首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Treatment of rats with hypoglycaemic doses of hypoglycin has been shown to abolish the relative detritiation of [2-3H,U-14C]glucose [Osmundsen, Billington, Taylor & Sherratt (1978) Biochem. J. 170, 337-342], indicating that both the Cori and the glucose/glucose 6-phosphate cycles were inhibited in vivo. This inhibition was confirmed and, in addition, it was shown that the conversion in vivo of both [14C]lactate and [14C]fructose into glucose was decreased after hypoglycin treatment. These results suggest that hypoglycin poisoning results in the inhibition in vivo of glucose-6-phosphatase activity, which participates in the overall inhibition of gluconeogenesis and hypoglycaemia. Clofibrate feeding apparently protected the rats against the inhibition of the fructose-to-glucose conversion by hypoglycin. However, in isolated hepatocytes prepared from hypoglycin-treated rats, the conversion of [14C]fructose into glucose and the recycling of [2-3H,U-14C]glucose were not different from that in control hepatocytes. This suggests that the inhibition was lost during preparation of the hepatocytes. The direct measurement of glucose-6-phosphatase activity showed that it was inhibited when measured in concentrated, but not dilute, homogenates prepared from hypoglycin-treated rats.  相似文献   

3.
The present investigation was undertaken to characterize the direct inhibitory action of the peroxyvanadium compounds oxodiperoxo(1, 10-phenanthroline) vanadate(V) (bpV(phen)) and oxodiperoxo(pyridine-2-carboxylate) vanadate(V) (bpV(pic)) on pig microsomal glucose-6-phosphatase (G-6-Pase) activity and on glucagon stimulated hyperglycemia in vivo. Both bpV(phen) and bpV(pic) were found to be potent competitive inhibitors of G-6-Pase with Ki values of 0.96 and 0.42 microM (intact microsomes) and 0.50 and 0.21 microM (detergent-disrupted microsomes). The corresponding values for ortho-vanadate were 20.3 and 20.0 microM. Administration of bpV(phen) to postprandial rats did not affect the basal glucose level although a modest and dose-dependent increase in plasma lactate levels was seen. Injection of glucagon raised the plasma glucose level from 5.5 mM to about 7.5 mM in control animals and this increase could be prevented dose-dependently by bpV(phen). The inhibition of the glucagon-mediated blood glucose increase was accompanied by a dose-dependent increase in plasma lactate levels from 2 mM to about 11 mM. In conclusion, the finding that vanadate and bpV compounds are potent inhibitors of G-6-Pase suggests that the blood-glucose-lowering effect of these compounds which is seen in diabetic animals may be partly explained by a direct effect on this enzyme rather than, as presently thought, being the result of inhibition of phosphoprotein tyrosine phosphatases and thereby insulin receptor dephosphorylation.  相似文献   

4.
We present a method to determine glucose 6-phosphate activity. This assay measures the rate of glucose released in the glucose-6-phosphatase reaction. The glucose is oxidized to beta-D-gluconolactone by glucose dehydrogenase in a coupled reaction that uses NAD(P)+. The determination is rapid, reproducible, and does not require withdrawal, precipitation, centrifugation, or neutralization steps. This method provides a simple resolution to the problem of the nonspecific appearance of Pi, which is especially important in studies of regulation of glucose-6-phosphatase performed in the presence of ATP.  相似文献   

5.
6.
Glucose-6-phosphatase (G6Pase) activity, with glucose-6-phosphate and mannose-6-phosphate as substrates, was examined by cytochemistry in capillary and arteriole endothelial cells of the mouse brain. G6Pase activity was observed ultrastructurally in the lumen of the nuclear envelope and endoplasmic reticulum (ER) of these cells. The reactive ER and nuclear membrane appeared to be in continuity. Nucleoside diphosphatase activity, also a marker for the ER in some cell types, was not seen within the ER of the cerebral microvasculature. The ER of arterioles and capillaries did not bind lead nonspecifically when incubated in a substrate-free medium. Speculation is raised concerning the involvement of G6Pase in glucose metabolism of cerebral endothelial cells and in making blood-borne glucose available to brain parenchyma.  相似文献   

7.
Ultrastructural demonstration of glucose 6-phosphatase in cerebral cortex   总被引:2,自引:0,他引:2  
A two-stage fixation technique has been developed to obtain morphological preservation and retention of glucose 6-phosphatase (G6-Pase) activity for its demonstration in rat cerebral cortex. The technique was then employed to localize the enzyme in the cortex where it produced a dense reaction over the well developed granular endoplasmic reticulum cisternae in nerve cells and oligodendrocytes which contrasted with a thin reaction in astrocytes. Other membranous organelles showed no reaction.  相似文献   

