首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently demonstrated that tetrahydrobiopterin (BH(4)) augments reflex vasoconstriction (VC) in aged skin. Although this appears to occur through its role in norepinephrine (NE) biosynthesis, the extent with which vascular mechanisms are affected are unknown. We hypothesized that localized BH(4) supplementation would not affect the VC response to exogenous NE when sympathetic nerves were blocked. Two microdialysis fibers were placed in bretylium tosylate pretreated (presynaptically blocks neurotransmitter release from sympathetic adrenergic nerve terminals; iontophoresis, 200 μA for 20 min) 3-cm(2) forearm skin of 10 young (Y) and 10 older (O) subjects for perfusion of 1) Ringer (control) and 2) 5 mM BH(4). While local skin temperature was clamped at 34°C, six concentrations of NE (10(-12), 10(-10), 10(-8), 10(-6), 10(-4), 10(-2) M) were infused at each drug-treated site. Cutaneous vascular conductance (CVC) was calculated (CVC = laser Doppler flux/mean arterial pressure) and normalized to baseline (%ΔCVC(base)). Despite prejunctional adrenergic blockade, NE-mediated VC was blunted in aged skin at each NE dose (10(-12): -12 ± 2 vs. -21 ± 2; 10(-10): -15 ± 2 vs. -27 ± 1; 10(-8): -22 ± 2 vs. -32 ± 2; 10(-6): -27 ± 2 vs. -38 ± 1; 10(-4): -52 ± 3 vs. -66 ± 5; 10(-2): -62 ± 3 vs. -75 ± 4%ΔCVC(base); P < 0.01), and this response was not affected by pretreatment with BH(4) (P > 0.05). Localized BH(4) did not affect end-organ responsiveness to exogenous NE, suggesting that the effects of BH(4) on cutaneous VC are primarily isolated to the NE biosynthetic pathway.  相似文献   

2.
Cutaneous vasoconstriction (VC), a critical thermoregulatory response to cold, is generally impaired with aging. However, the effects of aging on local cooling-induced VC and its underlying mechanisms are poorly understood. We tested whether aged skin exhibits attenuated localized cold-induced VC and whether Rho kinase-mediated cold-induced VC is augmented with age. Skin blood flow was monitored with laser Doppler flowmetry (LDF) on seven young and seven older subjects. Cutaneous vascular conductance (CVC; LDF/mean arterial pressure) was expressed as percentage change from baseline (%DeltaCVC(base)). In protocol 1, two forearm skin sites were cooled to six temperatures (31.5-19 degrees C) for 10 min each or two temperatures (29 degrees C, 24 degrees C) for 30 min each, with no age differences in the magnitude of VC. In protocol 2, three forearm skin sites were instrumented for intradermal microdialysis and cooled to 24 degrees C for 40 min. During minutes 1-5, there was no age difference in CVC responses at control sites (young: -45 +/- 6% vs. older: -46 +/- 3%, P > 0.9). Adrenoceptor antagonism (yohimbine + propranolol) abolished VC in young (to +15 +/- 13%, P < 0.05) but only partially inhibited VC in older subjects (to -23 +/- 6%, P < 0.05). Rho kinase inhibition plus adrenoceptor antagonism (yohimbine + propranolol + fasudil) abolished VC in both groups. During minutes 35-40, there was no age difference in control (young: -77 +/- 4% vs. older: -70 +/- 2%, P > 0.3) or adrenoceptor-antagonized responses (young: -61 +/- 3% vs. older: -55 +/- 2%, P > 0.3); however, Rho kinase inhibition plus adrenoceptor antagonism blocked more VC in older compared with young subjects (-19 +/- 11% vs. -35 +/- 3%, P < 0.05). Although its magnitude remains unaffected, cold-induced VC becomes less dependent on adrenergic and more dependent on Rho kinase signaling with advancing age.  相似文献   

