of development of oral structures occurred. It is assumed that the hypostome regeneration requires new DNA-dependent RNA synthesis. Better differentiation of the basal disc is explained on the basis of a stable variety of messenger RNA (mRNA), which would become activated at the time of determination. The formation of mesoglea and the development of fibrous materials in the basal disc are attributed to new DNA-dependent RNA synthesis.  相似文献   

12.
A quantitative method is proposed for the evaluation of distal regeneration in Hydra attenuata; it is based on estimates of tentacle elongation during 10 days of regeneration, determination of a Tentacle Regeneration Index, and a statistical analysis of profiles obtained from various samples in different experiments. The results show that: polyps under normal conditions have similar regeneration patterns, regardless of individual variability; and ATxII, a neurotoxin of cnidarian origin, produces a statistically significant increase in the Tentacle Regeneration Index. The results are discussed in relation to pattern formation and growth in Hydra.  相似文献   

13.
14.
Formation of a constriction and tissue separation between parent and young polyp is a hallmark of the Hydra budding process and controlled by fibroblast growth factor receptor (FGFR) signaling. Appearance of a cluster of cells positive for double phosphorylated ERK (dpERK) at the late separation site indicated that the RAS/MEK/ERK pathway might be a downstream target of the Hydra Kringelchen FGFR. In fact, inhibition of ERK phosphorylation by the MEK inhibitor U0126 reversibly delayed bud detachment and prevented formation of the dpERK-positive cell cluster indicating de novo-phosphorylation of ERK at the late bud base. In functional studies, a dominant-negative Kringelchen FGFR prevented bud detachment as well as appearance of the dpERK-positive cell cluster. Ectopic expression of full length Kringelchen, on the other hand, induced a localized rearrangement of the actin cytoskeleton at sites of constriction, localized ERK-phosphorylation and autotomy of the body column. Our data suggest a model in which (i) the Hydra FGFR targets, via an unknown pathway, the actin cytoskeleton to induce a constriction and (ii) FGFR activates MEK/ERK signaling at the late separation site to allow tissue separation.  相似文献   

15.
Various investigators have shown that in the marine hydroids, Tubularia, Obelia, Eudendrium, and Pennaria, regeneration and polarity is affected by an electrical field applied parallel to the regenerate. Using electrical currents up to the physiological limits for Hydra, no relation between electrical current and regeneration rate or polarity could be demonstrated. This is in spite of the fact that adult Hydra are normally electrically polarized with the distal end approximately–18 mV relative to the proximal end of the animal. When the electrophoretic mobility and isoelectric point of cells from distal, central and proximal thirds of Hydra were measured, a significant difference was found between cells of the two cell layers but not between cells of the three body thirds. These results are discussed in relation to Hydra growth factors described by various other authors.  相似文献   

16.
Hydra, a simple freshwater animal famous for its regenerative capabilities, must tear a hole through its epithelial tissue each time it opens its mouth. The feeding response of Hydra has been well-characterized physiologically and is regarded as a classical model system for environmental chemical biology. However, due to a lack of in vivo labeling and imaging tools, the biomechanics of mouth opening have remained completely unexplored. We take advantage of the availability of transgenic Hydra lines to perform the first dynamical analysis, to our knowledge, of Hydra mouth opening and test existing hypotheses regarding the underlying cellular mechanisms. Through cell position and shape tracking, we show that mouth opening is accompanied by changes in cell shape, but not cellular rearrangements as previously suggested. Treatment with a muscle relaxant impairs mouth opening, supporting the hypothesis that mouth opening is an active process driven by radial contractile processes (myonemes) in the ectoderm. Furthermore, we find that all events exhibit the same relative rate of opening. Because one individual can open consecutively to different amounts, this suggests that the degree of mouth opening is controlled through neuronal signaling. Finally, from the opening dynamics and independent measurements of the elastic properties of the tissues, we estimate the forces exerted by the myonemes to be on the order of a few nanoNewtons. Our study provides the first dynamical framework, to our knowledge, for understanding the remarkable plasticity of the Hydra mouth and illustrates that Hydra is a powerful system for quantitative biomechanical studies of cell and tissue behaviors in vivo.  相似文献   

