首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We present, here, evidence for a pretranslational role of procollagen propeptides in the regulation of collagen synthesis. Amino- and carboxyl-terminal type I procollagen propeptides were isolated and purified from chick calvaria and tendon cultures. Human lung fibroblasts (IMR-90) were incubated in medium containing varying concentrations of propeptides. Amino-propeptides at 10 nM caused an 80% decrease in collagen synthesis compared to control. Higher concentrations of amino-propeptides did not decrease collagen synthesis further and no significant effect on non-collagen synthesis was found throughout the entire concentration range. Carboxyl-propeptides also inhibited collagen synthesis. At 10 nM, collagen synthesis was decreased by 30% and a concentration of 40 nM caused an 80% reduction. However, at the latter concentration non-collagen synthesis was also affected, decreasing by 20% relative to control. To assess possible pretranslational effects of propeptides, IMR-90 fibroblasts were treated with varying concentrations of each propeptide and levels of type I procollagen mRNA was determined by dot hybridization with a 32P-alpha 2(I) cDNA probe. Both propeptides caused significant concentration-dependent decreases in procollagen type I mRNA levels. At 10 nM, the amino-propeptide resulted in a 55% decrease in collagen mRNA levels while at 40 nM these levels decreased by 72% compared to control. Carboxyl-propeptides were also inhibitory, decreasing mRNA levels by 33% at 10 nM and 73% at 40 nM. Messenger RNA levels of a representative noncollagenous protein, beta-actin, were unaffected by either propeptide throughout the concentration range.  相似文献   

2.
3.
4.
Cardiac tissue from mice that do not express secreted protein acidic and rich in cysteine (SPARC) have reduced amounts of insoluble collagen content at baseline and in response to pressure overload hypertrophy compared with wild-type (WT) mice. However, the cellular mechanism by which SPARC affects myocardial collagen is not clearly defined. Although expression of SPARC by cardiac myocytes has been detected in vitro, immunohistochemistry of hearts demonstrated SPARC staining primarily associated with interstitial fibroblastic cells. Primary cardiac fibroblasts isolated from SPARC-null and WT mice were assayed for collagen I synthesis by [(3)H]proline incorporation into procollagen and by immunoblot analysis of procollagen processing. Bacterial collagenase was used to discern intracellular from extracellular forms of collagen I. Increased amounts of collagen I were found associated with SPARC-null versus WT cells, and the proportion of total collagen I detected on SPARC-null fibroblasts without propeptides [collagen-α(1)(I)] was higher than in WT cells. In addition, the amount of total collagen sensitive to collagenase digestion (extracellular) was greater in SPARC-null cells than in WT cells, indicating an increase in cell surface-associated collagen in the absence of SPARC. Furthermore, higher levels of collagen type V, a fibrillar collagen implicated in collagen fibril initiation, were found in SPARC-null fibroblasts. The absence of SPARC did not result in significant differences in proliferation or in decreased production of procollagen I by cardiac fibroblasts. We conclude that SPARC regulates collagen in the heart by modulating procollagen processing and interactions with fibroblast cell surfaces. These results are consistent with decreased levels of interstitial collagen in the hearts of SPARC-null mice being due primarily to inefficient collagen deposition into the extracellular matrix rather than to differences in collagen production.  相似文献   

