首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herpes simplex virus 1 (HSV-1) facilitates virus entry into cells and cell-to-cell spread by mediating fusion of the viral envelope with cellular membranes and fusion of adjacent cellular membranes. Although virus strains isolated from herpetic lesions cause limited cell fusion in cell culture, clinical herpetic lesions typically contain large syncytia, underscoring the importance of cell-to-cell fusion in virus spread in infected tissues. Certain mutations in glycoprotein B (gB), gK, UL20, and other viral genes drastically enhance virus-induced cell fusion in vitro and in vivo. Recent work has suggested that gB is the sole fusogenic glycoprotein, regulated by interactions with the viral glycoproteins gD, gH/gL, and gK, membrane protein UL20, and cellular receptors. Recombinant viruses were constructed to abolish either gM or UL11 expression in the presence of strong syncytial mutations in either gB or gK. Virus-induced cell fusion caused by deletion of the carboxyl-terminal 28 amino acids of gB or the dominant syncytial mutation in gK (Ala to Val at amino acid 40) was drastically reduced in the absence of gM. Similarly, syncytial mutations in either gB or gK did not cause cell fusion in the absence of UL11. Neither the gM nor UL11 gene deletion substantially affected gB, gC, gD, gE, and gH glycoprotein synthesis and expression on infected cell surfaces. Two-way immunoprecipitation experiments revealed that the membrane protein UL20, which is found as a protein complex with gK, interacted with gM while gM did not interact with other viral glycoproteins. Viruses produced in the absence of gM or UL11 entered into cells more slowly than their parental wild-type virus strain. Collectively, these results indicate that gM and UL11 are required for efficient membrane fusion events during virus entry and virus spread.  相似文献   

2.
Herpes simplex virus type 1 (HSV-1) glycoprotein H (gH) is essential for virus entry into cells and forms a hetero-oligomer with a newly described viral glycoprotein, gL. Normal folding, posttranslational processing, and intracellular transport of both gH and gL depend upon the coexpression of gH and gL in cells infected with vaccinia virus vectors (L. Hutchinson, H. Browne, V. Wargent, N. Davis-Poynter, S. Primorac, K. Goldsmith, A. C. Minson, and D. C. Johnson, J. Virol. 66:2240-2250, 1992). Homologs of gH and gL have been found in herpesviruses of all subgroups, and thus it appears likely that the gH-gL complex serves a highly conserved function during herpesvirus penetration into cells. To examine the role of gL in the infectious cycle of HSV-1, a mutant HSV-1 unable to express gL was constructed by inserting a lacZ gene cassette into the coding sequences of the UL1 (gL) gene. Because gL was found to be essential for virus replication, cell lines capable of expressing gL were constructed to complement the virus mutant. In the absence of gL, virus particles were produced, and these particles reached the cell surface; however, gL-negative particles purified from infected cells were also deficient in gH. Mutant virions lacking gH and gL were able to adsorb onto cells but were unable to enter cells and initiate an infection. Further, the role of gL in fusion of infected cells was reexamined. A mutation in HSV-1 (804) which produces the syncytial phenotype had previously been mapped to a region of the HSV-1 genome which includes the UL1 gene and no other open reading frame. However, in contrast to this previous report, we found that the syncytial mutation in 804 affects the UL53 gene, which encodes gK, a gene commonly mutated in syncytial viruses.  相似文献   

3.
Syncytial mutants of herpes simplex virus (HSV) cause extensive fusion of cultured cells, whereas wild-type HSV primarily causes cell rounding and aggregation. A large fraction of syncytial viruses contain mutations in the UL53 gene, which encodes glycoprotein K (gK). Previously, we demonstrated that wild-type and syncytial forms of gK are expressed at similar levels and possess identical electrophoretic mobilities. Using immunofluorescence, we show that gK is not transported to the surfaces of cells infected with either wild-type or syncytial HSV. Instead, gK accumulates in the perinuclear and nuclear membranes of cells. This finding is in contrast to the behavior of all other HSV glycoproteins described to date, which reach the cell surface. When gK was expressed in the absence of other HSV proteins, using a recombinant adenovirus vector, a similar perinuclear and nuclear pattern was observed. In addition, gK remained sensitive to endoglycosidase H, consistent with the hypothesis that gK does not reach the Golgi apparatus and is retained in the endoplasmic reticulum and nuclear envelope. Therefore, although gK mutations promote fusion between the surface membranes of HSV-infected cells, the glycoprotein does not reach the plasma membrane and, thus, must influence fusion indirectly.  相似文献   

