首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a bisubstituted caspase-3 target sequence: aspartate-glutamate-valine-aspartate, (z-DEVD)2 peptide derivative of the fluorophore, cresyl violet, we have obtained a cell permeant, fluorogenic, caspase substrate capable of detecting the site-specific presence of functionally active, caspase-3 and caspase-7 up-regulation within intact apoptotic cells. Addition of this substrate to induced and noninduced cell culture populations allows for the rapid site-specific detection of caspase up-regulation without the requirement for a wash step. We demonstrate here the use of (z-DEVD)2-cresyl violet substrate for the detection of apoptosis induction in Jurkat, THP-1, and MCF-7 cells using fluorescence microscopy and 96-well fluorescence plate reader analysis. Intracellular up-regulated DEVDase activity, which was clearly visible by fluorescence microscopy and 96-well fluorescence plate reader measurements, showed greater than 6-fold increases in fluorescence output in induced versus noninduced Jurkat cell samples. A simple fluorogenic substrate conversion method is demonstrated here for detecting apoptosis induction within intact living cells.  相似文献   

2.
Our objective was to create a novel fluorogenic substrate for efficient in vitro kinetic assays on caspase-3. We designed a TAMRA (5′-tetramethylrhodamine-5(6)-carboxamide)- and Cy5 (cyanine 5)-labeled probe that allowed us to evaluate the caspase-3 activity via the changes in fluorescence intensity and wavelength. The prepared probe was found to be an efficient and selective substrate of caspase-3, with Vmax of 41.4 ± 3.3 nM/min and KM of 1.60 ± 0.23 μM. The strategy used in the design of this fluorogenic substrate can be applied in future endeavors to development of substrates for caspase-3 inhibitor screening assays or for real-time detection of apoptosis in living cells.  相似文献   

3.
Apoptosis is an important mechanism for regulating the numbers of monocytes and macrophages. Caspases (cysteine-aspartate-specific proteases) are key molecules in apoptosis and require proteolytic removal of prodomains for activity. Caspase-1 and caspase-3 have both been connected to apoptosis in other model systems. The present study attempted to delineate what role these caspases play in spontaneous monocyte apoptosis. In serum-free conditions, monocytes showed a commitment to apoptosis as early as 4 h in culture, as evidenced by caspase-3-like activity. Apoptosis, as defined by oligonucleosomal DNA fragmentation, was prevented by a generalized caspase inhibitor, z-VAD-FMK, and the more specific caspase inhibitor, z-DEVD-FMK. The caspase activity was specifically attributable to caspase-3 by the identification of cleavage of procaspase-3 to active forms by immunoblots and by cleavage of the fluorogenic substrate DEVD-AFC. In contrast, a caspase-1 family inhibitor, YVAD-CMK, did not protect monocytes from apoptosis, and the fluorogenic substrate YVAD-AFC failed to show an increase in activity in apoptotic monocytes. When cultured with LPS (1 microgram/ml), monocyte apoptosis was prevented, as was the activation of caspase-3. Unexpectedly, LPS did not change baseline caspase-1 activity. These findings link spontaneous monocyte apoptosis to the proteolytic activation of caspase-3.  相似文献   

4.
(Z-Asp-Glu-Val-Asp)-Rhodamine 110 [(Z-DEVD)2-Rh 110] was prepared and characterized as a sensitive fluorogenic substrate for the determination of caspase-3 activity.  相似文献   

5.
6.
In this study, we developed a chimeric caspase-3 substrate (GST:DEVD:EGFP) comprised of glutathione-S transferase (GST) and enhanced green fluorescent protein (EGFP) with a specialized linker peptide harboring the caspase-3 cleavage sequence, DEVD. Using this reporter, we assessed the proteolytic cleavage of the artificial caspase-3 substrate for caspase-3. The common feature of this approach is that the presence of the DEVD sequence between GST and EGFP allows for caspase-3-dependent cleavage after the Asp (D) residue, resulting in the elimination of EGFP from the GST:DEVD:EGFP reporter. To the best of our knowledge, this study reports the first application employing a chimeric protein substrate, with the similar accuracy level compared to the conventional methods such as fluorometric assays. As a result, using this GST:DEVD:EGFP reporter, caspase-3 activation based on proteolytic properties could be monitored via a variety of bioanalytical techniques such as immunoblot analysis, glutathione-agarose bead assay, and on-chip visualization, providing both technical and economical advantages over the extensively utilized fluorogenic peptide assay. Our results convincingly showed that this versatile reporter (GST:DEVD:EGFP) constitutes a useful system for the monitoring of caspase-3 activation, potentially enabling the monitoring of the proteolytic activities of different intra-cellular proteases via the substitution of the cleavage sequence within the same schematic construct.  相似文献   