3.
Functional constitutive nitric oxide synthase (NOS) is required for full expression of reflex cutaneous vasodilation that is attenuated in aged skin. Both the essential cofactor tetrahydrobiopterin (BH(4)) and adequate substrate concentrations are necessary for the functional synthesis of nitric oxide (NO) through NOS, both of which are reduced in aged vasculature through increased oxidant stress and upregulated arginase, respectively. We hypothesized that acute local BH(4) administration or arginase inhibition would similarly augment reflex vasodilation in aged skin during passive whole body heat stress. Four intradermal microdialysis fibers were placed in the forearm skin of 11 young (22 ± 1 yr) and 11 older (73 ± 2 yr) men and women for local infusion of 1) lactated Ringer, 2) 10 mM BH(4), 3) 5 mM (S)-(2-boronoethyl)-l-cysteine + 5 mM N(ω)-hydroxy-nor-l-arginine to inhibit arginase, and 4) 20 mM N(G)-nitro-l-arginine methyl ester (l-NAME) to inhibit NOS. Red cell flux was measured at each site by laser-Doppler flowmetry (LDF) as reflex vasodilation was induced. After a 1.0°C rise in oral temperature (T(or)), mean body temperature was clamped and 20 mM l-NAME was perfused at each site. Cutaneous vascular conductance was calculated (CVC = LDF/mean arterial pressure) and expressed as a percentage of maximum (%CVC(max); 28 mM sodium nitroprusside and local heat, 43°C). Vasodilation was attenuated at the control site of the older subjects compared with young beginning at a 0.3°C rise in T(or). BH(4) and arginase inhibition both increased vasodilation in older (BH(4): 55 ± 5%; arginase-inhibited: 47 ± 5% vs. control: 37 ± 3%, both P < 0.01) but not young subjects compared with control (BH(4): 51 ± 4%CVC(max); arginase-inhibited: 55 ± 4%CVC(max) vs. control: 56 ± 6%CVC(max), both P > 0.05) at a 1°C rise in T(or). With a 1°C rise in T(or), local BH(4) increased NO-dependent vasodilation in the older (BH(4): 31.8 ± 2.4%CVC(max) vs. control: 11.7 ± 2.0%CVC(max), P < 0.001) but not the young (BH(4): 23 ± 4%CVC(max) vs. control: 21 ± 4%CVC(max), P = 0.718) subject group. Together these data suggest that reduced BH(4) contributes to attenuated vasodilation in aged human skin and that BH(4) NOS coupling mechanisms may be a potential therapeutic target for increasing skin blood flow during hyperthermia in older humans.  相似文献   

4.
Cutaneous vasodilation is reduced in healthy older vs. young subjects; however, the mechanisms that underlie these age-related changes are unclear. Our goal in the present study was to determine the role of nitric oxide (NO) and the axon reflexes in the skin blood flow (SkBF) response to local heating with advanced age. We placed two microdialysis fibers in the forearm skin of 10 young (Y; 22 +/- 2 yr) and 10 older (O; 77 +/- 5 yr) men and women. SkBF over each site was measured by laser-Doppler flowmetry (LDF; Moor DRT4). Both sites were heated to 42 degrees C for ~60 min while 10 mM N(G)-nitro-L-arginine methyl ester (L-NAME) was infused throughout the protocol to inhibit NO synthase (NOS) in one site and 10 mM L-NAME was infused after 40 min of local heating in the second site. Data were expressed as a percentage of maximal vasodilation (%CVC(max); 28 mM nitroprusside infusion). Local heating before L-NAME infusion resulted in a significantly reduced initial peak (Y: 61 +/- 2%CVC(max) vs. O: 46 +/- 4%CVC(max)) and plateau (Y: 93 +/- 2%CVC(max) vs. O: 82 +/- 5%CVC(max)) CVC values in older subjects (P < 0.05). When NOS was inhibited after 40 min of heating, CVC declined to the same value in the young and older groups. Thus the overall contribution of NO to the plateau phase of the SkBF response to local heating was less in the older subjects. The initial peak response was significantly lower in the older subjects in both microdialysis sites (Y: 52 +/- 4%CVC(max) vs. O: 38 +/- 5%CVCmax; P < 0.05). These data suggest that age-related changes in both axon reflex-mediated and NO-mediated vasodilation contribute to attenuated cutaneous vasodilator responses in the elderly.  相似文献   