4.
The DNA region encoding the complete herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) was inserted into a baculovirus transfer vector, and recombinant viruses expressing gK were isolated. Four gK-related recombinant baculovirus-expressed peptides of 29, 35, 38, and 40 kDa were detected with polyclonal antibody to gK. The 35-, 38-, and 40-kDa species were susceptible to tunicamycin treatment, suggesting that they were glycosylated. The 38- and 40-kDa species corresponded to partially glycosylated precursor gK (pgK) and mature gK, respectively. The 29-kDa peptide probably represented a cleaved, unglycosylated peptide. The 35-kDa peptide probably represented a cleaved, glycosylated peptide that may be a precursor to pgK. Indirect immunofluorescence with polyclonal antibody to gK peptides indicated that the recombinant baculovirus-expressed gK was abundant on the surface of the insect cells in which it was expressed. Mice vaccinated with the baculovirus-expressed gK produced very low levels (< 1:10) of HSV-1 neutralizing antibody. Nonetheless, these mice were partially protected from lethal challenge with HSV-1 (75% survival). This protection was significant (P = 0.02). Despite some protection against death, gK-vaccinated mice showed no protection against the establishment of latency. Surprisingly, gK-vaccinated mice that were challenged ocularly with a stromal disease-producing strain of HSV-1 had significantly higher levels of ocular disease (herpes stromal keratitis) than did mock-vaccinated mice. In summary, this is the first report to show that vaccination with HSV-1 gK can provide protection against lethal HSV-1 challenge and that vaccination with an HSV-1 glycoprotein can significantly increase the severity of HSV-1-induced ocular disease.  相似文献   

5.
Multiple amino acid changes within herpes simplex virus type 1 (HSV-1) gB and gK cause extensive virus-induced cell fusion and the formation of multinucleated cells (syncytia). Early reports established that syncytial mutations in gK could not cause cell-to-cell fusion in the absence of gB. To investigate the interdependence of gB, gK, and UL20p in virus-induced cell fusion and virion de-envelopment from perinuclear spaces as well as to compare the ultrastructural phenotypes of the different mutant viruses in a syngeneic HSV-1 (F) genetic background, gB-null, gK-null, UL20-null, gB/gK double-null, and gB/UL20 double-null viruses were constructed with the HSV-1 (F) bacterial artificial chromosome pYEBac102. The gK/gB double-null virus YEbacDeltagBDeltagK was used to isolate the recombinant viruses gBsyn3DeltagK and gBamb1511DeltagK, which lack the gK gene and carry the gBsyn3 or gBamb1511 syncytial mutation, respectively. Both viruses formed small nonsyncytial plaques on noncomplementing Vero cells and large syncytial plaques on gK-complementing cells, indicating that gK expression was necessary for gBsyn3- and gBamb1511-induced cell fusion. Lack of virus-induced cell fusion was not due to defects in virion egress, since recombinant viruses specifying the gBsyn3 or gKsyn20 mutation in the UL19/UL20 double-null genetic background caused extensive cell fusion on UL20-complementing cells. As expected, the gB-null virus failed to produce infectious virus, but enveloped virion particles egressed efficiently out of infected cells. The gK-null and UL20-null viruses exhibited cytoplasmic defects in virion morphogenesis like those of the corresponding HSV-1 (KOS) mutant viruses. Similarly, the gB/gK double-null and gB/UL20 double-null viruses accumulated capsids in the cytoplasm, indicating that gB, gK, and UL20p do not function redundantly in membrane fusion during virion de-envelopment at the outer nuclear lamellae.  相似文献   

6.
《Gene》1996,168(2):189-193
In the bovine herpesvirus-1 (BHV-1) genome, a gene equivalent to the glycoprotein K (gK)-encoding gene of other herpesviruses was identified and sequenced. The primary translation product is predicted to comprise 338 amino acids (aa) and to exhibit a molecular mass of 37.5 kDa. It possesses characteristics typical for membrane glycoproteins including a potential cleavable signal sequence, three transmembrane domains and two potential N-linked glycosylation sites. Comparison to the gK proteins of other herpesviruses revealed aa sequence homologies of 46, 44, 53, 43 and 46% with the gK counterparts of herpes simplex viruses-1 and 2 (HSV-1 and 2), equine herpesvirus-1 (EHV-1), Marek's disease virus (MDV) and varicella zoster virus (VZV), respectively. A 30-kDa primary translation product was identified following in vitro translation of in vitro transcribed mRNA. When canine microsomal membranes were added to the translation reaction, a 38-kDa glycosylated protein was detected. Treatment with endoglycosidase For H (endo For H) removed the glycosyl groups and reduced the apparent molecular mass of the 38-kDa glycoprotein.  相似文献   

