首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A family carrying the X-linked gene for hypohidrotic ectodermal dysplasia (hereditary ectodermal polydysplasia or Christ-Siemens-Touraine syndrome) over three generations was monitored for more than 15 years. Two prenatal diagnoses were carried out by fetoscopy on skin biopsies. Polymorphic probes were used in the segregation analysis of the Xq11–21 region carried out on 30 members of the family. Current screening possiblitities for the carriers and prenatal diagnosis are discussed.  相似文献   

2.
Incontinentia pigmenti (IP), or "Bloch-Sulzberger syndrome," is an X-linked dominant disorder characterized by abnormalities of skin, teeth, hair, and eyes; skewed X-inactivation; and recurrent miscarriages of male fetuses. IP results from mutations in the gene for NF-kappaB essential modulator (NEMO), with deletion of exons 4-10 of NEMO accounting for >80% of new mutations. Male fetuses inheriting this mutation and other "null" mutations of NEMO usually die in utero. Less deleterious mutations can result in survival of males subjects, but with ectodermal dysplasia and immunodeficiency. Male patients with skin, dental, and ocular abnormalities typical of those seen in female patients with IP (without immunodeficiency) are rare. We investigated four male patients with clinical hallmarks of IP. All four were found to carry the deletion normally associated with male lethality in utero. Survival in one patient is explained by a 47,XXY karyotype and skewed X inactivation. Three other patients possess a normal 46,XY karyotype. We demonstrate that these patients have both wild-type and deleted copies of the NEMO gene and are therefore mosaic for the common mutation. Therefore, the repeat-mediated rearrangement leading to the common deletion does not require meiotic division. Hypomorphic alleles, a 47,XXY karyotype, and somatic mosaicism therefore represent three mechanisms for survival of males carrying a NEMO mutation.  相似文献   

3.
A crucial issue in genetic counseling is the recognition of nonallelic genetic heterogeneity. Hypohidrotic (anhidrotic) ectodermal dysplasia (HED), a genetic disorder characterized by defective development of hair, teeth, and eccrine sweat glands, is usually inherited as an X-linked recessive trait mapped to the X-linked ectodermal dysplasia locus, EDA, at Xq12-q13.1. The existence of an autosomal recessive form of the disorder had been proposed but subsequently had been challenged by the hypothesis that the phenotype of severely affected daughters born to unaffected mothers in these rare families may be due to marked skewing of X inactivation. Five families with possible autosomal recessive HED have been identified, on the basis of the presence of severely affected females and unaffected parents in single sibships and in highly consanguineous families with multiple affected family members. The disorder was excluded from the EDA locus by the lack of its cosegregation with polymorphic markers flanking the EDA locus in three of five families. No mutations of the EDA gene were detected by SSCP analysis in the two families not excluded by haplotype analysis. The appearance of affected males and females in autosomal recessive HED was clinically indistinguishable from that seen in males with X-linked HED. The findings of equally affected males and females in single sibships, as well as the presence of consanguinity, support an autosomal recessive mode of inheritance. The fact that phenotypically identical types of HED can be caused by mutations at both X-linked and autosomal loci is analogous to the situation in the mouse, where indistinguishable phenotypes are produced by mutations at both X-linked (Tabby) and autosomal loci (crinkled and downless).  相似文献   

4.
Li S  Li J  Cheng J  Zhou B  Tong X  Dong X  Wang Z  Hu Q  Chen M  Hua ZC 《PloS one》2008,3(6):e2396
Here we report two unrelated Chinese families with congenital missing teeth inherited in an X-linked manner. We mapped the affected locus to chromosome Xp11-Xq21 in one family. In the defined region, both families were found to have novel missense mutations in the ectodysplasin-A (EDA) gene. The mutation of c.947A>G caused the D316G substitution of the EDA protein. The mutation of c.1013C>T found in the other family resulted in the Thr to Met mutation at position 338 of EDA. The EDA gene has been reported responsible for X-linked hypohidrotic ectodermal dysplasia (XLHED) in humans characterized by impaired development of hair, eccrine sweat glands, and teeth. In contrast, all the affected individuals in the two families that we studied here had normal hair and skin. Structural analysis suggests that these two novel mutants may account for the milder phenotype by affecting the stability of EDA trimers. Our results indicate that these novel missense mutations in EDA are associated with the isolated tooth agenesis and provide preliminary explanation for the abnormal clinical phenotype at a molecular structural level.  相似文献   

