首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two hundred and sixty-five unfertilized human metaphase II (MII) oocytes from an in vitro fertilization program were studied cytogenetically using our chromosomal technique, a gradual fixation-air drying method. Of the 265 oocytes, 185 (70%) were successfully karyotyped. There were 21 aneuploids (11.4%) consisting of 8 hyperhaploids (4.3%), 11 hypohaploids (5.9%) and 2 complex cases (1.1%). There were also 9 structural anomalies (4.9%) and 18 diploids (9.7%). In aneuploidy, the loss or gain of dyads (so-called nondisjunction) occurred more frequently than the loss or gain of monads (so-called predivision). The frequency of abnormally behaved chromosomes (segregation errors) due to nondisjunction, anaphase lag and predivision was studied among the seven chromosomal groups (A-G) and compared with the frequency expected from an equal probability of segregation errors in each of the 23 chromosomes. The observed frequency was somewhat higher than the expected frequency in groups E and G but the difference was not statistically significant in either group. These results were discussed in relation to previous studies on human M II oocyte chromosomes.  相似文献   

2.
Summary In PHA-cultured lymphocytes, about 8% of metaphases from 32 women were aneuploid compared to 4% of metaphases from 35 men. A significant part of this aneuploidy was characterized by sex chromosome involvement: in women, the loss or gain of X chromosomes; in men, the gain of X chromosomes and the loss or gain of Y chromosomes. The incidence of this aneuploidy was positively age-related for both sexes. Premature division of the X-chromosome centromere was closely associated with X-chromosome aneuploidy in women and men, and appeared to be the mechanism of nondisjunction causing this aneuploidy. Premature centromere division (PCD) indicated a dysfunction of the X-chromosome centromere with aging, and this dysfunction was the basic cause of age-related aneuploidy. A similar mechanism of nondisjunction may operate for the Y chromosome of men, but could not be clearly demonstrated because of the low incidence of Y-chromosome aneuploidy.The balance of the aneuploidy was characterized by chromosome loss and the involvement of all chromosome groups. It was consistent with chromosome loss from metaphase cells damaged during preparation for cytogenetic examination.  相似文献   

3.
The relationship between advanced maternal age and increased risk of trisomic offspring is well known clinically but not clearly understood at the level of the oocyte. A total of 383 oocytes that failed fertilization from 107 patients undergoing in vitro fertilization were analyzed by FISH using X-, 18-, and 13/21-chromosome probes simultaneously. The corresponding polar bodies were also analyzed in 188 of these oocytes. The chromosomes in the oocyte and first polar body complement each other and provide an internal control to differentiate between aneuploidy and technical errors. Two mechanisms of nondisjunction were determined. First, nondisjunction of bivalent chromosomes resulting in two univalents going to the same pole and, second, nondisjunction by premature chromatid separation (predivision) of univalent chromosomes producing either a balanced (2 + 2) or unbalanced (3 + 1) distribution of chromatids into the first polar body and M-II oocytes. Balanced predivision of chromatids, previously proposed as a major mechanism of aneuploidy, was found to increase significantly with time in culture (P < .005), which suggests that this phenomenon should be interpreted carefully. Unbalanced predivision and classical nondisjunction were unaffected by oocyte aging. In comparing oocytes from women <35 years of age with oocytes from women > or = 40 years of age, a significant increase (P < .001) in nondisjunction of full dyads was found in the oocytes with analyzable polar bodies and no FISH errors. Premature predivision of chromatids was also found to cause nondisjunction, but it did not increase with maternal age.  相似文献   