7.
Herpes simplex virus (HSV) glycoprotein K (gK) is thought to be intimately involved in the process by which infected cells fuse because HSV syncytial mutations frequently alter the gK (UL53) gene. Previously, we characterized gK produced in cells infected with wild-type HSV or syncytial HSV mutants and found that the glycoprotein was localized to nuclear and endoplasmic reticulum membranes and did not reach the cell surface (L. Hutchinson, C. Roop, and D. C. Johnson, J. Virol. 69:4556-4563, 1995). In this study, we have characterized a mutant HSV type 1, denoted F-gK beta, in which a lacZ gene cassette was inserted into the gK coding sequences. Since gK was found to be essential for virus replication, F-gK beta was propagated on complementing cells which can express gK. F-gK beta produced normal plaques bounded by nonfused cells when plated on complementing cells, although syncytia were observed when the cells produced smaller amounts of gK. In contrast, F-gK beta produced only microscopic plaques on Vero cells and normal human fibroblasts (which do not express gK) and these plaques were reduced by 10(2) to 10(6) in number. Further, large numbers of nonenveloped capsids accumulated in the cytoplasm of F-gK beta-infected Vero cells, virus particles did not reach the cell surface, and the few enveloped particles that were produced exhibited a reduced capacity to enter cells and initiate an infection of complementing cells. Overexpression of gK in HSV-infected cells also caused defects in virus egress, although particles accumulated in the perinuclear space and large multilamellar membranous structures juxtaposed with the nuclear envelope were observed. Together, these results demonstrate that gK regulates or facilitates egress of HSV from cells. How this property is connected to cell fusion is not clear. In this regard, gK may alter cell surface transport of viral particles or other viral components directly involved in the fusion process.  相似文献   

8.
We detected a glycoprotein on the surface of cells infected with herpes simplex virus type 1 (HSV-1) which, in conjunction with gE, binds immunoglobulin G (IgG). The novel glycoprotein, which has an apparent molecular mass of 70 kilodaltons and was provisionally named g70, was first detected in extracts of HSV-1-infected cells labeled by lactoperoxidase-catalyzed iodination and precipitated with rabbit sera or IgG and protein A-Sepharose. In subsequent experiments, g70 and gE were coprecipitated from extracts of HSV-1-infected cells labeled with [35S]methionine, [35S]cysteine, or 14C-amino acids. We were unable to precipitate a polypeptide analogous to g70 or gE from extracts of HSV-2-infected cells with rabbit IgG and protein A-Sepharose. Partial proteolytic peptide analysis indicated that g70 is structurally distinct from gE and gI). In addition, g70 was electrophoretically distinct from the HSV-1 Us4 glycoprotein gG. HSV-1 gE, expressed in mouse cells transfected with the gE gene, was not precipitated with rabbit IgG, nor could these cells bind radiolabeled IgG, suggesting that gE alone cannot act as an IgG (Fc) receptor. This result, coupled with the findings that gE and g70 are coprecipitated with IgG and with an anti-gE monoclonal antibody, suggests that gE and g70 form a complex which binds IgG. The electrophoretic mobilities of g70 molecules induced by different strains of HSV-1 differed markedly, arguing that g70 is encoded by the virus and is not a cellular protein induced by virus infection.  相似文献   

9.
The herpes simplex virus type 1 (HSV-1) UL20 protein is an important determinant for virion morphogenesis and virus-induced cell fusion. A precise deletion of the UL20 gene in the HSV-1 KOS strain was constructed without affecting the adjacent UL20.5 gene. The resultant KOS/UL20-null virus produced small plaques of 8 to 15 cells in Vero cells while it produced wild-type plaques on the complementing cell line G5. Electron microscopic examination of infected cells revealed that the KOS/UL20-null virions predominantly accumulated capsids in the cytoplasm while a small percentage of virions were found as enveloped virions within cytoplasmic vacuoles. Recently, it was shown that UL20 expression was necessary and sufficient for cell surface expression of gK (T. P. Foster, X. Alvarez, and K. G. Kousoulas, J. Virol. 77:499-510, 2003). Therefore, we investigated the effect of UL20 on virus-induced cell fusion caused by syncytial mutations in gB and gK by constructing recombinant viruses containing the gBsyn3 or gKsyn1 mutations in a UL20-null genetic background. Both recombinant viruses failed to cause virus-induced cell fusion in Vero cells while they readily caused fusion of UL20-null complementing G5 cells. Ultrastructural examination of UL20-null viruses carrying the gBsyn3 or gKsyn1 mutation revealed a similar distribution of virions as the KOS/UL20-null virus. However, cytoplasmic vacuoles contained aberrant virions having multiple capsids within a single envelope. These multicapsid virions may have been formed either by fusion of viral envelopes or by the concurrent reenvelopment of multiple capsids. These results suggest that the UL20 protein regulates membrane fusion phenomena involved in virion morphogenesis and virus-induced cell fusion.  相似文献   