8.
Summary A two-stage fixation technique has been developed to obtain morphological preservation and retention of glucose 6-phosphatase (G6-Pase) activity for its demonstration in rat cerebral cortex. The technique was then employed to localize the enzyme in the cortex where it produced a dense reaction over the well developed granular endoplasmic reticulum cisternae in nerve cells and oligodendrocytes which contrasted with a thin reaction in astrocytes. Other membranous organelles showed no reaction.  相似文献   

9.
A method is described for measuring the activity of glucose-6-phosphatase (EC 3.1.3.9) in rat liver. [U-14C]Glucose 6-phosphate, as substrate, is converted by the enzyme to [14C]glucose and inorganic phosphate. The addition of ZnSO4 and Ba(OH)2 at the end of the reaction precipitates phosphate and the unreacted [14C]glucose 6-phosphate, whereas [14C]glucose is not precipitated. After centrifugation, the amount of [14C]glucose formed is determined in a liquid scintillation counter.  相似文献   

10.
Rapid kinetics of both glucose-6-P uptake and hydrolysis in fasted rat liver microsomes were investigated with a recently developed fast-sampling, rapid-filtration apparatus. Experiments were confronted with both the substrate transport and conformational models currently proposed for the glucose-6-phosphatase system. Accumulation in microsomes of 14C products from [U-14C]glucose-6-P followed biexponential kinetics. From the inside to outside product concentrations, it could be inferred that mostly glucose should accumulate inside the vesicles. While biexponential kinetics are compatible with the mathematical predictions of a simplified substrate transport model, the latter fails in explaining the "burst" in total glucose production over a similar time scale to that used for the uptake measurements. Since the initial rate of the burst phase in untreated microsomes exactly matched the steady-state rate of glucose production in detergent-treated vesicles, it can be definitely concluded that the substrate transport model does not describe adequately our results. While the conformational model accounts for both the burst of glucose production and the kinetics of glucose accumulation into the vesicles, it cannot explain the burst in 32Pi production from [32P]glucose-6-P measured under the same conditions. Since the amplitude of the observed bursts is not compatible with a presteady state in enzyme activity, we propose that a hysteretic transition best explains our results in both untreated and permeabilized microsomes, thus providing a new rationale to understand the molecular mechanism of the glucose-6-phosphatase system.  相似文献   

11.
A high-sucrose diet (SU)decreases insulin action in the liver (Pagliassotti MJ, Shahrokhi KA,and Moscarello M. Am J Physiol Regulatory Integrative CompPhysiol 266: R1637-R1644, 1994). The present study wasconducted to characterize the effect of SU on glucagon action inisolated periportal (PP) and perivenous (PV) hepatocytes by measuringglucagon-stimulated glycogenolysis and glucose release. Male rats werefed a SU (68% sucrose) or starch diet (ST, 68% starch) for 1 wk, andhepatocytes were isolated from PP or PV regions (n = 4/diet/cell population). Hepatocytes were incubated for 1 h in thepresence of varying concentrations of glucagon (0-100 nM). In PPand PV cells, glucagon stimulation of glucose release andglycogenolysis (sum of glucose release and lactate accumulation) wasnot significantly different between SU and ST cells. However, in the SUPP cells, glucose release was increased compared with ST PP cells, bothin the absence of glucagon (76.1 ± 4 vs. 54.8 ± 3 nmol · h1 · mg cell wetwt1) and at all glucagon concentrations. In SU-fed PVcells, glucose release was increased compared with ST PV cells in theabsence of glucagon (79.3 ± 5 vs. 56.4 ± 5 nmol · h1 · mg cell wetwt1) and at low glucagon concentrations. Maximalglucose-6-phosphatase activity (innmol · min1 · mg protein1)was elevated in SU compared with ST cells (61.4 ± 3 vs. 37.5 ± 4 in PP and 37.5 ± 4 vs. 29.5 ± 3 in PV cells). Incontrast, maximal glucokinase activity (innmol · min1 · mg protein1)was elevated in ST compared with SU cells (15.9 ± 2 vs. 12.1 ± 1 in PP and 19.4 ± 2 vs. 14.2 ± 1 in PV cells). Thesedata demonstrate that SU increases the capacity for glucose release inboth PP and PV hepatocytes, in part because of reciprocal changes inglucose-6-phosphatase and glucokinase.