5.
Full expression of reflex cutaneous vasodilation (VD) is dependent on nitric oxide (NO) and is attenuated in older humans. NO may be decreased by an age-related increase in reactive oxygen species or a decrease in L-arginine availability via upregulated arginase. The purpose of this study was to determine the effect of acute antioxidant supplementation alone and combined with arginase inhibition on reflex VD in aged skin. Eleven young (Y; 22 +/- 1 yr) and 10 older (O; 68 +/- 1 yr) human subjects were instrumented with four intradermal microdialysis (MD) fibers. MD sites were control (Co), NO synthase inhibited (NOS-I), L-ascorbate supplemented (Asc), and Asc + arginase-inhibited (Asc + A-I). After baseline measurements, subjects underwent whole body heating to increase oral temperature (T(or)) by 0.8 degrees C. Red blood cell flux was measured by using laser-Doppler flowmetry, and cutaneous vascular conductance (CVC) was calculated (CVC = flux/mean arterial pressure) and normalized to maximal (CVC(max)). VD during heating was attenuated in O (Y: 37 +/- 3 vs. O: 28 +/- 3% CVC(max); P < 0.05). NOS-I decreased VD in both groups compared with Co (Y: 20 +/- 4; O: 15 +/- 2% CVC(max); P < 0.05 vs. Co within group). Asc and Asc + A-I increased VD beyond Co in O (Asc: 35 +/- 4% CVC(max); Asc + A-I: 41 +/- 3% CVC(max); P < 0.001) but not in Y (Asc: 36 +/- 3% CVC(max); Asc + A-I: 40 +/- 5% CVC(max); P > 0.05). Combined Asc + A-I resulted in a greater increase in VD than Asc alone in O (P = 0.001). Acute Asc supplementation increased reflex VD in aged skin. Asc combined with arginase inhibition resulted in a further increase in VD above Asc alone, effectively restoring CVC to the level of young subjects.  相似文献   

6.
Inhibition of a sympathetic stimulus (i.e., sympatholysis) during forearm exercise is reduced with age in women. This age-related alteration has not been characterized in the lower extremity vasculature of women, and the potential for blunting of the conduit artery dilatory response to a sudden increase in shear stress [flow-mediated dilation (FMD)] has not been examined in older adults of either sex. In the present study, we assessed popliteal artery diameter and velocity (Doppler ultrasound) in 16 young (23 +/- 1 yr) and 14 older (69 +/- 1 yr) women after 5 min of distal calf occlusion (FMD), 3 min of hand immersion in ice water [cold pressor test (CPT)], and 5 min of distal calf occlusion combined with hand immersion in ice water (FMD+CPT). Peak popliteal conductance after 5-min ischemia was not significantly different in young vs. older women. During the combined stimulus (FMD+CPT), the magnitude of vasoconstriction in the calf (reduction in peak popliteal artery conductance) was similar (5-8%), despite reduced resting adrenergic sensitivity to CPT [young (Y): -27.3 +/- 3.8%; older (O): -15.8 +/- 2.2%; P < 0.05] and blunted muscle sympathetic nerve activity responses to CPT (Y: 12.7 +/- 3.6 bursts/min; O: 7.8 +/- 2.5 bursts/min; P < 0.05) in older women. Popliteal FMD, normalized to the shear stimulus, was attenuated by 60-70% in older women. Peak popliteal diameter, measured during the combined stimulus (FMD+CPT), was blunted in young but not in older women (Y FMD: 5.5 +/- 0.1 mm; Y FMD+CPT: 5.4 +/- 0.1 mm; P = 0.03; O FMD: 5.8 +/- 0.2 mm; O FMD+CPT: 5.8 +/- 0.2 mm). These results confirm previous findings of diminished reactivity in the conduit arteries of older humans and provide the first evidence of reduced sympatholysis in the leg resistance vasculature of older women.  相似文献   

7.
The current study assessed sympathetic neuronal and vasomotor responses, total body oxygen consumption, and sensory thermal perception to identify thermoregulatory differences in younger and older human subjects during core cooling. Cold fluid (40 ml/kg, 4 degrees C) was given intravenously over 30 min to decrease core temperature (Tc) in eight younger (age 18-23) and eight older (age 55-71) individuals. Compared with younger subjects, the older subjects had significantly lower Tc thresholds for vasoconstriction (35.5 +/- 0.3 vs. 36.2 +/- 0.2 degrees C, P = 0.03), heat production (35.2 +/- 0.4 vs. 35.9 +/- 0.1 degrees C, P = 0.04), and plasma norepinephrine (NE) responses (35.0 vs. 36.0 degrees C, P < 0.05). Despite a lower Tc nadir during cooling, the maximum intensities of the vasoconstriction (P = 0.03) and heat production (P = 0.006) responses were less in the older compared with the younger subjects, whereas subjective thermal comfort scores were similar. Plasma NE concentrations increased fourfold in the younger but only twofold in the older subjects at maximal Tc cooling. The vasomotor response for a given change in plasma NE concentration was decreased in the older group (P = 0.01). In summary, aging is associated with 1) a decreased Tc threshold and maximum response intensity for vasoconstriction, total body oxygen consumption, and NE release, 2) decreased vasomotor responsiveness to NE, and 3) decreased subjective sensory thermal perception.  相似文献   