5.
KID syndrome (MIM 148210) is an ectodermal dysplasia characterized by the occurrence of localized erythematous scaly skin lesions, keratitis and severe bilateral sensorineural deafness. KID syndrome is inherited as an autosomic dominant disease, due to mutations in the gene encoding gap junction protein GJB2 (connexin 26, Cx26). Cx26 is a component of gap junction channels in the epidermis and in the stria vascularis of the cochlea. These channels play a role in the coordinated exchange of molecules and ions occurring in a wide spectrum of cellular activities. In this paper we describe two patients with Cx26 mutations cause cell death by the alteration of protein trafficking, membrane localization and probably interfering with intracellular ion concentrations. We discuss the pathogenesis of both the hearing and skin phenotypes.  相似文献   

6.
7.
Permanent correction of an inherited ectodermal dysplasia with recombinant EDA   总被引:12,自引:0,他引:12  
X-linked hypohidrotic ectodermal dysplasia (XLHED; OMIM 305100) is a genetic disorder characterized by absence or deficient function of hair, teeth and sweat glands. Affected children may experience life-threatening high fever resulting from reduced ability to sweat. Mice with the Tabby phenotype share many symptoms with human XLHED patients because both phenotypes are caused by mutations of the syntenic ectodysplasin A gene (Eda) on the X chromosome. Two main splice variants of Eda, encoding EDA1 and EDA2, engage the tumor necrosis factor (TNF) family receptors EDAR and XEDAR, respectively. The EDA1 protein, acting through EDAR, is essential for proper formation of skin appendages; the functions of EDA2 and XEDAR are not known. EDA1 must be proteolytically processed to a soluble form to be active. Here, we show that treatment of pregnant Tabby mice with a recombinant form of EDA1, engineered to cross the placental barrier, permanently rescues the Tabby phenotype in the offspring. Notably, sweat glands can also be induced by EDA1 after birth. This is the first example of a developmental genetic defect that can be permanently corrected by short-term treatment with a recombinant protein.  相似文献   

8.
Ectodermal dysplasias are a large group of rare genetic disorders with developmental abnormalities in skin, teeth, hair and nails. Many of them are clinically serious and impair the life of patients. The cloning of the gene for the most common of them, X-linked anhidrotic ectodermal dysplasia, in 1996 opened the door to dissect novel developmental pathways at the molecular level. Since then, several new genes and proteins with novel functions have been identified.  相似文献   

9.
X-linked and autosomal forms of anhidrotic ectodermal dysplasia syndromes (HED) are characterized by deficient development of several ectodermal organs, including hair, teeth and exocrine glands. The recent cloning of the genes that underlie these syndromes, ectodysplasin (ED1) and the ectodysplasin A receptor (EDAR), and their identification as a novel TNF ligand-receptor pair suggested a role for TNF signaling in embryonic morphogenesis. In the mouse, the genes of the spontaneous mutations Tabby (Ta) and downless (dl) were identified as homologs of ED1 and EDAR, respectively. To gain insight into the function of this signaling pathway in development of skin and hair follicles, we analyzed the expression and regulation of Eda and Edar in wild type as well as Tabby and Lef1 mutant mouse embryos. We show that Eda and Edar expression is confined to the ectoderm and occurs in a pattern that suggests a role of ectodysplasin/Edar signaling in the interactions between the ectodermal compartments and the formation and function of hair placodes. By using skin explant cultures, we further show that this signaling pathway is intimately associated with interactions between the epithelial and mesenchymal tissues. We also find that Ta mutants lack completely the placodes of the first developing tylotrich hairs, and that they do not show patterned expression of placodal genes, including Bmp4, Lef1, Shh, Ptch and Edar, and the genes for beta-catenin and activin A. Finally, we identified activin as a mesenchymal signal that stimulates Edar expression and WNT as a signal that induces Eda expression, suggesting a hierarchy of distinct signaling pathways in the development of skin and hair follicles. In conclusion, we suggest that Eda and Edar are associated with the onset of ectodermal patterning and that ectodysplasin/edar signaling also regulates the morphogenesis of hair follicles.  相似文献   