5.
Glucocorticoids decrease type I procollagen synthesis by decreasing the steady state levels of procollagen mRNAs and mRNA synthesis. The present studies were undertaken to determine the functional sequences of the pro alpha 2(I) collagen gene required for the glucocorticoid-mediated decrease of type I procollagen mRNA synthesis. Embryonic mouse fibroblasts were stably transfected with the pR40 DNA CAT construct containing the 5' flanking region fragment from -2048 to +54 and the intronic fragment from +418 to +1524 of the mouse alpha 2(I) collagen gene. Dexamethasone treatment of these pR40 transfected fibroblasts resulted in a significant decrease in CAT activity which agrees with the glucocorticoid-mediated decrease of the steady state levels of type I procollagen mRNAs. To determine the possible role of the first intron fragment in the dexamethasone-mediated decrease of CAT activity, pR36, a CAT plasmid containing the first intron fragment and the SV40 early promoter, was transfected into mouse fibroblasts and treated with dexamethasone. No significant decrease in CAT activity was observed. The dexamethasone-mediated response was then localized within the 5' flanking region by preparing a series of constructs containing internal deletions and transfecting these plasmids into mouse fibroblasts. The regions -2048 to -981 and -506 to -351 were required for the dexamethasone response of gene activity. However, the DNA stretch from -981 to -506 was not. Analysis of the DNA sequences of these regions revealed a single GRE at -1023 to -1018 and a modified doublet at -873 to -856.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Glucocorticoids decrease the synthesis of type I procollagen mRNAs   总被引:2,自引:0,他引:2  
Glucocorticoids selectively decrease procollagen synthesis in animal and human skin fibroblasts. beta-Actin content and beta-actin mRNA are not affected by glucocorticoid treatment of chick skin fibroblasts. The inhibitory effect of glucocorticoids on procollagen synthesis is associated with a decrease in total cellular type I procollagen mRNAs in chick skin fibroblasts. These effects of dexamethasone are receptor mediated as determined by pretreatment with the glucocorticoid antagonists progesterone and RU-486 and with the agonist beta-dihydrocortisol. Dexamethasone has a small but significant inhibitory effect on cell growth of chick skin fibroblasts. The ability of this corticosteroid to decrease the steady-state levels of type I procollagen mRNAs in nuclei, cytoplasm, and polysomes varies. The largest decrease of type I procollagen mRNAs is observed in the nuclear and cytoplasmic subcellular fractions 24 h after dexamethasone treatment. Type I procollagen hnRNAs are also decreased as determined by Northern blot analysis of total nuclear RNA. The synthesis of total cellular type I procollagen mRNAs is reversibly decreased by dexamethasone treatment. In addition the synthesis of total nuclear type I procollagen mRNA sequences is decreased at 2, 4, and 24 h following the addition of radioactive nucleoside and dexamethasone to cell cultures. Although the synthesis of pro alpha 1(I) and pro alpha 2(I) mRNAs is decreased in dexamethasone-treated chick skin fibroblasts, the degradation of the total cellular procollagen mRNAs is not altered while the degradation of total cellular RNA is stabilized. These data indicate that the dexamethasone-mediated decrease of procollagen synthesis in embryonic chick skin fibroblasts results from the regulation of procollagen gene expression.  相似文献   

8.
The expression of type I collagen, the most component of dentin extracellular matrix proteins (ECMs) in odontoblast is correlated with the activity of dentin formation. Since odontoblast possesses a distinct cellular process for protein transport into the dentinal tubule, it is important to examine the intracellular protein localization. However, a study focusing on odontoblast processes has not been performed. Type I collagen is synthesized as procollagen, which is immediately converted to collagen upon secretion. After characterization of antiserum to rat type I procollagen, we investigated the intracellular localization of type I procollagen in odontoblasts during and after dentinogenesis, using immunohistochemistry and in situ hybridization. The level of mRNA expression decreased during dentinogenesis, whereas the intracellular localization of type I procollagen in odontoblast processes become more distinct. The percentage of dentinal tubules with type I procollagen increased significantly with aging. Odontoblasts in pulp horn, in particular, showed moderate expression of type I procollagen after dentinogenesis. Since loss of occlusion also caused a significant decrease in type I procollagen, we concluded that occlusal stimulation activated type I procollagen synthesis in odontoblasts. We also suggest that analysis of intracellular transport of type I procollagen via odontoblast processes may be a new approach to evaluation of odontoblast function.  相似文献   

9.
10.
Rats were administered CCl4, a well-defined nephrotoxin, for 20 weeks to produce glomerular sclerosis. Tubular degeneration and necrosis with interstitial fibrosis was clearly evident by histological examination. Kidneys were homogenized in phosphate-buffered saline and a collagen synthesis-stimulating factor was isolated by Sephadex G-50 gel filtration. The 5 kDa component stimulated both type I and type IV procollagen synthesis by mesangial cells and type I procollagen synthesis by rat skin fibroblasts. In each cell type, 2-6-fold increases in procollagen protein production or cell proliferation was noted. The steady-state levels of mRNA encoding for procollagen alpha 1(I) and procollagen alpha 1(IV) chains in mesangial cells were determined by by hybridization to their corresponding cDNA clones. The type I procollagen mRNA was elevated 1.4-fold compared to a 1.6-fold increase in mRNA encoding for type IV procollagen. The similar properties and chemical characteristics of this fibrogenic factor with a factor from fibrotic liver suggests they are the same and that a common endogenous collagen synthesis stimulator may be present in fibrosing organs, thus providing a driving force for collagen over-production.  相似文献   