8.
Thermoregulatory cutaneous vasodilation is diminished in the elderly. The goal of this study was to test the hypothesis that a reduction in nitric oxide (NO)-dependent mechanisms contributes to the attenuated reflex cutaneous vasodilation in older subjects. Seven young (23 +/- 2 yr) and seven older (71 +/- 6 yr) men were instrumented with two microdialysis fibers in the forearm skin. One site served as control (Ringer infusion), and the second site was perfused with 10 mM N(G)-nitro-l-arginine methyl ester to inhibit NO synthase (NOS) throughout the protocol. Water-perfused suits were used to raise core temperature 1.0 degrees C. Red blood cell (RBC) flux was measured with laser-Doppler flowmetry over each microdialysis fiber. Cutaneous vascular conductance (CVC) was calculated as RBC flux per mean arterial pressure, with values expressed as a percentage of maximal vasodilation (infusion of 28 mM sodium nitroprusside). NOS inhibition reduced CVC from 75 +/- 6% maximal CVC (CVC(max)) to 53 +/- 3% CVC(max) in the young subjects and from 64 +/- 5% CVC(max) to 29 +/- 2% CVC(max) in the older subjects with a 1.0 degrees C rise in core temperature. Thus the relative NO-dependent portion of cutaneous active vasodilation (AVD) accounted for approximately 23% of vasodilation in the young subjects and 60% of the vasodilation in the older subjects at this level of hyperthermia (P < 0.001). In summary, NO-mediated pathways contributed more to the total vasodilatory response of the older subjects at high core temperatures. This suggests that attenuated cutaneous vasodilation with age may be due to a reduction in, or decreased vascular responsiveness to, the unknown neurotransmitter(s) mediating AVD.  相似文献   

9.
In healthy volunteers, flare responses induced by norepinephrine (NE) iontophoresis have been observed. However, as NE iontophoresis is a combined electrical and chemical stimulus axon, reflexes cannot be directly linked to pharmocological activity of NE. Different concentrations of NE, clonidine (CL), and phenylephrine (PE) (NE: 10(-10)-10(-3) M; CL and PE: 10(-8)-10(-3) M) were applied via intradermal microdialysis fibers into the skin of healthy volunteers. Simultaneously, skin blood flow was visualized by laser-Doppler imaging scans and quantified in a vasoconstriction skin area directly above the membranes to control drug effects and in expected axon reflex vasodilation areas that were 0.75 cm apart. NE, PE, and CL caused dose-dependent vasoconstriction. However, neither in the presumed axon reflex areas (quantitative analysis) nor on laser-Doppler imaging pictures (qualitative analysis) were any vasodilation observed. Even at concentrations causing maximum vasoconstriction (10(-3) M for any drug), no vasodilation was induced. Our results indicate that, in healthy human skin, exogenously supplied alpha-adrenoreceptor agonists alone do not activate nociceptors sufficiently to induce axon reflex flare.  相似文献   

10.
Cutaneous vasoconstriction (VC) is the initial thermoregulatory response to cold exposure and can be elicited through either whole body or localized skin cooling. However, the mechanisms governing local cold-induced VC are not well understood. We tested the hypothesis that Rho kinase participates in local cold-induced cutaneous VC. In seven men and women (20-27 yr of age), up to four ventral forearm skin sites were instrumented with intradermal microdialysis fibers for localized drug delivery during cooling. Skin blood flow was monitored at each site with laser-Doppler flowmetry while local skin temperature was decreased and maintained at 24 degrees C for 40 min. Cutaneous vascular conductance (CVC; laser-Doppler flowmetry/mean arterial pressure) was expressed as percent change from 34 degrees C baseline. During the first 5 min of cooling, CVC decreased at control sites (lactated Ringer solution) to -45 +/- 6% (P < 0.001), increased at adrenoceptor-antagonized sites (yohimbine + propranolol) to 15 +/- 14% (P = 0.002), and remained unchanged at both Rho kinase-inhibited (fasudil) and adrenoceptor-antagonized + Rho kinase-inhibited sites (yohimbine + propranolol + fasudil) (-9 +/- 1%, P = 0.4 and -6 +/- 2%, P = 0.4, respectively). During the last 5 min of cooling, CVC further decreased at all sites when compared with baseline values (control, -77 +/- 4%, P < 0.001; adrenoceptor antagonized, -61 +/- 3%, P < 0.001; Rho kinase inhibited, -34 +/- 7%, P < 0.001; and adrenoceptor antagonized + Rho kinase inhibited sites, -35 +/- 3%, P < 0.001). Rho kinase-inhibited and combined treatment sites were significantly attenuated when compared with both adrenoceptor-antagonized (P < 0.01) and control sites (P < 0.0001). Rho kinase mediates both early- and late-phase cold-induced VC, supporting in vitro findings and providing a putative mechanism through which both adrenergic and nonadrenergic cold-induced VC occurs in an in vivo human thermoregulatory model.  相似文献   