10.
Liu Y  Yu X  Wang L  Li C  Archacki S  Huang C  Liu JY  Wang Q  Liu M  Tang Z 《Gene》2012,491(2):246-250
X-linked recessive hypohidrotic ectodermal dysplasia (XLHED) is characterized by the defective morphogenesis of teeth, hair, and eccrine sweat glands. It is associated with mutations in the EDA gene. Up to now, more than 100 mutations in the EDA gene have been reported to cause XLHED. The product of EDA gene is a trimeric type II transmembrane protein that belongs to the tumor necrosis factor (TNF) family of ligands. In this study, we identified a Chinese family with XLHED. Direct DNA sequencing of the whole coding region of EDA revealed a novel missense mutation, p.Leu354Pro in a patient affected with XLHED. This mutation was not found in either unaffected male individuals of the family or 168 normal controls. The substitution of Leu354 with Pro was found to be located in the TNF-like domain of EDA and may influence the epithelial signaling pathway required for the normal ectodermal development through altering the topology of EDA. Our finding broadens the spectrum of EDA mutations and may help to understand the molecular basis of XLHED and aid genetic counseling.  相似文献   

11.
The hyper-IgE syndromes (HIES; originally named Job's syndrome) are a collection of primary immunodeficiency syndromes resulting in elevated serum IgE levels and typified by recurrent staphylococcal skin abscesses, eczema and pulmonary infections. The disorder has autosomal dominant and recessive forms. Autosomal dominant HIES has been shown to be mainly due to STAT3 mutations and additionally results in connective tissue, skeletal, vascular and dental abnormalities. Autosomal recessive HIES has been shown to be mainly due to mutations in DOCK8; these patients are more prone to viral skin infections instead. This review article discusses the common clinical features of the syndrome, the genetic mutations responsible and the pathogenesis of the disease, as well as treatments currently used.  相似文献   

12.
Identification of trophoblast in chorionic villi biopsy samples   总被引:4,自引:2,他引:2  
Summary Genetic linkage studies were carried out in families with X-linked hypohidrotic ectodermal dysplasia (C-S-T syndrome). A DNA probe DXYS1 (pDP34), which maps both to the proximal part of the long arm of the X chromosome, Xq13-Xq21, and proximally on Yp, was used to detect a TaqI restriction fragment length polymorphism of the X-chromosomal locus in the DNA samples from 11 families. This locus was found to be closely linked to the X-linked hypohidrotic ectodermal dysplasia locus, with a lod score of 2.66 at recombination fraction () of 0.06 (90% confidence limits 0.01–0.26). Only one crossover was observed in nineteen meioses. This indicates that the probe DXYS1 is closely linked to the X-linked hypohidrotic ectodermal dysplasia locus and is likely to facilitate carrier detection and prenatal diagnosis tests.  相似文献   

13.
Lyonization and the lines of Blaschko   总被引:15,自引:2,他引:13  
R. Happle 《Human genetics》1985,70(3):200-206
Summary The lines of Blaschko represent a nonrandom developmental pattern of the skin fundamentally differing from the system of dermatomes. Many nevoid skin lesions display an arrangement following these lines. This is a review of case reports providing photographically documented evidence that the lines of Blaschko become manifest in the heterozygous state of various X-linked gene defects such as incontinentia pigmenti, focal dermal hypoplasia, X-linked dominant chondrodysplasia punctata, X-linked hypohidrotic ectodermal dysplasia, and Menkes syndrome. Hence, a causal relationship between lyonization and the lines of Blaschko seems quite obvious. Although it should be borne in mind that other genetic mechanisms such as somatic mutations or chimerism may give rise to the same linear pattern, the datable embryologic event of X-inactivation seems most suitable to explain the origin and nature of the lines of Blaschko. Apparently, in women affected with X-linked skin disorders the lines of Blaschko visualize the clonal proliferation of two functionally different populations of cells during early embryogenesis of the skin. The typical dorsal V-shape and the abdominal S-figure of these lines may result from an interference of the transversal coherent proliferation with the longitudinal growth and flexion of the embryo. In contrast to Blaschko's original assumption, it is now clear that these lines are independent from the metameric structure of the human body. Obviously, they represent a marker of the normal development of human skin. Therefore, a thorough study of the distribution pattern of X-linked skin disorders in women may give us a better insight into the early embryogeny of the human integument.  相似文献   

14.
Dental examinations and tooth measurements were conducted on 16 mothers, 10 fathers, and 23 affected males in 15 families with X-linked hypohidrotic ectodermal dysplasia. Small teeth and congenital missing teeth were sufficiently consistent findings in obligate heterozygotes to suggest that carriers can usually be recognized by clinical criteria.  相似文献   