4.
The mechanisms of aneuploidy induction in human oogenesis mainly involve nondisjunction arising during the first and second meiotic divisions. Nondisjunction equally affects both whole chromosomes and chromatids, in the latter case it is facilitated by "predivision" or precocious centromere division. Karyotyping and CGH studies show an excess of hypohaploidy, which is confirmed in studies of preimplantation embryos, providing evidence in favour of anaphase lag as a mechanism. Preferential involvement of the smaller autosomes has been clearly shown but the largest chromosomes are also abnormal in many cases. Overall, the rate of chromosomal imbalance in oocytes from women aged between 30 and 35 has been estimated at 11% from recent karyotyping data but accruing CGH results suggest that the true figure should be considerably higher. Clear evidence has been obtained in favour of germinal or gonadal mosaicism as a predisposing factor. Constitutional aneuploidy in embryos is most frequent for chromosomes 22, 16, 21 and 15; least frequently involved are chromosomes 14, X and Y, and 6. However, embryos of women under 37 are far more likely to be affected by mosaic aneuploidy, which is present in over 50% of 3-day-old embryos. There are two main types, diploid/aneuploid and chaotic mosaics. Chaotic mosaics arise independently of maternal age and may be related to centrosome anomalies and hence of male origin. Aneuploid mosaics most commonly arise by chromosome loss, followed by chromosome gain and least frequently by mitotic nondisjunction. All may be related to maternal age as well as to lack of specific gene products in the embryo. Partial aneuploidy as a result of chromosome breakage affects a minimum of 10% of embryos.  相似文献   

5.
A J Katz 《Mutation research》1979,62(3):477-484
One of the simpler methods available for detecting the induction of aneuploidy in Drosophila involves the exposure to a suspected mutagen of females homozygous for a readily visible sex-linked recessive mutant allele. The treated females are mated to wild-type males, and the F1 flies are scored for exceptional progeny (mutant ♀♀ and wild-type ♂♂). The exceptional progeny result from nondisjunction and/or chromosome loss of the X-chromosomes during oogenesis. A mathematical model is presented that describes the “fate” of primary oocytes and which allows one to derive separate estimates of the rates of nondisjunction and chromosome loss during oogenesis. Chromosome loss in this model is defined as the production of nullo-X eggs by any means other than nondisjunction. The model allows for differential viabilities among F1 genotypes and also allows for the numbers of functional X-bearing and Y-bearing sperm from the male parents to differ from a 1:1 ratio. Statistical procedures are presented that enable one to compare experimental and control groups for rates of nondisjunction and chromosome loss. Interestingly, the spontaneous rate of nondisjunction of X-chromosomes during oogenesis is found to be several times that of chromosome loss.  相似文献   

6.
The cytogenetic investigation of human oocytes was initiated in the Sixties, and for the last four decades, this field of research has never stopped progressing as new technologies appear. Numerous karyotyping studies and molecular cytogenetic studies have been reported to date, providing a large body of data on the incidence and the distribution of chromosomal abnormalities in human female gametes, but also displaying a great variability in results, which may be essentially attributable to the technical limitations of these in situ methods when applied to human oocytes. Essentially, the most relevant analyses have led to the estimate that 15-20% of human oocytes display chromosome abnormalities, and they have emphasized the implication of both whole chromosome nondisjunction and chromatid separation in the occurrence of aneuploidy in human oocytes. The effect of advanced maternal age on the incidence of aneuploidies has also been investigated in human oocytes. Most previous studies have failed to confirm any relationship between maternal age and aneuploidy frequency in human oocytes, whereas the more recent reports based on large samples of oocytes or polar bodies have provided evidence for a direct correlation between increased aneuploidy frequency and advanced maternal age, and have clarified the contribution of the various types of malsegregation in the maternal age-dependent aneuploidies.  相似文献   

7.
Methods are described for the attachment of isolated spermatocytes to glass slides and the subsequent hypotonic swelling and gradual fixation of the metaphase I and metaphase II cells. The methods minimize cell loss and cell disruption and meiotic metaphase chromosomes become spread within residual cytoplasm thus reducing artefactual chromosome loss. Metaphase II complements from mouse, rat and frog spermatocytes prepared by these procedures had relatively low frequencies of hypoploidy (0.5-1.6%). Bivalent loss was not detected in 916 metaphase I complements. Injection of 0.1 mg/kg demecolcine into mice increased the incidence of metaphase II hypoploidy 8-fold. The hypoploid and hyperploid frequencies here increased equally. The results suggest that the methods described may be useful for the analysis of mechanisms of meiotic aneuploidy including aneuploidy resulting from chromosome loss during meiosis I.  相似文献   