11.
Sex-specific influence of aging on exercising leg blood flow.   总被引:1,自引:0,他引:1  
Our previous work suggests that healthy human aging is associated with sex-specific differences in leg vascular responses during large muscle mass exercise (2-legged cycling) (Proctor DN, Parker BA. Microcirculation 13: 315-327, 2006). The present study determined whether age x sex interactions in exercising leg hemodynamics persist during small muscle mass exercise that is not limited by cardiac output. Thirty-one young (20-30 yr; 15 men/16 women) and 31 older (60-79 yr; 13 men/18 women) healthy, normally active adults performed graded single-leg knee extensions to maximal exertion. Femoral artery blood velocity and diameter (Doppler ultrasound), heart rate (ECG), and beat-to-beat arterial blood pressure (mean arterial pressure, radial artery tonometry) were measured during each 3-min work rate (4.8 and 8 W/stage for women and men, respectively). The results (means +/- SE) were as follows. Despite reduced resting leg blood flow and vascular conductance, older men exhibited relatively preserved exercising leg hemodynamic responses. Older women, by contrast, exhibited attenuated hyperemic (young: 52 +/- 3 ml.min(-1).W(-1); vs. older: 40 +/- 4 ml.min(-1).W(-1); P = 0.02) and vasodilatory responses (young: 0.56 +/- 0.06 ml.min(-1).mmHg(-1).W(-1) vs. older: 0.37 +/- 0.04 ml.min(-1).mmHg(-1) W(-1); P < 0.01) to exercise compared with young women. Relative (percentage of maximal) work rate comparisons of all groups combined also revealed attenuated vasodilator responses in older women (P < 0.01 for age x sex x work rate interaction). These sex-specific age differences were not abolished by consideration of hemoglobin, quadriceps muscle, muscle recruitment, and mechanical influences on muscle perfusion. Collectively, these findings suggest that local factors contribute to the sex-specific effects of aging on exercising leg hemodynamics in healthy adults.  相似文献   

12.
Aging attenuates the increase in muscle sympathetic nerve activity (MSNA) and elicits hypotension during otolith organ engagement in humans. The purpose of the present study was to determine the neural and cardiovascular responses to otolithic engagement during orthostatic stress in older adults. We hypothesized that age-related impairments in the vestibulosympathetic reflex would persist during orthostatic challenge in older subjects and might compromise arterial blood pressure regulation. MSNA, arterial blood pressure, and heart rate responses to head-down rotation (HDR) performed with and without lower body negative pressure (LBNP) in prone subjects were measured. Ten young (27 +/- 1 yr) and 11 older subjects (64 +/- 1 yr) were studied prospectively. HDR performed alone elicited an attenuated increase in MSNA in older subjects (Delta106 +/- 28 vs. Delta20 +/- 7% for young and older subjects). HDR performed during simultaneous orthostatic stress increased total MSNA further in young (Delta53 +/- 15%; P < 0.05) but not older subjects (Delta-5 +/- 4%). Older subjects demonstrated consistent significant hypotension during HDR performed both alone (Delta-6 +/- 2 mmHg) and during LBNP (Delta-7 +/- 2 mmHg). These data provide experimental support for the concept that age-related impairments in the vestibulosympathetic reflex persist during orthostatic challenge in older adults. Furthermore, these findings are consistent with the concept that age-related alterations in vestibular function might contribute to altered orthostatic blood pressure regulation with age in humans.  相似文献   

13.
Control of skin blood flow (SkBF) is on the efferent arm of both thermoregulatory and nonthermoregulatory reflexes. To what extent aging may affect the SkBF response when these two reflex systems interact is unknown. To determine the response of aged skin to the unloading of baroreceptors in thermoneutral, cold stress, and heat stress conditions, sequential bouts of nonhypotensive lower body negative pressure (LBNP) were applied at -10, -20, and -30 mmHg in 14 young (18-25 yr) and 14 older (63-78 yr) men. SkBF was measured by laser-Doppler velocimetry (averaged over 2 forearm sites), and data are expressed as percentage of maximal cutaneous vascular conductance (%CVC(max)). Total forearm blood flow was measured by venous occlusion plethysmography, and forearm vascular conductance (FVC) was calculated as the ratio of forearm blood flow to mean arterial pressure. In young men, all three intensities of LBNP in thermoneutrality decreased FVC significantly (P < 0.05), but FVC at -10 mmHg did not change in the older men. There were no significant LBNP effects on %CVC(max). Application of LBNP during cold stress did not significantly change %CVC(max) or FVC in either age group. During heat stress, -10 to -30 mmHg of LBNP decreased FVC significantly (P < 0.05) in both age groups, but these decreases were attenuated in the older men (P < 0.05). %CVC(max) decreased at -30 mmHg in the younger men only. These results suggest that older men have an attenuated skin vasoconstrictor response to the unloading of baroreceptors in heat stress conditions. Furthermore, the forearm vasoconstriction elicited by LBNP in older men reflects that of underlying tissue (i.e., muscle) rather than that of skin, whereas -30 mmHg LBNP also decreases SkBF in young hyperthermic men.  相似文献   

