首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor growth requires angiogenesis, which in turn requires an imbalance in the presence of angiogenic and angiostatic factors. We have shown that the CXC chemokine family, consisting of members that are either angiogenic or angiostatic, is a major determinant of tumor-derived angiogenesis in non-small-cell lung cancer (NSCLC). Intratumor injection of interferon-inducible protein 10 (IP-10, or CXCL10), an angiostatic CXC chemokine, led to reduced tumor growth in a SCID mouse model of NSCLC. In this study, we hypothesized that treatment with CXCL10 would, by restoring the angiostatic balance, improve long-term survival in NSCLC-bearing SCID mice. To test this hypothesis, A549 NSCLC cells were injected in the subcutis of the flank, followed by intratumor injections with CXCL10 continuously (group I), or for ten weeks (group II), or a control group (human serum albumin). Median survival was 169, 130, and 86 days respectively (P<0.0001). We extended these studies to examine the mechanism of prolonged survival in CXCL10-treated mice. CXCL10 treatment inhibited lung metastases, but was dependent upon continued treatment, and was associated with an increased rate of apoptosis in the primary tumor, with no direct effect on the proliferation of the NSCLC cells. Furthermore, the inhibition of lung metastases was due to the angiostatic effect of CXCL10 on the primary tumor, since the rate of apoptosis within lung metastases was unaffected. These data suggest that anti-angiogenic therapy of human lung cancer should be continued indefinitely to realize persistent benefit, and confirms the anti-metastatic capacity of localized angiostatic therapy.  相似文献   

2.
3.
The angiogenic activity of CXC-ELR(+) chemokines, including CXCL8/IL-8, CXCL1/macrophage inflammatory protein-2 (MIP-2), and CXCL1/growth-related oncogene-alpha in the Matrigel sponge angiogenesis assay in vivo, is strictly neutrophil dependent, as neutrophil depletion of the animals completely abrogates the angiogenic response. In this study, we demonstrate that mice deficient in the src family kinases, Hck and Fgr (hck(-/-)fgr(-/-)), are unable to develop an angiogenic response to CXCL1/MIP-2, although they respond normally to vascular endothelial growth factor-A (VEGF-A). Histological examination of the CXCL1/MIP-2-containing Matrigel implants isolated from wild-type or hck(-/-)fgr(-/-) mice showed the presence of an extensive neutrophil infiltrate, excluding a defective neutrophil recruitment into the Matrigel sponges. Accordingly, neutrophils from hck(-/-)fgr(-/-) mice normally migrated and released gelatinase B in response to CXCL1/MIP-2 in vitro, similarly to wild-type neutrophils. However, unlike wild-type neutrophils, those from hck(-/-)fgr(-/-) mice were completely unable to release VEGF-A upon stimulation with CXCL1/MIP-2. Furthermore, neutralizing anti-VEGF-A Abs abrogated the angiogenic response to CXCL1/MIP-2 in wild-type mice and CXCL1/MIP-2 induced angiogenesis in the chick embryo chorioallantoic membrane assay, indicating that neutrophil-derived VEGF-A is a major mediator of CXCL1/MIP-2-induced angiogenesis. Finally, in vitro kinase assays confirmed that CXCL1/MIP-2 activates Hck and Fgr in murine neutrophils. Taken together, these data demonstrate that CXCL1/MIP-2 leads to recruitment of neutrophils that, in turn, release biologically active VEGF-A, resulting in angiogenesis in vivo. Our observations delineate a novel mechanism by which CXCL1/MIP-2 induces neutrophil-dependent angiogenesis in vivo.  相似文献   