17.
The kinetics of nerve commitment during head regeneration in Hydra were investigated using a newly developed assay for committed cells. Committed nerve precursors were assayed by their ability to continue nerve differentiation following explanation of small pieces of tissue. Committed nerve precursors appear at the site of regeneration within 6 hr after cutting and increase rapidly. The increase is localized to the site of regeneration and does not occur at proximal sites in the body column of the regenerate. The increase is delayed about 8–12 hr when regeneration occurs at sites lower in the body column. The results show, furthermore, that redistribution of committed precursors does not play a major role in the pattern of nerve differentiation during regeneration. Since the increase in committed nerves coincides with the increase in morphogenetic potential of the regenerating tissue, the results strengthen the idea that morphogenetic signals are involved directly in the control of nerve commitment in Hydra.  相似文献   

18.
Cnidarians are phylogenetically basal members of the animal kingdom (>600 million years old). Together with plants they share some remarkable features that cannot be found in higher animals. Cnidarians and plants exhibit an almost unlimited regeneration capacity and immortality. Immortality can be ascribed to the asexual mode of reproduction that requires cells with an unlimited self-renewal capacity. We propose that the basic properties of animal stem cells are tightly linked to this archaic mode of reproduction. The cnidarian stem cells can give rise to a number of differentiated cell types including neuronal and germ cells. The genomes of Hydra and Nematostella, representatives of two major cnidarian classes indicate a surprising complexity of both genomes, which is in the range of vertebrates. Recent work indicates that highly conserved signalling pathways control Hydra stem cell differentiation. Furthermore, the availability of genomic resources and novel technologies provide approaches to analyse these cells in vivo. Studies of stem cells in cnidarians will therefore open important insights into the basic mechanisms of stem cell biology. Their critical phylogenetic position at the base of the metazoan branch in the tree of life makes them an important link in unravelling the common mechanisms of stem cell biology between animals and plants.  相似文献   

19.
A full-length cDNA encoding an acetylcholinesterase (AChE) from Hydra magnipapillata was isolated. All of the important aromatic residues that line a catalytic gorge in cholinesterases of other species were conserved, but the sequences of peripheral anionic and choline binding sites were not. Hydra AChE, expressed in Xenopus oocytes, showed AChE activity. The gene was expressed in both ectodermal and endodermal epithelial cells except for the tentacles and basal disk. AChE gene expression was not detected in the regenerating tips in either the head or the foot, indicating that regeneration is controlled by the non-neuronal cholinergic system in Hydra.  相似文献   

20.
Understanding the mechanisms controlling the stability of the differentiated cell state is a fundamental problem in biology. To characterize the critical regulatory events that control stem cell behavior and cell plasticity in vivo in an organism at the base of animal evolution, we have generated transgenic Hydra lines [Wittlieb, J., Khalturin, K., Lohmann, J., Anton-Erxleben, F., Bosch, T.C.G., 2006. Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 103, 6208-6211] which express eGFP in one of the differentiated cell types. Here we present a novel line which expresses eGFP specifically in zymogen gland cells. These cells are derivatives of the interstitial stem cell lineage and have previously been found to express two Dickkopf related genes [Augustin, R., Franke, A., Khalturin, K., Kiko, R., Siebert, S. Hemmrich, G., Bosch, T.C.G., 2006. Dickkopf related genes are components of the positional value gradient in Hydra. Dev. Biol. 296 (1), 62-70]. In the present study we have generated transgenic Hydra in which eGFP expression is under control of the promoter of one of them, HyDkk1/2/4 C. Transgenic Hydra recapitulate faithfully the previously described graded activation of HyDkk1/2/4 C expression along the body column, indicating that the promoter contains all elements essential for spatial and temporal control mechanisms. By in vivo monitoring of eGFP+ gland cells, we provide direct evidence for continuous transdifferentiation of zymogen cells into granular mucous cells in the head region. We also show that in this tissue a subpopulation of mucous gland cells directly derives from interstitial stem cells. These findings indicate that both stem cell-based mechanisms and transdifferentiation are involved in normal development and maintenance of cell type complexity in Hydra. The results demonstrate a remarkable plasticity in the differentiation capacity of cells in an organism which diverged before the origin of bilaterian animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号