8.
One thousand human sperm and hamster egg haploid karyotypes were analyzed at the pronuclear stage after in vitro penetration. The frequency of abnormalities in human sperm was 8.5%, with 5.2% aneuploidy and 3.3% structural abnormalities. The hamster egg complements had an abnormality rate of 3.8%, with 3.3% aneuploidy and 0.5% structural abnormalities. In both human and hamster complements, chromosome abnormalities were observed in all chromosome groups, demonstrating that all chromosomes are susceptible to nondisjunction, not just acrocentric or small chromosomes. There is an intriguing difference between the frequency of hyperhaploid and hypohaploid complements in human sperm and hamster eggs. In the human complements, 2.4% were hyperhaploid and 2.7% hypohaploid. This is very close to the theoretical 1 to 1 ratio expected from nondisjunction. The hamster egg complements had more hypohaploid (2.2%) than hyperhaploid (0.9%) complements, despite identical treatment. Higher rates of hypohaploidy are generally ascribed to artificial loss of chromosomes, but may in fact reflect a predisposition of oocytes to anaphase lag during meiosis. The frequency of abnormalities (both numerical and structural) is higher in human complements than in hamster. This may reflect an innate propensity for meiotic chromosome abnormalities in humans or may result from greater exposure of humans to mutagenic agents.  相似文献   

9.
The Drosophila ZESTE system was used to monitor the induction of sex chromosome aneuploidy following inhalation exposure of adult females to four nitriles: acetonitrile, propionitrile, acrylonitrile and fumaronitrile. Acetonitrile and propionitrile were highly effective aneuploidogens, inducing both chromosome loss and chromosome gain following brief exposures to low concentrations of these chemicals, and these nitriles also induced rapid paralysis. Acrylonitrile-induced chromosome loss only but did not induce paralysis. Fumaronitrile, in contrast with the results reported in yeast, was ineffective in inducing chromosome loss or gain. Virtually all exceptional offspring induced by acetonitrile and propionitrile were recovered in the first sampled eggs, corresponding to treated mature oocytes. Additionally, the time interval between treatment and sampling was shown to be important, suggesting rapid loss or detoxification of the nitriles. Genetic analysis demonstrated that most aneuploids resulted from induced segregation errors during the first division of meiosis. Cold treatments were found to be ineffective in enhancing the effects of acetonitrile, suggesting important differences between the Drosophila and yeast aneuploidy detection systems. Possible mechanisms by which nitriles may disrupt chromosome segregation in Drosophila oocytes are considered.  相似文献   

10.
A short-term assay utilizing a human/mouse monochromosomal hybrid cell line R3-5, to detect chemically induced aneuploidy in mammalian cells is described. A single human chromosome transferred into mouse cells was used as a cytogenetic marker to quantitate abnormal chromosome segregation following chemical treatment. The human chromosome present in the mouse cells can be readily identified by differential staining procedures. The frequency of cells containing 0 or 2 human chromosomes in the progeny of chemically treated monochromosomal hybrid cells provided a direct measure of aneuploidy. We tested the sensitivity of the proposed system with 3 model chemicals (colcemid, cyclophosphamide and benomyl) known to induce numerical or structural changes in chromosomes. The frequency of an abnormal segregation of the human chromosome was found to be dose dependent and consistently higher than controls. This system has the capability to detect gain as well as loss of a chromosome resulting from nondisjunction or other mechanisms leading to aneuploidy.  相似文献   

11.
Oocytes cryopreservation as an important part of assisted reproductive technologies, which should ensure after warming not only intact oocyte morphological characteristics, but also their genetic apparatus stability. However, the meiotic spindle is very sensitive to the temperature fluctuations that can lead to unequal chromosome segregation during meiosis and as a consequence can cause embryo aneuploidy after oocyte fertilization. The aim of the study was to estimate the oocytes cryopreservation impact on human embryo chromosome aneuploidy. It has been shown that fertilization rate of the cryopreserved oocytes did not differ from fresh ones (83.1% vs 84% respectively). The number of blastocysts obtained from cryopreserved oocytes was less than that obtained from fresh oocytes, however, their morphological characteristics were better if compared the fresh oocytes. Our results showed different cryopreservation impact on aneuploidy rates of certain chromosomes in embryos obtained from cryopreserved oocytes. They had an increased aneuploidy of chromosome 13 and a decreased nondisjunction of chromosome 18 and sex chromosomes.  相似文献   