7.
Synthesis and properties of a new fluorescent/fluorogenic substrate Ac-DEVD-AMAC for caspase-3 are reported. The substrate is obtained by conventional Fmoc-based solid phase peptide synthesis and its properties are investigated with regard to fluorescence, sensitivity, applicability and kinetic constants. A non-traditional approach to assay the proteases activity using 2-aminoacridone labeled peptides is proposed. This approach utilizes the decrease of fluorescence intensity of a sample as a measure for the enzyme activity.  相似文献   

8.
If not fertilized, synchronous apoptosis is induced in starfish eggs at approximately 11h after stimulation with the hormone, 1-methyladenine. In this study, a membrane-impermeant substrate of caspase-3, acetyl-Asp-Glu-Val-Asp-coumarylamido-4-methanesulfonic acid (Ac-DEVD-CAMS), was synthesized and microinjected into a starfish egg. Caspase-3 activity in unfertilized egg was detected approximately 30min before blebbing by quantifying the accumulation rate of a membrane-impermeant, fluorogenic product, 7-aminocoumarin-4-methanesulfonic acid (ACMS), using a photomultiplier mounted on a fluorescence microscope. When active recombinant human caspase-3 was microinjected into an egg at 3h after 1-methyladenine treatment, the injected caspase-3 activity decreased and disappeared within 2h. This decrease is probably due to proteasome-dependent degradation of the enzyme, since the injected caspase-3 was degraded and a proteasome inhibitor blocked its degradation. In contrast, in aged eggs at approximately 10h after 1-methyladenine treatment, no degradation of the injected caspase-3 was observed, suggesting that endogenous caspase-3 may stabilize at this point, therefore, inducing apoptosis.  相似文献   

9.
Myocardial infarction (MI) has dramatic mid- and long-term consequences at the physiological and behavioral levels, but the mechanisms involved are still unclear. Our laboratory has developed a rat model of post-MI syndrome that displays impaired cardiac functions, neuronal loss in the limbic system, cognitive deficits and behavioral signs of depression. At the neuronal level, caspase-3 activation mediates post-MI apoptosis in different limbic regions, such as the amygdala – peaking at 3 days post-MI. Cognitive and behavioral impairments appear 2-3 weeks post-MI and these correlate statistically with measures of caspase-3 activity. The protocol described here is used to induce MI, collect amygdala tissue and measure caspase-3 activity using spectrofluorometry. To induce MI, the descending coronary artery is occluded for 40 min. The protocol for evaluation of caspase-3 activation starts 3 days after MI: the rats are sacrificed and the amygdala isolated rapidly from the brain. Samples are quickly frozen in liquid nitrogen and kept at -80 °C until actual analysis. The technique performed to assess caspase-3 activation is based on cleavage of a substrate (DEVD-AMC) by caspase-3, which releases a fluorogenic compound that can be measured by spectrofluorometry. The methodology is quantitative and reproducible but the equipment required is expensive and the procedure for quantifying the samples is time-consuming. This technique can be applied to other tissues, such as the heart and kidneys. DEVD-AMC can be replaced by other substrates to measure the activity of other caspases.  相似文献   

10.
It has previously been shown that apoptosis is increased in ischaemic/reperfused heart. However, little is known about the mechanism of induction of apoptosis in myocardium during ischaemia. We investigated whether prolonged myocardial ischaemia causes activation of caspases and whether this activation is related to cytochrome c release from mitochondria to cytosol during ischaemia. Using an in vitro model of heart ischaemia, we show that 60 min ischaemia leads to a significant accumulation of cytochrome c in the cytosol and a decrease in mitochondrial content of cytochrome c but not cytochrome a. The release of cytochrome c from mitochondria was accompanied by activation of caspase-3-like proteases (measured by cleavage of fluorogenic peptide substrate DEVD-amc) and a large increase in number of cells with DNA strand breaks (measured by TUNEL staining). Caspase-1-like proteases (measured by YVAD-amc cleavage) were not activated during ischaemia. Addition of 14 microM cytochrome c to cytosolic extracts prepared from control hearts induced ATP-dependent activation of caspase-3-like protease activity. Our data suggest that extended heart ischaemia can cause apoptosis mediated by release of cytochrome c from mitochondria and subsequent activation of caspase-3.  相似文献   