4.
Tumors are dependent on angiogenesis for survival and propagation. Accumulated evidence suggests that macrophages are a potentially important source of angiogenic factors in many disease states. However, the role(s) of macrophages in non-small cell lung cancer (NSCLC) have not been determined. We hypothesized that monocyte-derived macrophages are induced by NSCLC to increase expression of angiogenic factors. To define the role of macrophage-tumor cell interaction with respect to angiogenesis, human peripheral blood monocytes (PBM) were cocultured with A549 (human bronchoalveolar cell carcinoma) or Calu 6 (human anaplastic carcinoma) NSCLC cells. The resultant conditioned medium (CM) was evaluated for angiogenic potential and for expression of angiogenic factors. We found that endothelial cell chemotactic activity (as a measure of angiogenic potential) was significantly increased in response to CM from cocultures of PBM/NSCLC compared with PBM alone, NSCLC alone, or a combination of NSCLC and PBM CM generated separately. Subsequent analysis by ELISA reveals markedly increased CXC chemokine expression, with a lesser increase in vascular endothelial growth factor, in CM from PBM/NSCLC coculture. Neutralizing Ab to angiogenic CXC chemokines blocked the increase in endothelial cell chemotaxis. Furthermore, with separately generated CM as a stimulus, we found that macrophages are the predominant source of increased CXC chemokine expression. Finally, we found that NSCLC-derived macrophage migration-inhibitory factor is responsible for the increased expression of macrophage-derived angiogenic activity. These data suggest that the interaction between host macrophages and NSCLC cells synergistically increases angiogenic potential, and that this is due to an increased elaboration of angiogenic CXC chemokines.  相似文献   

5.
In this study, we have examined the major platelet-derived CXC chemokines connective tissue-activating peptide III (CTAP-III), its truncation product neutrophil-activating peptide 2 (CXC chemokine ligand 7 (CXCL7)), as well as the structurally related platelet factor 4 (CXCL4) for their impact on neutrophil adhesion to and transmigration through unstimulated vascular endothelium. Using monolayers of cultured HUVEC, we found all three chemokines to promote neutrophil adhesion, while only CXCL7 induced transmigration. Induction of cell adhesion following exposure to CTAP-III, a molecule to date described to lack neutrophil-stimulating capacity, depended on proteolytical conversion of the inactive chemokine into CXCL7 by neutrophils. This was evident from experiments in which inhibition of the CTAP-III-processing protease and simultaneous blockade of the CXCL7 high affinity receptor CXCR-2 led to complete abrogation of CTAP-III-mediated neutrophil adhesion. CXCL4 at substimulatory dosages modulated CTAP-III- as well as CXCL7-induced adhesion. Although cell adhesion following exposure to CTAP-III was drastically reduced, CXCL7-mediated adhesion underwent significant enhancement. Transendothelial migration of neutrophils in response to CXCL7 or IL-8 (CXCL8) was subject to modulation by CTAP-III, but not CXCL4, as seen by drastic desensitization of the migratory response of neutrophils pre-exposed to CTAP-III, which was paralleled by selective down-modulation of CXCR-2. Altogether our results demonstrate that there exist multiple interactions between platelet-derived chemokines in the regulation of neutrophil adhesion and transendothelial migration.  相似文献   

6.
7.

Background

Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1), recruits immature myeloid-derived cells and enhances early tumor progression.

Methodology/Principal Findings

CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b+Gr1+ myeloid-derived cells at tumor sites in mice and promoted CD31+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b+Gr1highF4/80 cells (∼90%) with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b+Gr1+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation.

Conclusions/Significance

These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.  相似文献   

8.
Baird AM  Gray SG  O'Byrne KJ 《PloS one》2011,6(1):e14593

Background

Angiogenesis may play a role in the pathogenesis of Non-Small Cell Lung cancer (NSCLC). The CXC (ELR+) chemokine family are powerful promoters of the angiogenic response.

Methods

The expression of the CXC (ELR+) family members (CXCL1-3/GROα-γ, CXCL8/IL-8, CXCR1/2) was examined in a series of resected fresh frozen NSCLC tumours. Additionally, the expression and epigenetic regulation of these chemokines was examined in normal bronchial epithelial and NSCLC cell lines.

Results

Overall, expression of the chemokine ligands (CXCL1, 2, 8) and their receptors (CXCR1/2) were down regulated in tumour samples compared with normal, with the exception of CXCL3. CXCL8 and CXCR1/2 were found to be epigenetically regulated by histone post-translational modifications. Recombinant CXCL8 did not stimulate cell growth in either a normal bronchial epithelial or a squamous carcinoma cell line (SKMES-1). However, an increase was observed at 72 hours post treatment in an adenocarcinoma cell line.