11.
12.
13.
The effect of chronic cardiac lymphatic obstruction on the myocardial synthesis of collagen type I and III was investigated in a rabbit model. In the lymphatic obstruction group (n=16), plasma C-terminal propeptide type I procollagen (PICP) and N-terminal propeptide type III procollagen (PIIINP) were elevated at 7, 14 and 30 days after the operation (p<0.05). The elevated PICP and PIIINP returned to the pre-operation values 60 days after the operation. The myocardial expression of collagen type I and III mRNA were also enhanced in the lymphatic flow obstruction group. Plasma PICP, PIIINP and myocardial collagen type I and III mRNA remained unchanged in the control group (n=16). We concluded that chronic obstruction of cardiac lymph flow leads to enhanced myocardial collagen synthesis in rabbits. The enhanced collagen synthesis starts within seven days after lymphatic obstruction and subsides after 60 days.  相似文献   

14.
The effects of interferon-alpha and interferon-gamma on collagen synthesis and mRNA levels of type I and type III procollagens were studied in skin fibroblasts cultured from affected and unaffected skin sites of two patients with localized scleroderma (morphea). Both scleroderma cell lines exhibited elevated type I and type III procollagen mRNA levels to account for the increased procollagen synthesis, when compared to the unaffected controls. Interferon-gamma treatment resulted in a dose-dependent reduction in collagen synthesis and procollagen mRNA levels in scleroderma fibroblasts. A 72-h exposure to interferon-gamma reduced procollagen mRNA levels in the scleroderma fibroblast lines to the levels exhibited by the unaffected control fibroblasts. The suppressive effect of interferon-alpha on procollagen mRNA levels was somewhat weaker than that of interferon-gamma. The results suggest potential use of interferon-gamma in treatment and prevention of human fibrotic conditions.  相似文献   

15.
Pirfenidone (5-methyl-1-phenyl-2-(1H)-pyridone) is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and patients with idiopathic pulmonary fibrosis (IPF). Heat shock protein (HSP) 47, a collagen-specific molecular chaperone, is involved in the processing and/or secretion of procollagen and plays an important role in the pathogenesis of IPF. The present study evaluated the in vitro effects of pirfenidone on expression of HSP47 and collagen type I in cultured normal human lung fibroblasts (NHLF). Expression levels of HSP47 and collagen type I in NHLF stimulated by transforming growth factor (TGF)-beta1 were evaluated genetically, immunologically and immunocytochemically. Treatment with TGF-beta1 stimulated both mRNA and protein expressions of both HSP47 and collagen type I in NHLF, and pirfenidone significantly inhibited this TGF-beta1-enhanced expression in a dose-dependent manner. We concluded that the anti-fibrotic effect of pirfenidone may be mediated not only through direct inhibition of collagen type I expression but also at least partly through inhibition of HSP47 expression in lung fibroblasts, with a resultant reduction of collagen synthesis in lung fibrosis.  相似文献   

16.
Regulation of the synthesis of procollagen and other extracellular matrix components was examined in human skin fibroblasts obtained from donors of various ages, from fetal to 80 years old (in vivo aged), and in fetal fibroblasts at varying passage levels (in vitro aged). Growth rates and saturation densities of fibroblasts decreased with increasing age of the donor and after passage 20 of fetal fibroblasts. The rates of collagen and proteoglycan synthesis also decreased during both types of aging to about 10-25% of the rate in early passage fetal fibroblasts, whereas the synthesis of total noncollagenous proteins was not greatly affected. Decreased collagen synthesis in both types of aging was correlated with lower steady-state levels of mRNAs for the two subunits of type I procollagen mRNA, although their regulation was not coordinate. Type III collagen mRNA levels also declined in both types of aging. The concentration of fibronectin mRNA also decreased during in vitro aging but more rapidly than the collagen mRNAs, whereas in fibroblasts from 51-80-year-old donors, it was similar to or higher than in early passage fetal fibroblasts. This study suggests that the decreased synthesis of procollagen and proteoglycans in in vivo aged fibroblasts represents changes that are responsible for intrinsic degenerative changes that occur in human skin during aging. Furthermore, although in vitro and in vivo aging were similar in many respects, they were not equivalent, as evidenced by the differences in regulation of fibronectin expression.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号