10.
The herpes simplex virus type 1 (HSV-1) UL37 open reading frame encodes a 120-kDa late (gamma 1), nonstructural protein in infected cells. Recent studies in our laboratory have demonstrated that the UL37 protein interacts in the cytoplasm of infected cells with ICP8, the major HSV-1 DNA-binding protein. As a result of this interaction, the UL37 protein is transported to the nucleus and can be coeluted with ICP8 from single-stranded DNA columns. Pulse-labeling and pulse-chase studies of HSV-1-infected cells with [35S]methionine and 32Pi demonstrated that UL37 was a phosphoprotein which did not have a detectable rate of turnover. The protein was phosphorylated soon after translation and remained phosphorylated throughout the viral replicative cycle. UL37 protein expressed from a vaccinia virus recombinant was also phosphorylated during infection, suggesting that the UL37 protein was phosphorylated by a cellular kinase and that interaction with the ICP8 protein was not a prerequisite for UL37 phosphorylation.  相似文献   

11.
A glycoprotein encoded by the UL1 gene of herpes simplex virus type 1 (HSV-1) was detected in infected cells with antipeptide sera. The UL1 gene has previously been implicated in virus-induced cell fusion (S. Little and P. A. Schaffer, Virology 112:686-697, 1981). Two protein species, a 30-kDa precursor form and a 40-kDa mature form of the glycoprotein, both of which were modified with N-linked oligosaccharides, were observed. This novel glycoprotein is the 10th HSV-1 glycoprotein to be described and was named glycoprotein L (gL). A complex was formed between gL and gH, a glycoprotein known to be essential for entry of HSV-1 into cells and for virus-induced cell fusion. Previously, it had been reported that gH expressed in the absence of other viral proteins was antigenically abnormal, not processed, and not expressed at the cell surface (U.A. Gompels and A. C. Minson, J. Gen. Virol. 63:4744-4755, 1989; A. J. Forrester, V. Sullivan, A. Simmons, B. A. Blacklaws, G. L. Smith, A. A. Nash, and A. C. Minson, J. Gen. Virol. 72:369-375, 1991). However, gH coexpressed with gL by using vaccinia virus recombinants was antigenically normal, processed normally, and transported to the cell surface. Similarly, gL was dependent on gH for proper posttranslational processing and cell surface expression. These results suggest that it is a hetero-oligomer of gH and gL which is incorporated into virions and transported to the cell surface and which acts during entry of virus into cells.  相似文献   

12.
A Myc epitope was inserted at residue 283 of herpes simplex virus type 1 (HSV-1) glycoprotein K (gK), a position previously shown not to interfere with gK activity. The Myc-tagged gK localized predominantly to the endoplasmic reticulum, both in uninfected and in HSV-infected cells. gK, coexpressed with the four HSV fusogenic glycoproteins, gD, gB, gH, and gL, inhibited cell-cell fusion. The effect was partially dose dependent and was observed both in baby hamster kidney (BHK) and in Vero cells, indicating that the antifusion activity of gK may be cell line independent. The antifusion activity of gK did not require viral proteins other than the four fusogenic glycoproteins. A syncytial (syn) allele of gK (syn-gK) carrying the A40V substitution present in HSV-1(MP) did not block fusion to the extent seen with the wild-type (wt) gK, indicating that the syn mutation ablated, at least in part, the antifusogenic activity of wt gK. We conclude that gK is part of the mechanism whereby HSV negatively regulates its own fusion activity. Its effect accounts for the notion that cells infected with wt HSV do not fuse with adjacent, uninfected cells into multinucleated giant cells or syncytia. gK may also function to preclude fusion between virion envelope and the virion-encasing vesicles during virus transport to the extracellular compartment, thus preventing nucleocapsid de-envelopment in the cytoplasm.  相似文献   