Conclusions

CXC (ELR+) chemokines are dysregulated in NSCLC. The balance of these chemokines may be critical in the tumour microenvironment and requires further elucidation. It remains to be seen if epigenetic targeting of these pathways is a viable therapeutic option in lung cancer treatment.  相似文献   

9.
T cell targeting immunotherapy is now considered in acute myelogenous leukemia (AML), and local recruitment of antileukemic T cells to the AML microcompartment will then be essential. This process is probably influenced by both intravascular as well as extravascular levels of T cell chemotactic chemokines. We observed that native human AML cells usually showed constitutive secretion of the chemotactic chemokines CXCL10 and CCL5, whereas CCL17 was only released for a subset of patients and at relatively low levels. Coculture of AML cells with nonleukemic stromal cells (i.e., fibroblasts, osteoblasts) increased CXCL10 and CCL17 levels whereas CCL5 levels were not altered. However, a wide variation between patients in both CXCL10 and CCL5 levels persisted even in the presence of the stromal cells. Neutralization of CXCL10 and CCL5 inhibited T cell migration in the presence of native human AML cells. Furthermore, serum CCL17 and CXCL10 levels varied between AML patients and were determined by disease status (both chemokines) as well as patient age, chemotherapy and complicating infections (only CCL17). Thus, extravascular as well as intravascular levels of T cell chemotactic chemokines show a considerable variation between patients that may be important for T cell recruitment and the effects of antileukemic T cell reactivity in local AML compartments.  相似文献   

10.
11.
The Duffy Ag expressed on RBCs, capillaries, and postcapillary venular endothelial cells binds selective CXC and CC chemokines with high affinity. Cells transfected with the Duffy Ag internalize but do not degrade chemokine ligand. It has been proposed that Duffy Ag transports chemokines across the endothelium. We hypothesized that Duffy Ag participates in the movement of chemokines across the endothelium and, by doing so, modifies neutrophil transmigration. We found that the Duffy Ag transfected into human endothelial cells facilitates movement of the radiolabeled CXC chemokine, growth related oncogene-alpha/CXC chemokine ligand 1 (GRO-alpha/CXCL1), across an endothelial monolayer. In addition, neutrophil migration toward GRO-alpha/CXCL1 and IL-8 (IL-8/CXCL8) was enhanced across an endothelial monolayer expressing the Duffy Ag. Furthermore, GRO-alpha/CXCL1 stimulation of endothelial cells expressing the Duffy Ag did not affect gene expression by oligonucleotide microarray analysis. These in vitro observations are supported by the finding that IL-8/CXCL8-driven neutrophil recruitment into the lungs was markedly attenuated in transgenic mice lacking the Duffy Ag. We conclude that Duffy Ag has a role in enhancing leukocyte recruitment to sites of inflammation by facilitating movement of chemokines across the endothelium.  相似文献   

12.
Renal cell carcinoma (RCC) accounts for 3% of new cancer incidence and mortality in the United States. Studies in RCC have predominantly focused on VEGF in promoting tumor-associated angiogenesis. However, other angiogenic factors may contribute to the overall angiogenic milieu of RCC. We hypothesized that the CXCR2/CXCR2 ligand biological axis represents a mechanism by which RCC cells promote angiogenesis and facilitate tumor growth and metastasis. Therefore, we first examined tumor biopsies and plasma of patients with metastatic RCC for levels of CXCR2 ligands, and RCC tumor biopsies for the expression of CXCR2. The proangiogenic CXCR2 ligands CXCL1, CXCL3, CXCL5, and CXCL8, as well as VEGF were elevated in the plasma of these patients and found to be expressed within the tumors. CXCR2 was found to be expressed on endothelial cells within the tumors. To assess the role of ELR(+) CXC chemokines in RCC, we next used a model of syngeneic RCC (i.e., RENCA) in BALB/c mice. CXCR2 ligand and VEGF expression temporally increased in direct correlation with RENCA growth in CXCR2(+/+) mice. However, there was a marked reduction of RENCA tumor growth in CXCR2(-/-) mice, which correlated with decreased angiogenesis and increased tumor necrosis. Furthermore, in the absence of CXCR2, orthotopic RENCA tumors demonstrated a reduced potential to metastasize to the lungs of CXCR2(-/-) mice. These data support the notion that CXCR2/CXCR2 ligand biology is an important component of RCC tumor-associated angiogenesis and tumorigenesis.  相似文献   