11.
The molecules participating in apoptosis induced by T-2 toxin in human leukemia HL-60 cells were investigated. The rank order of the potency of trichothecene mycotoxins to induce internucleosomal DNA fragmentation was found to be T-2, satratoxin G, roridin A > diacetoxyscirpenol > baccharin B-5 > nivalenol, deoxynivalenol, 3-acetyldeoxynivalenol, fusarenon-X, baccharin B-4=vehicle control. Western blot analysis of caspase-3 in T-2-treated cells clearly indicated the appearance of its catalytically active fragment of 17-kDa. Increased caspase-3 activity was also detected by using a fluorogenic substrate, DEVD-AMC. Next, cells exposed to T-2 led to cleavage of PARP from its native 116-kDa form to the 85-kDa product. Moreover, DFF-45/ICAD were cleaved to give a 12.5-kDa fragment via T-2 treatment. T-2 caused the release of cytochrome c from mitochondria into the cytosol. Increased enzymic activity of caspase-9 on LEHD-AMC was shown. These data indicate that T-2-induced apoptosis involves activation of caspase-3 and DFF-40/CAD through cytosolic accumulation of cytochrome c along with caspase-9 activation.  相似文献   

12.
Ceramide induces neuronal apoptosis through the caspase-9/caspase-3 pathway   总被引:9,自引:0,他引:9  
C(2)-ceramide, a cell-permeable analog of ceramide, caused cell death in cultured rat cortical neuronal cells. C(2)-ceramide-induced neuronal loss was accompanied by upregulation of caspase-3 activity, measured by cleavage of its fluorogenic substrate Ac-DEVD-AMC. Similar results were obtained when cortical neuronal cultures were treated with sphingomyelinase, an enzyme responsible for ceramide formation in the cell. Morphological evaluation of C(2)-ceramide-treated cortical neurons showed nuclear condensation and fragmentation as visualized by Hoechst 33258 staining. Co-administration of the selective caspase-3 inhibitor z-DEVD-fmk or caspase-9 inhibitor z-LEHD-fmk significantly reduced C(2)-ceramide-induced cell death, while co-application of the caspase-8, inhibitor z-IETD-fmk, was without effect. Immunoblot analysis of protein extracts from C(2)-ceramide-treated cortical neuronal cultures revealed upregulation of active caspase-9 and caspase-3 protein levels, whereas presence of active caspase-8 immunoreactivity was undetectable in this system. Administration of C(2)-ceramide to SH-SY5Y human neuroblastoma cells also caused apoptotic cell death. Moreover, ceramide-induced cell death was significantly decreased in caspase-9 dominant-negative SH-SY5Y cells, while both caspase-8 dominant-negative cultures and mock-transfected cells showed equally high levels of cell death following C(2)-ceramide treatment. Taken together, these data suggest that neuronal death induced by ceramide may be linked to the caspase-9/caspase-3 regulated intrinsic pathway of cellular apoptosis.  相似文献   

13.
Apoptosis is an active process critical for the homeostasis oforganisms. Enzymes of the caspase family are responsible for executingthis process. We have previously shown that peroxynitrite (ONOO), a biologicalproduct generated from the interaction of nitric oxide and superoxide,induces apoptosis of HL-60 cells. The aim of this study was toelucidate the mechanisms involved in the execution process ofperoxynitrite-induced apoptosis. Proteolytic cleavage ofpoly(ADP-ribose) polymerase, an indication of caspase-3 family proteaseactivation and an early biochemical event accompanying apoptosis, wasobserved in a time-dependent manner during peroxynitrite-induced apoptosis of HL-60 cells. Activation of caspase-3 duringperoxynitrite-induced apoptosis was substantiated by monitoringproteolysis of the caspase-3 proenzyme and by measuring caspase-3activity with a fluorogenic substrate. Furthermore, pretreatment ofHL-60 cells withN-acetyl-Asp-Glu-Val-Asp-aldehyde, aspecific inhibitor of caspase-3, but notN-acetyl-Tyr-Val-Ala-Asp-aldehyde, aspecific inhibitor of caspase-1, decreased peroxynitrite-induced apoptosis. These results suggest that the activation of a caspase-3 family protease is essential for initiating the execution process ofperoxynitrite-induced apoptosis of HL-60 cells.