14.
Static contraction of skeletal muscle evokes increases in blood pressure and heart rate. Previous studies suggested that the dorsal horn of the spinal cord is the first synaptic site responsible for those cardiovascular responses. In this study, we examined the role of ATP-sensitive P2X receptors in the cardiovascular responses to contraction by microdialyzing the P2X receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) into the L7 level of the dorsal horn of nine anesthetized cats. Contraction was elicited by electrical stimulation of the L7 and S1 ventral roots. Blockade of P2X receptor attenuated the contraction induced-pressor response [change in mean arterial pressure (delta MAP): 16 +/- 4 mmHg after 10 mM PPADS vs. 42 +/- 8 mmHg in control; P < 0.05]. In addition, the pressor response to muscle stretch was also blunted by PPADS (delta MAP: 27 +/- 5 mmHg after PPADS vs. 49 +/- 8 mmHg in control; P < 0.05). Finally, activation of P2X receptor by microdialyzing 0.5 mM alpha,beta-methylene into the dorsal horn significantly augmented the pressor response to contraction. This effect was antagonized by prior PPADS dialysis. These data demonstrate that blockade of P2X receptors in the dorsal horn attenuates the pressor response to activation of muscle afferents and that stimulation of P2X receptors enhances the reflex response, indicating that P2X receptors play a role in mediating the muscle pressor reflex at the first synaptic site of this reflex.  相似文献   

15.
We tested the hypothesis that dexmedetomidine (Dex) has greater alpha(2)- vs. alpha(1) selectivity than clonidine and causes more alpha(2)-selective vasoconstriction in the human forearm. After local beta-adrenergic blockade with propranolol, forearm blood flow (plethysmography) responses to brachial artery administration of Dex, clonidine, and phenylephrine (alpha(1)-agonist) were determined in healthy young adults before and after alpha(2)-blockade with yohimbine (n = 10) or alpha(1)-blockade with prazosin (n = 9). Yohimbine had no effect on phenylephrine-mediated vasoconstriction but blunted Dex-mediated vasoconstriction (mean +/- SE: -41 +/- 5 vs. -11 +/- 2%; before vs. after yohimbine) more than clonidine-mediated vasoconstriction (-39 +/- 5 vs. -28 +/- 4%; before vs. after yohimbine) (P < 0.02). Prazosin blunted phenylephrine-mediated vasoconstriction (-39 +/- 4 vs. -8 +/- 2%; before vs. after prazosin) but had similar effects on both Dex- (-30 +/- 4 vs. -39 +/- 6%; before vs. after prazosin) and clonidine-mediated vasoconstriction (-29 +/- 3 vs. -41 +/- 7%; before vs. after prazosin) (P > 0.7). Both Dex and clonidine reduced deep forearm venous norepinephrine concentrations to a similar extent (-59 +/- 12 vs. -55 +/- 10 pg/ml; Dex vs. clonidine, P > 0.6); this effect was abolished by yohimbine and blunted by prazosin. These results suggest that Dex causes more alpha(2)-selective vasoconstriction in the forearm than clonidine. The similar vasoconstrictor responses to both drugs after prazosin might be explained by the presynaptic effects on norepinephrine release.  相似文献   