13.
On chemokine stimulation, leucocytes produce and secrete proteolytic enzymes for innate immune defence mechanisms. Some of these proteases modify the biological activity of the chemokines. For instance, neutrophils secrete gelatinase B (matrix metalloproteinase-9, MMP-9) and neutrophil collagenase (MMP-8) after stimulation with interleukin-8/CXCL8 (IL-8). Gelatinase B cleaves and potentiates IL-8, generating a positive feedback. Here, we extend these findings and compare the processing of the CXC chemokines human and mouse granulocyte chemotactic protein-2/CXCL6 (GCP-2) and the closely related human epithelial-cell derived neutrophil activating peptide-78/CXCL5 (ENA-78) with that of human IL-8. Human GCP-2 and ENA-78 are cleaved by gelatinase B at similar rates to IL-8. In addition, GCP-2 is cleaved by neutrophil collagenase, but at a lower rate. The cleavage of GCP-2 is exclusively N-terminal and does not result in any change in biological activity. In contrast, ENA-78 is cleaved by gelatinase B at eight positions at various rates, finally generating inactive fragments. Physiologically, sequential cleavage of ENA-78 may result in early potentiation and later in inactivation of the chemokine. Remarkably, in the mouse, which lacks IL-8 which is replaced by GCP-2/LIX as the most potent neutrophil activating chemokine, N-terminal clipping and twofold potentiation by gelatinase B was also observed. In addition to the similarities in the potentiation of IL-8 in humans and GCP-2 in mice, the conversion of mouse GCP-2/LIX by mouse gelatinase B is the fastest for any combination of chemokines and MMPs so far reported. This rapid conversion was also performed by crude neutrophil granule secretion under physiological conditions, extending the relevance of this proteolytic cleavage to the in vivo situation.  相似文献   

14.
15.
16.
Citrullination, a posttranslational modification (PTM) recently discovered on inflammatory chemokines such as interleukin-8 (IL-8/CXCL8) and interferon-γ-inducible protein-10 (IP-10/CXCL10), seriously influences their biological activity. Citrullination or the deimination of arginine to citrulline is dependent on peptidylarginine deiminases (PADs) and has been linked to autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis (RA). Chemokines are to date the first identified PAD substrates with receptor-mediated biological activity. We investigated whether cytokines that play a crucial role in RA, like interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α), may be citrullinated by PAD and whether such a PTM influences the biological activity of these cytokines. IL-1β and TNF-α were first incubated with PAD in vitro and the occurrence of citrullination was examined by Edman degradation and a recently developed detection method for citrullinated proteins. Both techniques confirmed that human TNF-α, but not IL-1β, was citrullinated by PAD. Citrullination of TNF-α reduced its potency to stimulate chemokine production in vitro on human primary fibroblasts. Concentrations of the inflammatory chemokines CXCL8, CXCL10 and monocyte chemotactic protein-1 (MCP-1/CCL2) were significantly lower in supernatants of fibroblasts induced with citrullinated TNF-α compared to unmodified TNF-α. However, upon citrullination TNF-α retained its capacity to induce apoptosis/necrosis of mononuclear cells, its binding potency to Infliximab and its ability to recruit neutrophils to the peritoneal cavity of mice.  相似文献   

17.
Cytokine control of memory B cell homing machinery   总被引:4,自引:0,他引:4  
The germinal center (GC) is a pivotal site for the development of B cell memory. Whereas GC B cells do not chemotax to most chemokines and do not express the adhesion receptors L-selectin, alpha(4)beta(7), and cutaneous lymphocyte Ag (CLA), memory B cells respond to various chemotactic signals and express adhesion receptors. In this study, we show that CD40 ligand, IL-2, and IL-10 together drive this transition of GC B cells to memory phenotype in vitro, up-regulating memory B cell markers, chemotactic responses to CXC ligand (CXCL)12, CXCL13, and CCL19, and expression of adhesion receptors L-selectin, alpha(4)beta(7), and CLA. Moreover, addition of IL-4 modulates this transition, preventing chemotactic responses to CXCL12 and CXCL13 (but not to CCL19), and inhibiting the re-expression of L-selectin, but not of CLA or alpha(4)beta(7). CCR7 expression, responsiveness to CCL19, and L-selectin/alpha(4)beta(7) phenotype are coordinately regulated. Thus, IL-2/IL-10 and IL-4 play important and distinctive roles in developing the migratory capacities of memory B cells.  相似文献   