  相似文献   

14.
To date, eight neurodegenerative disorders, including Huntington's disease and dentatorubral-pallidoluysian atrophy, have been identified to be caused by expansion of a CAG repeat coding for a polyglutamine (polyQ) stretch. It is, however, unclear how polyQ expansion mediates neuronal cell death observed in these disorders. Here, we have established a tetracycline-regulated expression system producing 19 and 56 repeats of glutamine fused with green fluorescent protein. Induced expression of the 56 polyQ, but not of the 19 polyQ stretch caused marked nuclear aggregation and apoptotic morphological changes of the nucleus. In vitro enzyme assays and Western blotting showed that polyQ56 expression sequentially activated initiator and effector caspases, such as caspase-8 or -9, and caspase-3, respectively. Furthermore, using cell-permeable fluorogenic substrate, the activation of caspase-3-like proteases was demonstrated in intact cells with aggregated polyQ. This is the first direct evidence that the expression of extended polyQ activates caspases and together with the previous findings that some of the products of genes responsible for CAG repeat diseases are substrates of caspase-3 indicates an important role of caspases in the pathogenesis of these diseases.  相似文献   

15.
A novel fluorogenic substrate (methylumbelliferyl 2-acetamido-2-deoxy-β-d-lactoside) has been prepared enzymatically. A procedure has been developed for its use as a convenient and sensitive fluorogenic substrate for β-d-galactosidase assay with a potential for high substrate specificity. The merits of this new fluorogenic substrate for β-d-galactosidase assays are discussed, together with the potential of this approach for a wider range of enzyme activities.  相似文献   

16.
We examined the influence of sepsis on the expression and activity of the calpain and caspase systems in skeletal muscle. Sepsis was induced in rats by cecal ligation and puncture (CLP). Control rats were sham operated. Calpain activity was determined by measuring the calcium-dependent hydrolysis of casein and by casein zymography. The activity of the endogenous calpain inhibitor calpastatin was measured by determining the inhibitory effect on calpain activity in muscle extracts. Protein levels of mu- and m-calpain and calpastatin were determined by Western blotting, and calpastatin mRNA was measured by real-time PCR. Caspase-3 activity was determined by measuring the hydrolysis of the fluorogenic caspase-3 substrate Ac-DEVD-AMC and by determining protein and mRNA expression for caspase-3 by Western blotting and real-time PCR, respectively. In addition, the role of calpains and caspase-3 in sepsis-induced muscle protein breakdown was determined by measuring protein breakdown rates in the presence of specific inhibitors. Sepsis resulted in increased muscle calpain activity caused by reduced calpastatin activity. In contrast, caspase-3 activity, mRNA levels, and activated caspase-3 29-kDa fragment were not altered in muscle from septic rats. Sepsis-induced muscle proteolysis was blocked by the calpain inhibitor calpeptin but was not influenced by the caspase-3 inhibitor Ac-DEVD-CHO. The results suggest that sepsis-induced muscle wasting is associated with increased calpain activity, secondary to reduced calpastatin activity, and that caspase-3 activity is not involved in the catabolic response to sepsis.  相似文献   

17.
The self-immolative spacer para-aminobenzyl alcohol (PABA) was used as a key component in the design of new protease-sensitive fluorogenic probes whose parent phenol-based fluorophore is released through an enzyme-initiated domino reaction. First, the conjugation of the phenylacetyl moiety to 7-hydroxycoumarin (umbelliferone) and 7-hydroxy-9 H-(9,9-dimethylacridin-2-one) (DAO) by means of the heterobifunctional PABA linker has led to pro-fluorophores 6a and 6d whose enzyme activation by penicillin amidase was demonstrated. The second part of this study was devoted to the extension of this latent fluorophore strategy to the caspase-3 protease, a key mediator of apoptosis in mammalian cells. Fluorogenic caspase-3 substrates 11 and 13 derived from umbelliferone and DAO, respectively, were prepared. It was demonstrated that pro-fluorophore 11 is a sensitive fluorimetric reagent for the detection of this cysteine protease. Furthermore, in vitro assays with fluorogenic probe 13 showed a deleterious effect of biological thiols on fluorescence of the released acridinone fluorophore DAO that, to our knowledge, had not been reported until now.  相似文献   