16.
Aged humans often exhibit an impaired defense of core temperature during cold stress. However, research documenting this response has typically used small subject samples and strong cold stimuli. The purpose of this study was to determine the responses of young and older subjects, matched for anthropometric characteristics, during mild cold stress. Thirty-six young (YS; 23 +/- 1 years, range 18-30) and 46 older (OS; 71 +/- 1 years, range 65-89) subjects underwent a slow transient cold air exposure from a thermoneutral baseline, during which esophageal (T(es)) and mean skin temperatures (T(sk)), O(2) consumption, and skin blood flow (SkBF; laser-Doppler flowmetry) were measured. Cold exposure was terminated at the onset of visible sustained shivering. Net metabolic heat production (M(net)), heat debt, predicted change in midregion temperature (DeltaT(mid)), and tissue insulation (I(t)) were calculated. Cutaneous vascular conductance (CVC) was calculated as laser-Doppler flux/mean arterial pressure and expressed as percent change from baseline (DeltaCVC(%base)). There were no baseline group differences for T(es), but OS M(net) was lower (OS: 38.0 +/- 1.1; YS: 41.9 +/- 1.1 W . m(-2), P < 0.05). T(es) was well maintained in YS but fell progressively in OS (P < 0.01 for all timepoints after 35 min). The skin vasoconstrictor response to mild cold stress was attenuated in OS (42 +/- 3 vs. 53 +/- 4 DeltaCVC(%base), P < 0.01). There were no group differences for T(sk) or I(t), while M(net) remained lower in OS (P < 0.05). The DeltaT(mid) did not account for the drop in T(es) in OS. Healthy aged humans failed to maintain T(es); however, the mechanisms underlying this response are not clear.  相似文献   

17.
We examined the effects of gender and aging on cardiac and peripheral hemodynamic responses to beta-adrenergic receptor (beta-AR) stimulation in young (male = 5.9 +/- 0.4 yr old and female = 6.5 +/- 0.7 yr old) and old (male = 19.8 +/- 0.7 yr old and female = 21.2 +/- 0.2 yr old) conscious monkeys (Macaca fascicularis), chronically instrumented for measurements of left ventricular (LV) and arterial pressures as well as cardiac output. Baseline LV pressure, the first derivative of LV pressure (LV dP/dt), cardiac index, mean arterial pressure, total peripheral resistance (TPR), and heart rate in conscious monkeys were not different among the four groups. Increases in LV dP/dt in response to 0.1 microg/kg isoproterenol (Iso) were diminished (P < 0.05) in old males (+99 +/- 11%) compared with young males (+194 +/- 18%). In addition, the inotropic responses to norepinephrine (NE) and forskolin (FSK) were significantly depressed (P < 0.05) in old males. Iso-induced reductions of TPR were less (P < 0.05) in old males (-28 +/- 2%) than in young males (-49 +/- 2%). The changes of TPR in response to NE and FSK were also significantly attenuated (P < 0.05) in old males. However, the LV dP/dt responses to BAY y 5959 (15 microg. kg-1. min-1), a Ca2+ channel promotor independent of beta-AR signaling, were not significantly different between old and young males. In contrast to results in male monkeys, LV dP/dt and TPR responses to Iso, NE, and FSK in old females were similar to those observed in young females. Thus both cardiac contractile and peripheral vascular dynamic responses to beta-AR stimulation are preserved in old female but not old male monkeys. This may explain, in part, the reduced cardiovascular risk in the older female population.  相似文献   

18.
Cardiovascular-related mortality increases in the cold winter months, particularly in older adults. Previously, we reported that determinants of myocardial O(2) demand, such as the rate-pressure product, increase more in older adults compared with young adults during cold stress. The aim of the present study was to determine if aging influences the coronary hemodynamic response to cold stress in humans. Transthoracic Doppler echocardiography was used to noninvasively measure peak coronary blood velocity in the left anterior descending artery before and during acute (20 min) whole body cold stress in 10 young adults (25 ± 1 yr) and 11 older healthy adults (65 ± 2 yr). Coronary vascular resistance (diastolic blood pressure/peak coronary blood velocity), coronary perfusion time fraction (coronary perfusion time/R-R interval), and left ventricular wall stress were calculated. We found that cooling (via a water-perfused suit) increased left ventricular wall stress, a primary determinant of myocardial O(2) consumption, in both young and older adults, although the magnitude of this increase was nearly twofold greater in older adults (change of 9.1 ± 3.5% vs. 17.6 ± 3.2%, P < 0.05, change from baseline in young and older adults and young vs. older adults). Despite the increased myocardial O(2) demand during cooling, coronary vasodilation (decreased coronary vascular resistance) occurred only in young adults (3.22 ± 0.23 to 2.85 ± 0.18 mmHg·cm(-1)·s(-1), P < 0.05) and not older adults (3.97 ± 0.24 to 3.79 ± 0.27 mmHg·cm(-1)·s(-1), P > 0.05). Consistent with a blunted coronary vascular response, absolute coronary perfusion time tended to decrease (P = 0.13) and coronary perfusion time fraction decreased (P < 0.05) during cooling in older adults but not young adults. Collectively, these data suggest that older adults demonstrate an altered coronary hemodynamic response to acute cold stress.  相似文献   