15.
The TNF family ligand ectodysplasin A (EDA) and its receptor EDAR are required for proper development of skin appendages such as hair, teeth, and eccrine sweat glands. Loss of function mutations in the Eda gene cause X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition that can be ameliorated in mice and dogs by timely administration of recombinant EDA. In this study, several agonist anti-EDAR monoclonal antibodies were generated that cross-react with the extracellular domains of human, dog, rat, mouse, and chicken EDAR. Their half-life in adult mice was about 11 days. They induced tail hair and sweat gland formation when administered to newborn EDA-deficient Tabby mice, with an EC(50) of 0.1 to 0.7 mg/kg. Divalency was necessary and sufficient for this therapeutic activity. Only some antibodies were also agonists in an in vitro surrogate activity assay based on the activation of the apoptotic Fas pathway. Activity in this assay correlated with small dissociation constants. When administered in utero in mice or at birth in dogs, agonist antibodies reverted several ectodermal dysplasia features, including tooth morphology. These antibodies are therefore predicted to efficiently trigger EDAR signaling in many vertebrate species and will be particularly suited for long term treatments.  相似文献   

16.
Odonto-onycho-dermal dysplasia (OODD), a rare autosomal-recessive inherited form of ectodermal dysplasia including severe oligodontia, nail dystrophy, palmoplantar hyperkeratosis, and hyperhidrosis, was recently shown to be caused by a homozygous nonsense WNT10A mutation in three consanguineous Lebanese families. Here, we report on 12 patients, from 11 unrelated families, with ectodermal dysplasia caused by five previously undescribed WNT10A mutations. In this study, we show that (1) WNT10A mutations cause not only OODD but also other forms of ectodermal dysplasia, reaching from apparently monosymptomatic severe oligodontia to Schöpf-Schulz-Passarge syndrome, which is so far considered a unique entity by the findings of numerous cysts along eyelid margins and the increased risk of benign and malignant skin tumors; (2) WNT10A mutations are a frequent cause of ectodermal dysplasia and were found in about 9% of an unselected patient cohort; (3) about half of the heterozygotes (53.8%) show a phenotype manifestation, including mainly tooth and nail anomalies, which was not reported before in OODD; and (4) heterozygotes show a sex-biased manifestation pattern, with a significantly higher proportion of tooth anomalies in males than in females, which may implicate gender-specific differences of WNT10A expression.  相似文献   

17.
18.
Signaling and subcellular localization of the TNF receptor Edar   总被引:4,自引:0,他引:4  
Tabby and downless mutant mice have identical phenotypes characterized by deficient development of several ectodermally derived organs such as teeth, hair, and sweat glands. Edar, encoded by the mouse downless gene and defective in human dominant and recessive forms of autosomal hypohidrotic ectodermal dysplasia (EDA) syndrome, is a new member of the tumor necrosis factor (TNF) receptor superfamily. The ligand of Edar is ectodysplasin, a TNF-like molecule mutated in the X-linked form of EDA and in the spontaneous mouse mutant Tabby. We have analyzed the response of Edar signaling in transfected cells and show that it activates nuclear factor-kappaB (NF-kappaB) in a dose-dependent manner. When Edar was expressed at low levels, the NF-kappaB response was enhanced by coexpression of ectodysplasin. The activation of NF-kappaB was greatly reduced in cells expressing mutant forms of Edar associated with the downless phenotype. Overexpression of Edar did not activate SAPK/JNK nor p38 kinase. Even though Edar harbors a death domain its overexpression did not induce apoptosis in any of the four cell lines analyzed, nor was there any difference in apoptosis in developing teeth of wild-type and Tabby mice. Additionally, we show that the subcellular localization of dominant negative alleles of downless is dramatically different from that of recessive or wild-type alleles. This together with differences in NF-kappaB responses suggests an explanation for the different mode of inheritance of the different downless alleles.  相似文献   

19.
The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies comprise multidomain proteins with diverse roles in cell activation, proliferation and cell death. These proteins play pivotal roles in the initiation, maintenance and termination of immune responses and have vital roles outside the immune system. The discovery and analysis of diseases associated with mutations in these families has revealed crucial mechanistic details of their normal functions. This review focuses on mutations causing four different diseases, which represent distinct pathological mechanisms that can exist within these superfamilies: autoimmune lymphoproliferative syndrome (ALPS; FAS mutations), common variable immunodeficiency (CVID; TACI mutations), tumor necrosis factor receptor associated periodic syndrome (TRAPS; TNFR1 mutations) and hypohidrotic ectodermal dysplasia (HED; EDA1/EDAR mutations). In particular, we highlight how mutations have revealed information about normal receptor-ligand function and how such studies might direct new therapeutic approaches.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号