12.
The effect of maternal age on the incidence of chromosomal abnormalities was investigated on a large sample of 3,042 in vitro unfertilized human oocytes II obtained from 792 women aged 19-46 years and participating in an in vitro fertilization program for various indications. The chromosomal analysis combined a gradual fixation of oocytes and an adapted R-banding technique. A total of 1,397 interpretable karyotypes were obtained. Various types of numerical aberration were observed, involving conventional chromosome nondisjunction (3.5%), single-chromatid nondisjunction (5.9%), complex (0.8%) or extreme aneuploidy (0.5%), diploidy (5.4%), and set of single chromatids (3.8%). No significant difference was found in the mean age of women according to the various types of chromosomal abnormalities. A positive relationship was found between maternal age and the global rate of aneuploidy, in agreement with the findings of epidemiological studies. The incidence of both whole-chromosome nondisjunction and precocious chromatid separation were correlated to maternal aging but the most significant correlation was found between maternal aging and single-chromatid nondisjunction. The rate of diploidy was also correlated to a slight extent to maternal aging, whereas no correlation was found between maternal age and the rate of single-chromatid sets. These data reveal that single-chromatid malsegregation is an essential factor in the age-dependent occurrence of nondisjunction in human oocytes. Disturbance in sister-chromatid cohesion might be a causal mechanism predisposing to premature chromatid separation and subsequently to nondisjunction in female meiosis.  相似文献   

13.
To detect age-related alterations in the formation and function of the spindle apparatus, we examined in vitro maturing oocytes obtained from young (2-4 mo) and aged (greater than 9 mo) diestrous CBA/Ca mice. Observation of cells processed for antitubulin immunofluorescence revealed that oocytes from aged females progress faster through first maturation division than those from young animals. They are also more prone to nondisjunction, as shown by a significantly higher level of aneuploidy in C-banded cells arrested at metaphase II. The ability of oocytes to recover from treatment with a microtubule inhibitor, nocodazole, and the effect of the drug on spindle integrity and chromosome segregation were also studied. In both age groups, treatment of metaphase I oocytes with 10 microM nocodazole caused rapid and complete microtubule depolymerization and chromosome scattering. Upon recovery, oocytes from both age groups were able to reestablish a spindle apparatus, proceed through anaphase, and extrude a first polar body. However, nocodazole treatment led to a dramatic increase of aneuploidy. Unexpectedly, the relative rise in hyperploids was greater in oocytes from young mice than in those from aged mice, so that the absolute percentage of hyperploid metaphase II cells was similar in both age groups after drug treatment. Concomitantly, nocodazole exposure abolished or, at least, diminished intrinsic differences in the cell cycle and anaphase trigger present in the controls (e.g., the earlier onset of chromosome separation in oocytes from aged females). It shortened the period available for spindle formation before chromosome segregation in all oocytes. Therefore, our study implies that temporal differences in the progression of oocytes through maturation, in particular, the shortening of the time available for alignment of bivalents before chromosome separation occurs in oocytes of old females, are mainly responsible for age-related rises in aneuploidy. There is no indication that (1) the spindle apparatus of oocytes from aged mammals is more labile or susceptible to disturbances than the spindle apparatus of oocytes from young individuals or that (2) an increase in the number of univalents makes oocytes from aged mammals particularly prone to nondisjunction.  相似文献   

14.
Female mice of two age groups, 3--4 and 11--14 months old, homozygous for the T(1;13)70H reciprocal mouse translocation were used for cytological observations of bivalents (in primary oocytes) and metaphase II chromosomes (in secondary oocytes). Special attention was given to the behavior of the long (131) and short (113) marker chromosomes. In primary oocytes, univalents were considered "true" or "opposite". The aged females showed an eight-folded increase in "true" univalent frequency for chromosomes 113 over the young ones. A nine-fold rise for nondisjunction with regard to this chromosome was observed. For the other chromosomes, these factors were 2 and 1.7, respectively. The absolute levels of nondisjunction remained low at old age (1.42% for chromosome 113, 1.22% for all other chromosomes). The long marker bivalent 131 was used for chiasma counts. No change in chiasma number with age was observed. It is argued that poorer physiological conditions within the maturing oocytes of older females are the major cause for both the increasing frequencies of "true" and "opposite" univalents and the increased incidence for nondisjunction.  相似文献   