19.
Full expression of reflex cutaneous vasodilation (VD) is dependent on nitric oxide (NO) and is attenuated with essential hypertension. Decreased NO-dependent VD may be due to 1) increased oxidant stress and/or 2) decreased L-arginine availability through upregulated arginase activity, potentially leading to increased superoxide production through uncoupled NO synthase (NOS). The purpose of this study was to determine the effect of antioxidant supplementation (alone and combined with arginase inhibition) on attenuated NO-dependent reflex cutaneous VD in hypertensive subjects. Nine unmedicated hypertensive [HT; mean arterial pressure (MAP) = 112 +/- 1 mmHg] and nine age-matched normotensive (NT; MAP = 81 +/- 10 mmHg) men and women were instrumented with four intradermal microdialysis (MD) fibers: control (Ringer), NOS inhibited (NOS-I; 10 mM N(G)-nitro-L-arginine), L-ascorbate supplemented (Asc; 10 mM L-ascorbate), and Asc + arginase inhibited [Asc+A-I; 10 mM L-ascorbate + 5 mM (S)-(2-boronoethyl)-L-cysteine-HCl + 5 mM N(omega)-hydroxy-nor-L-arginine]. Oral temperature was increased by 0.8 degrees C via a water-perfused suit. N(G)-nitro-L-arginine was then ultimately perfused through all MD sites to quantify the change in VD due to NO. Red blood cell flux was measured by laser-Doppler flowmetry over each skin MD site, and cutaneous vascular conductance (CVC) was calculated (CVC = flux/MAP) and normalized to maximal CVC (%CVC(max); 28 mM sodium nitroprusside + local heating to 43 degrees C). During the plateau in skin blood flow (Delta T(or) = 0.8 degrees C), cutaneous VD was attenuated in HT skin (NT: 42 +/- 4, HT: 35 +/- 3 %CVC(max); P < 0.05). Asc and Asc+A-I augmented cutaneous VD in HT (Asc: 57 +/- 5, Asc+A-I: 53 +/- 6 %CVC(max); P < 0.05 vs. control) but not in NT. %CVC(max) after NOS-I in the Asc- and Asc+A-I-treated sites was increased in HT (Asc: 41 +/- 4, Asc+A-I: 40 +/- 4, control: 29 +/- 4; P < 0.05). Compared with the control site, the change in %CVC(max) within each site after NOS-I was greater in HT (Asc: -19 +/- 4, Asc+A-I: -17 +/- 4, control: -9 +/- 2; P < 0.05) than in NT. Antioxidant supplementation alone or combined with arginase inhibition augments attenuated reflex cutaneous VD in hypertensive skin through NO- and non-NO-dependent mechanisms.  相似文献   

20.
It is presently unknown whether there are sex differences in the magnitude of blood pressure (BP) responses to baroreceptor perturbation or if the relative contribution of cardiac output (CO) and total vascular conductance (TVC) to baroreflex-mediated changes in BP differs in young women and men. Since sympathetic vasoconstrictor tone is attenuated in women, we hypothesized that carotid baroreflex-mediated BP responses would be attenuated in women by virtue of a blunted vascular response (i.e., an attenuated TVC response). BP, heart rate (HR), and stroke volume were continuously recorded during the application of 5-s pulses of neck pressure (NP; carotid hypotension) and neck suction (NS; carotid hypertension) ranging from +40 to -80 Torr in women (n = 20, 21 ± 0.5 yr) and men (n = 20, 21 ± 0.4 yr). CO and TVC were calculated on a beat-to-beat basis. Women demonstrated greater depressor responses to NS (e.g., -60 Torr, -17 ± 1%baseline in women vs. -11 ± 1%baseline in men, P < 0.05), which were driven by augmented decreases in HR that, in turn, contributed to larger reductions in CO (-60 Torr, -15 ± 2%baseline in women vs. -6 ± 2%baseline in men, P < 0.05). In contrast, pressor responses to NP were similar in women and men (e.g., +40 Torr, +14 ± 2%baseline in women vs. +10 ± 1%baseline in men, P > 0.05), with TVC being the primary mediating factor in both groups. Our findings indicate that sex differences in the baroreflex control of BP are evident during carotid hypertension but not carotid hypotension. Furthermore, in contrast to our hypothesis, young women exhibited greater BP responses to carotid hypertension by virtue of a greater cardiac responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号