  相似文献   

12.
The effects of added polyamines on carbamylphosphate (carbamyl-P):glucose phosphotransferase and glucose-6-phosphate (Glc-6-P) phosphohydrolase activities of rat hepatic D-Glc-6-P phosphohydrolase (EC 3.1.3.9) of intact and detergent-treated microsomes have been investigated. With the former preparation, in the presence of 1.4 mM phosphate substrate and 90 mM D-glucose (phosphotransferase), 1 mM spermine, spermidine, and putrescine activated Glc-6-P phosphohydrolase 67%, 57%, and 35%, respectively. Carbamyl-P:glucose phosphotransferase, under comparable conditions, was activated 57%, 34%, and 18%. NH+4 (0.25--5.0 mM) produced at best but a minor activation (0--14%), while poly(L-lysine) (Mr = 3400; degree of polymerization 16) equimolar relative to other polyamines with respect to ionized free amino groups activated the hydrolase 358% and the transferase 222%. Treatment of microsomes with the detergent deoxycholate reduced, but did not abolish, polyamine-induced activation. The stimulatory effects of polyamines persisted in the presence of excess catalase, indicating their independence from H2O2 formation; and were eliminated in the presence of Ca2+. Kinetic analysis revealed that all tested polyamines decreased the apparent Michaelis constant values for carbamyl-P and Glc-6-P, but had no effect on the Km for glucose. Poly(L-lysine) increased the V value for both Glc-6-P phosphohydrolase and apparent V values for phosphotransferase extrapolated to infinite concentrations of either carbamyl-P or glucose. The other tested polyamines elevated only this last velocity parameter. It is proposed that a major mechanism by which polyamines activate glucose-6-phosphatase-phosphotransferase is through their electrostatic interactions with phospholipids of the membrane of the endoplasmic reticulum of which this enzyme is a part. Conformational alterations thus induced may in turn affect catalytic behavior. It is suggested that polyamines, or similar positively charged peptides, might participate in the cellular regulation of synthetic and hydrolytic activities of glucose-6-phosphatase.  相似文献   

13.
An insoluble phosphoprotein of rat brain acquires radioactivity from inorganic phosphate more rapidly during sleep than during wakefulness. It was purified in two ways. The first was solvent delipidation of brain tissue followed by preparative sodium dodecyl sulfate polyacrylamide gel electrophoresis. The second was sucrose gradient centrifugation of a brain homogenate to remove myelin, and gel filtration on Sephadex G-100 and adsorption chromatography on DEAE-Sephadex in the presence of sodium deoxycholate. The products were homogeneous within the limits of the analytical methods used. The apparent molecular weight of the phosphoprotein was 28,000 on sodium dodecyl sulfate polyacrylamide gels, but was much higher in the presence of sodium deoxycholate. The protein had a high content of aspartic and glutamic acids compared to basic amino acids. Analysis of a base hydrolysate, as well as studies of the kinetics of hydrolysis, showed that the radioactive phosphorus was attached to histidine. The NH2-terminal residue was identified as isoleucine. The phosphoprotein purified by the second method was enzymatically active. When it was incubated in vitro with a 32P-labeled supernatant fraction from rat brain (and later with glucose [6-32P]phosphate), a radioactive phosphorylated protein intermediate was formed. Exploration of the several enzymatic activities of the preparation indicated close correspondence to those reported for the glucose-6-phosphatases of liver and kidney. Glucose-6-phosphatase activity was found in all parts of the brain in the membranous subcellular fractions of neurons. It was shown to be co-purified with the sleep-related phosphoprotein. This report constitutes, we believe, the first complete purification of glucose-6-phosphatase from any tissue and an instance in which a change in the state of a cerebral enzyme has been linked to a normal change in the physiological state of the brain.  相似文献   

14.
The ability of glucose 6-phosphate and carbamyl phosphate to serve as substrates for glucose-6-phosphatase (D-glucose-6-phosphate phosphohydrolase; EC 3.1.3.9) of intact and disrupted microsomes from rat liver was compared at pH 7.0. Results support carbamyl phosphate and glucose 6-phosphate as effective substrates with both. Km values for carbamyl phosphate and glucose 6-phosphate were greater with intact than with disrupted microsomes, but Vmax values were higher with the latter. The substrate translocase-catalytic unit concept of glucose-6-phosphatase function is thus confirmed. The Km values for 3-O-methyl-D-glucose and D-glucose were larger when determined with intact than with disrupted microsomes. This observation is consistent with the involvement of a translocase specific for hexose substrate as a rate-influencing determinant in phosphotransferase activity of glucose-6-phosphatase.  相似文献   