15.
To correlate the chromosomal constitution of meiotic cells with possible disturbances in spindle function and the etiology of nondisjunction, we examined the spindle apparatus and chromosome behavior in maturing oocytes and analyzed the chromosomal constitution of metaphase II-arrested oocytes of CD/Cremona mice, which are heterozygous for a large number of Robertsonian translocation chromosomes (18 heterobrachial metacentrics in addition to two acrocentric chromosomes 19 and two X chromosomes). Spreading of oocytes during prometaphase 1 revealed that nearly all oocytes of the heterozygotes contained one large ring multivalent, apart from the bivalents of the two acrocentric chromosomes 19 and the X chromosomes, indicating that proper pairing and crossing-over between the homologous chromosome arms of all heterobrachial chromosomes took place during prophase. A large proportion of in vitro-matured oocytes arrested in metaphase II exhibited numerical chromosome aberrations (26.5% hyperploids, 40.8% hypoploids, and 6.1% diploids). In addition, some of the oocytes with euploid chromosome numbers (26.5% of the total examined) appeared to be nullisomic for one chromosome and disomic for another chromosome, so that aneuploidy levels may even be higher than expected on the basis of chromosome counts alone. Although oocytes of the complex heterozygous mice seemed able initially to form a bipolar spindle during first prometaphase, metaphase I spindles were frequently asymmetrical. Chromosomes in the multivalent did not align properly at the equator, centromeres of neighboring chromosomes in the multivalent remained maloriented, and pronounced lagging of chromosomes was observed at telophase I in oocytes obtained from the Robertsonian translocation heterozygotes. Therefore, disturbance in spindle structure and chromosome behavior appear to correlate with the chromosomal constitution in these oocytes and, ultimately, with failures in proper chromosome separation. In particular, reorientation appears to be a rare event, and malorientation of chromosomes may remain uncorrected throughout prometaphase, as we could not find many typical metaphase I stages in heterozygotes. This, in turn, could be the basis for malsegregation at anaphase and may ultimately induce a high rate of nondisjunction and aneuploidy in the oocytes of CD/Cremona mice, leading to total sterility in heterozygous females.  相似文献   

16.
The human sperm/hamster egg fusion technique has been used to analyse 6,821 human sperm chromosome complements from 98 men to determine if all chromosomes are equally likely to be involved in aneuploid events or if some chromosomes are particularly susceptible to nondisjunction. The frequency of hypohaploidy and hyperhaploidy was compared among different chromosome groups and individual chromosomes. In general, hypohaploid sperm complements were more frequent than hyperhaploid complements. The distribution of chromosome loss in the hypohaploid complements indicated that significantly fewer of the large chromosomes and significantly more of the small chromosomes were lost, suggesting that technical loss predominantly affects small chromosomes. Among the autosomes, the observed frequency of hyperhaploid sperm equalled the expected frequency (assuming an equal frequency of nondisjunction for all chromosomes) for all chromosome groups. Among individual autosomes, only chromosome 9 showed an increased frequency of hyperhaploidy. The sex chromosomes also showed a significant increase in the frequency of hyperhaploidy. These results are consistent with studies of spontaneous abortions and liveborns demonstrating that aneuploidy for the sex chromosomes is caused by paternal meiotic error more commonly than aneuploidy for the autosomes.  相似文献   

17.
The translocation X; Y test is a selective system in Drosophila melanogaster designed to detect and distinguish among sex chromosome nondisjunction, chromosome breakage, and X-Y interchange. In the test, only exceptional progeny survive. This enables the investigator to score thousands of progeny with relative ease. The distribution of spontaneous events occurring in individual TX; Y males are analyzed in this paper. Evidence is obtained suggesting that the clusters of two products arising from a single nondisjunction can significantly affect the distribution of recovered chromosome gain or chromosome loss events. Non-parametric statistical methods are therefore recommended for the analysis of TX; Y data. In addition, use of the TX; Y test following exposures of pre-adult males to X-rays, heat shock, cold shock, colchicine, dimethyl sulfoxide (DMSO), and trifluralin are presented. Significant increases in nondisjunction (both gain and loss) were obtained following exposures to heat shock, cold shock, DMSO and trifluralin. Significant increases in chromosome breakage and X-Y interchange were obtained after exposures to X-rays and heat shock. These results indicate that the TX; Y test is an efficient method for detecting aneuploidy. Further work is needed, however, to fully validate this system for the routine screening of aneuploidy-inducing agents.  相似文献   