18.
Alterations in cellular homeostasis that affect protein folding in the endoplasmic reticulum (ER) trigger a signaling pathway known as the unfolded protein response (UPR). The initially cytoprotective UPR will trigger an apoptotic cascade if the cellular insult is not corrected; however, the proteins required to initiate this cell death pathway are poorly understood. In this study, we show that UPR gene expression is induced in cells treated with ER stress agents in the presence or absence of murine caspase-12 or human caspase-4 expression and in cells that overexpress Bcl-x(L) or a dominant negative caspase-9. We further demonstrate that ER stress-induced apoptosis is a caspase-dependent process that does not require the expression of caspase-12 or caspase-4 but can be inhibited by overexpression of Bcl-x(L) or a dominant negative caspase-9. Additionally, treatment of human and murine cells with ER stress agents led to the cleavage of the caspase-4 fluorogenic substrate, LEVD-7-amino-4-trifluoromethylcoumarin, in the presence or absence of caspase-12 or caspase-4 expression, whereas Bcl-x(L) or a dominant negative caspase-9 overexpression inhibited LEVD-7-amino-4-trifluoromethylcoumarin cleavage. These data suggest that caspase-12 and caspase-4 are not required for the induction of ER stress-induced apoptosis and that caspase-4-like activity is not always associated with an initiating event.  相似文献   

19.
Determination of the sensitivity of influenza viruses to neuraminidase (NA) inhibitors is presently based on assays of NA function because, unlike available cell culture methods, the results of such assays are predictive of susceptibility in vivo. At present the most widely used substrate in assays of NA function is the fluorogenic reagent 2'-O-(4-methylumbelliferyl)-N-acetylneuraminic acid (MUN). A rapid assay with improved sensitivity is required because a proportion of clinical isolates has insufficient NA to be detectable in the current fluorogenic assay, and because some mutations associated with resistance to NA inhibitors reduce the activity of the enzyme. A chemiluminescence-based assay of NA activity has been developed that uses a 1,2-dioxetane derivative of sialic acid (NA-STAR) as the substrate. When compared with the fluorogenic assay, use of the NA-STAR substrate results in a 67-fold reduction in the limit of detection of the NA assay, from 200 pM (11 fmol) NA to 3 pM (0.16 fmol) NA. A panel of isolates from phase 2 clinical studies of zanamivir, which were undetectable in the fluorogenic assay, was tested for activity using the NA-STAR substrate. Of these 12 isolates with undetectable NA activity, 10 (83%) were found to have detectable NA activity using the NA-STAR substrate. A comparison of sensitivity to zanamivir of a panel of influenza A and B viruses using the two NA assay methods has been performed. IC(50) values for zanamivir using the NA-STAR were in the range 1.0-7.5 nM and those for the fluorogenic assay in the range 1. 0-5.7 nM (n = 6). The NA-STAR assay is a highly sensitive, rapid assay of influenza virus NA activity that is applicable to monitoring the susceptibility of influenza virus clinical isolates to NA inhibitors.  相似文献   

20.
BackgroundAlpha 1-antitrypsin (A1AT) is a 52 kDa serine protease inhibitor produced largely by hepatocytes but also by mononuclear phagocytes. A1AT chiefly inhibits neutrophil elastase and proteinase-3 but has also been reported to have immune modulatory functions including the ability to inhibit caspases. Its clinical availability for infusion suggests that A1AT therapy might modulate caspase related inflammation. Here we tested the ability of A1AT to modulate caspase-1 function in human mononuclear phagocytes.MethodsPurified plasma derived A1AT was added to active caspase-1 in a cell-free system (THP-1 lysates) as well as added exogenously to cell-culture models and human whole blood models of caspase-1 activation. Functional caspase-1 activity was quantified by the cleavage of the caspase-1 specific fluorogenic tetrapeptide substrate (WEHD-afc) and the release of processed IL-18 and IL-1β.ResultsTHP-1 cell lysates generated spontaneous activation of caspase-1 both by WEHD-afc cleavage and the generation of p20 caspase-1. A1AT added to this cell free system was unable to inhibit caspase-1 activity. Release of processed IL-18 by THP-1 cells was also unaffected by the addition of exogenous A1AT prior to stimulation with LPS/ATP, a standard caspase-1 activating signal. Importantly, the A1AT exhibited potent neutrophil elastase inhibitory capacity. Furthermore, A1AT complexed to NE (and hence conformationally modified) also did not affect THP-1 cell caspase-1 activation. Finally, exogenous A1AT did not inhibit the ability of human whole blood samples to process and release IL-1β.ConclusionsA1AT does not inhibit human monocyte caspase-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号