15.
16.
The factors regulating glucose-6-phosphatase (EC 3.1.3.9) activity and substrate specificity in hepatic microsomes were studied by determining the rate-limiting reaction for the hydrolysis of glucose-6-P, and by examining the effect of detergent activation on phosphotransferase activity. Examination of the pre-steady state kinetics of glucose-6-phosphatase revealed that the steady state rate is determined by the rate of hydrolysis of the enzyme-P intermediate. Treatment of the enzyme with detergent does not alter the extent of the rapid release of glucose per mg of protein, but activates the steady state rate of catalytic turnover. Specificity of the enzyme was evaluated by comparing the effects of mannose and glucose as phosphate acceptors in the phosphotransferase reaction catalyzed by glucose-6-phosphatase. Untreated glucose-6-phosphatase discriminates against mannose as compared with glucose in that mannose and glucose bind to the enzyme-P intermediate of untreated enzyme, but mannose is not an acceptor of Pi. Mannose is an acceptor, however, after treatment of microsomes with detergent. These data cannot be explained in terms of the currently accepted "compartmentation" model for the regulation of glucose-6-phosphatase. The detergent-induced changes in kinetic properties appear to reflect alterations in the intrinsic characteristics of glucose-6-phosphatase, which could result from interaction with its membrane environment.  相似文献   

17.
Two key enzymes of gluconeogenesis, glucose-6-phosphatase and fructosp-1-6-diphosphatase, were present in the cerebral hemispheres, the cerebellum and the brain stem of the rat brain. Significant activities of these-enzymes were associated with the particulate fraction.  相似文献   

18.
In mice with streptozotocin-induced diabetes of 3 days' duration, the hexokinase/glucose-6-phosphatase (HK/G6Pase) ratio in the kidney was enhanced by 52% (mean +/- SEM: 0.40 +/- 0.04 vs. 0.26 +/- 0.03; p less than 0.02) compared to control mice as a result of a 25% increase of HK (16.68 +/- 0.93 vs. 13.31 +/- 1.04 nmol/min/mg protein; p = 0.05) and a 17% decrease of G6Pase (42.51 +/- 2.75 vs. 51.25 +/- 1.89; p less than 0.05). In contrast, as expected, the corresponding ratio (HK + glucokinase/G6Pase) was strikingly reduced in the liver. In 9-day diabetic mice, the kidney enzyme changes were much smaller; however, in a chronic disease such as diabetes, even minimal deviations from the normal may lead to significant metabolic changes with time. The enhanced HK/G6Pase ratio in the diabetic kidney suggests an increase in glucose utilization. This may contribute to the increased synthesis of glycogen, glycoproteins (including basement membrane) and RNA (via provision of ribose-phosphate) occurring in the diabetic kidney and supports the view that the kidney (as opposed to other tissues) shows an 'anabolic response' to diabetes.  相似文献   

19.
20.

Background

Perturbation of energy homeostasis in skeletal muscle and liver resulting from a transient inhibition of mitochondrial energy transduction can produce effects of relevance for the control of hyperglycemia through activation of the AMP-activated protein kinase, as exemplified by the antidiabetic drug metformin. The present study focuses on uncoupling of oxidative phosphorylation rather than its inhibition as a trigger for such effects.

Methods

The reference weak uncoupler 2,4-dinitrophenol, fourteen naturally-occurring phenolic compounds identified as uncouplers in isolated rat liver mitochondria, and fourteen related compounds with little or no uncoupling activity were tested for enhancement of glucose uptake in differentiated C2C12 skeletal muscle cells following 18 h of treatment at 25-100 μM. A subset of compounds were tested for suppression of glucose-6-phosphatase (G6Pase) activity in H4IIE hepatocytes following 16 h at 12.5-25 μM. Metformin (400 μM) was used as a standard in both assays.

Results

Dinitrophenol and nine of eleven compounds that induced 50% or more uncoupling at 100 μM in isolated mitochondria enhanced basal glucose uptake by 53 to 269%; the effect of the 4′-hydroxychalcone butein was more than 6-fold that of metformin; negative control compounds increased uptake by no more than 25%. Dinitrophenol and four 4′-hydroxychalconoids also suppressed hepatocyte G6Pase as well as, or more effectively than metformin, whereas the unsubstituted parent compound chalcone, devoid of uncoupling activity, had no effect.

Conclusions

Activities key to glycemic control can be induced by a wide range of weak uncouplers, including compounds free of difficult-to-metabolize groups typically associated with uncouplers.

General significance

Uncoupling represents a valid and possibly more efficient alternative to inhibition for triggering cytoprotective effects of therapeutic relevance to insulin resistance in both muscle and liver. Identification of actives of natural origin and the insights into their structure-activity relationship reported herein may lead to alternatives to metformin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号