18.
During normal pregnancy a dampening in T cell-mediated immunity is compensated by an increased pro-inflammatory activity. Likewise, the autoimmune disease systemic lupus erythematosus (SLE) is associated with inflammatory activity and pregnancy complications occur frequently in women with SLE. The aim of this study was to elucidate how SLE influences the chemokine and cytokine balance during and after pregnancy. Blood samples were taken from pregnant women with or without SLE at second and third trimester and 8-12 weeks after pregnancy. Cytokines (interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-10, IL-12p70, IL-17A, TNF, IFN-γ and IFN-α), chemokines (CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10, CCL2/MCP-1, CCL5/RANTES and CCL17/TARC), soluble IL-6 receptor (sIL-6R) and soluble glycoprotein 130 (gp130) were measured in serum using cytometric bead array (CBA) or enzyme-linked immunosorbent assay (ELISA). Women with SLE had increased serum concentrations of CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10 and IL-10 compared to controls both during and after pregnancy. Further, when dividing the patients based on disease activity, the women with active disease had the highest levels. Importantly, women with SLE seemed to respond to pregnancy in a similar way as controls, since the changes of cytokines and chemokines over the course of pregnancy were similar but with overall higher levels in the patient group. In conclusion, changes in pro- and anti-inflammatory serum components during pregnancy in women with SLE, occurring on top of already more pro-inflammatory levels, might increase their risk for pregnancy complications and flares. How their children are affected by this heightened inflammatory milieu during pregnancy needs further investigation.  相似文献   

19.
Chronic inflammation may increase the risk to develop cancer, for instance esophagitis or gastritis may lead to development of esophageal or gastric cancer, respectively. The key molecules attracting leukocytes to local inflammatory sites are chemokines. We here provide a systematic review on the impact of CXC chemokines (binding the receptors CXCR1, CXCR2, CXCR3 and CXCR4) on the transition of chronic inflammation in the upper gastrointestinal tract to neoplasia. CXCR2 ligands, including GRO-α,β,γ/CXCL1,2,3, ENA-78/CXCL5 and IL-8/CXCL8 chemoattract pro-tumoral neutrophils. In addition, angiogenic CXCR2 ligands stimulate the formation of new blood vessels, facilitating tumor progression. The CXCR4 ligand SDF-1/CXCL12 also promotes tumor development by stimulating angiogenesis and by favoring metastasis of CXCR4-positive tumor cells to distant organs producing SDF-1/CXCL12. Furthermore, these angiogenic chemokines also directly enhance tumor cell survival and proliferation. In contrast, the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10 and I-TAC/CXCL11 are angiostatic and attract anti-tumoral T lymphocytes and may therefore mediate tumor growth retardation and regression. Thus, chemokines exert diverging, sometimes dual roles in tumor biology as described for esophageal and gastric cancer. Therefore extensive research is needed to completely unravel the complex chemokine code in specific cancers. Possibly, chemokine-targeted cancer therapy will have to be adapted to the individual's chemokine profile.  相似文献   

20.
Chronic inflammation may increase the risk to develop cancer, for instance esophagitis or gastritis may lead to development of esophageal or gastric cancer, respectively. The key molecules attracting leukocytes to local inflammatory sites are chemokines. We here provide a systematic review on the impact of CXC chemokines (binding the receptors CXCR1, CXCR2, CXCR3 and CXCR4) on the transition of chronic inflammation in the upper gastrointestinal tract to neoplasia. CXCR2 ligands, including GRO-α,β,γ/CXCL1,2,3, ENA-78/CXCL5 and IL-8/CXCL8 chemoattract pro-tumoral neutrophils. In addition, angiogenic CXCR2 ligands stimulate the formation of new blood vessels, facilitating tumor progression. The CXCR4 ligand SDF-1/CXCL12 also promotes tumor development by stimulating angiogenesis and by favoring metastasis of CXCR4-positive tumor cells to distant organs producing SDF-1/CXCL12. Furthermore, these angiogenic chemokines also directly enhance tumor cell survival and proliferation. In contrast, the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10 and I-TAC/CXCL11 are angiostatic and attract anti-tumoral T lymphocytes and may therefore mediate tumor growth retardation and regression. Thus, chemokines exert diverging, sometimes dual roles in tumor biology as described for esophageal and gastric cancer. Therefore extensive research is needed to completely unravel the complex chemokine code in specific cancers. Possibly, chemokine-targeted cancer therapy will have to be adapted to the individual's chemokine profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号