18.
Summary The effect of varying X-ray doses (0.05–0.80 Gy) on preovulatory mouse oocytes was studied by measuring nondisjunction during the first meiotic division, as well as structural chromosome anomalies in ovulated oocytes at metaphase stage II. The incidence of nondisjunction (0.1% hyperploid oocytes) found in oocytes from nonirradiated NMRI-Han female mice was in accordance with the results previously obtained with the same strain. Significantly (P<0.05) more hyperploid oocytes (0.9%) were ovulated following irradiation with 0.8 Gy. There was no statistically significant increase of nondisjunction after low doses. Structural chromosome anomalies occurred, however, even after an irradiation dose as low as 0.05 Gy. The dose response for structural chromosome anomalies is altogether different from that of radiation-induced hyperpoidy. We consider that irradiation of mature oocytes might well be less hazardous with regard to its potency for increasing nondisjunction during the first meiotic division when compared with the effect of chemical mutagens.  相似文献   

19.
The study of aneuploidy in human oocytes, discarded from IVF cycles, has provided a better understanding of the incidence of aneuploidy of female origin and the responsible mechanisms. Comparative genomic hybridization (CGH) is an established technique that allows for the detection of aneuploidy in all chromosomes avoiding artifactual chromosome losses. In this review, results obtained using CGH in single cells (1PB and/or MII oocytes) are included. The results of oocyte aneuploidy rates obtained by CGH from discarded oocytes of IVF patients and of oocyte donors are summarized. Moreover, the mechanisms involved in the aneuploid events, e.g. whether alterations occurred due to first meiotic errors or germ-line mitotic errors are also discussed. Finally, the incidence of aneuploid oocyte production due to first meiotic errors and germ-line mitotic errors observed in oocytes coming from IVF patients and IVF oocyte donors was assessed.  相似文献   

20.
It has been known for more than half a century that the risk of conceiving a child with trisomy increases with advanced maternal age. However, the origin of the high susceptibility to nondisjunction of whole chromosomes and precocious separation of sister chromatids, leading to aneuploidy in aged oocytes and embryos derived from them, cannot be traced back to a single disturbance and mechanism. Instead, analysis of recombination patterns of meiotic chromosomes of spread oocytes from embryonal ovary, and of origins and exchange patterns of extra chromosomes in trisomies, as well as morphological and molecular studies of oocytes and somatic cells from young and aged females, show chromosome-specific risk patterns and cellular aberrations related to the chronological age of the female. In addition, analysis of the function of meiotic- and cell-cycle-regulating genes in oogenesis, and the study of the spindle and chromosomal status of maturing oocytes, suggest that several events contribute synergistically to errors in chromosome segregation in aged oocytes in a chromosome-specific fashion. For instance, loss of cohesion may differentially predispose chromosomes with distal or pericentromeric chiasmata to nondisjunction. Studies on expression in young and aged oocytes from human or model organisms, like the mouse, indicate that the presence and functionality/activity of gene products involved in cell-cycle regulation, spindle formation and organelle integrity may be altered in aged oocytes, thus contributing to a high risk of error in chromosome segregation in meiosis I and II. Genes that are often altered in aged mouse oocytes include MCAK (mitotic-centromere-associated protein), a microtubule depolymerase, and AURKB (Aurora kinase B), a protein of the chromosomal passenger complex that has many targets and can also phosphorylate and regulate MCAK localization and activity. Therefore we explored the role of MCAK in maturing mouse oocytes by immunofluorescence, overexpression of a MCAK-EGFP (enhanced green fluorescent protein) fusion protein, knockdown of MCAK by RNAi (RNA interference) and inhibition of AURKB. The observations suggest that MCAK is involved in spindle regulation, chromosome congression and cell-cycle control, and that reductions in mRNA and protein in a context of permissive SAC (spindle assembly checkpoint) predispose to aneuploidy. Failure to recruit MCAK to centromeres and low expression patterns, as well as disturbances in regulation of enzyme localization and activity, e.g. due to alterations in activity of AURKB, may therefore contribute to maternal age-related rises in aneuploidy in mammalian oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号