13.
Final envelopment of the cytoplasmic herpes simplex virus type 1 (HSV-1) nucleocapsid is thought to occur by budding into trans-Golgi network (TGN)-derived membranes. The highly membrane-associated proteins UL20p and glycoprotein K (gK) are required for cytoplasmic envelopment at the TGN and virion transport from the TGN to extracellular spaces. Furthermore, the UL20 protein is required for intracellular transport and cell surface expression of gK. Independently expressed gK or UL20p via transient expression in Vero cells failed to be transported from the endoplasmic reticulum (ER). Similarly, infection of Vero cells with either gK-null or UL20-null viruses resulted in ER entrapment of UL20p or gK, respectively. In HSV-1 wild-type virus infections and to a lesser extent in transient gK and UL20p coexpression experiments, both gK and UL20p localized to the Golgi apparatus. In wild-type, but not UL20-null, viral infections, gK was readily detected on cell surfaces. In contrast, transiently coexpressed gK and UL20p predominantly localized to the TGN and were not readily detected on cell surfaces. However, TGN-localized gK and UL20p originated from endocytosed gK and UL20p expressed at cell surfaces. Retention of UL20p to the ER through the addition of an ER retention motif forced total ER retention of gK, indicating that transport of gK is absolutely dependent on UL20p transport. In all experiments, gK and UL20p colocalized at intracellular sites, including the ER, Golgi, and TGN. These results are consistent with the hypothesis that gK and UL20p directly interact and that this interaction facilitates their TGN localization, an important prerequisite for cytoplasmic virion envelopment and egress.  相似文献   

14.
The pseudorabies virus (PrV) gene homologous to herpes simplex virus type 1 (HSV-1) UL53, which encodes HSV-1 glycoprotein K (gK), has recently been sequenced (J. Baumeister, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 69:5560–5567, 1995). To identify the corresponding protein, a rabbit antiserum was raised against a 40-kDa glutathione S-transferase–gK fusion protein expressed in Escherichia coli. In Western blot analysis, this serum detected a 32-kDa polypeptide in PrV-infected cell lysates as well as a 36-kDa protein in purified virion preparations, demonstrating that PrV gK is a structural component of virions. After treatment of purified virions with endoglycosidase H, a 34-kDa protein was detected, while after incubation with N-glycosidase F, a 32-kDa protein was specifically recognized. This finding indicates that virion gK is modified by N-linked glycans of complex as well as high-mannose type. For functional analysis, the UL53 open reading frame was interrupted after codon 164 by insertion of a gG-lacZ expression cassette into the wild-type PrV genome (PrV-gKβ) or by insertion of the bovine herpesvirus 1 gB gene into a PrV gB genome (PrV-gKgB). Infectious mutant virus progeny was obtained only on complementing gK-expressing cells, suggesting that gK has an important function in the replication cycle. After infection of Vero cells with either gK mutant, only single infected cells or small foci of infected cells were visible. In addition, virus yield was reduced approximately 30-fold, and penetration kinetics showed a delay in entry which could be compensated for by phenotypic gK complementation. Interestingly, the plating efficiency of PrV-gKβ was similar to that of wild-type PrV on complementing and noncomplementing cells, pointing to an essential function of gK in virus egress but not entry. Ultrastructurally, virus assembly and morphogenesis of PrV gK mutants in noncomplementing cells were similar to wild-type virus. However, late in infection, numerous nucleocapsids were found directly underneath the plasma membrane in stages typical for the entry process, a phenomenon not observed after wild-type virus infection and also not visible after infection of gK-complementing cells. Thus, we postulate that presence of gK is important to inhibit immediate reinfection.Herpesvirions are complex structures consisting of a nucleoprotein core, capsid, tegument, and envelope. They comprise at least 30 structural proteins (35). Pseudorabies virus (PrV), a member of the Alphaherpesvirinae, is an economically important animal pathogen, causing Aujeszky’s disease in swine. It is also highly pathogenic for most other mammals except higher primates, including humans (28, 45), and a wide range of cultured cells from different species support productive virus replication, reflecting the wide in vivo host range. Envelope glycoproteins play major roles in the early and late interactions between virion and host cell. They are required for virus entry and participate in release of free virions and viral spread by direct cell-to-cell transmission (27, 37). For PrV, 10 glycoproteins, designated gB, gC, gD, gE, gG, gH, gI, gL, gM, and gN, have been characterized (20, 27); these glycoproteins are involved in the attachment of virion to host cell (gC and gD), fusion of viral envelope and cellular cytoplasmic membrane (gB, gD, gH, and gL), spread from infected to noninfected cells (gB, gE, gH, gI, gL, and gM), and egress (gC, gE, and gI) (27, 37). Homologs of these glycoproteins are also present in other alphaherpesviruses (37). The gene coding for a potential 11th PrV glycoprotein, gK, has been described recently (3), but the protein and its function have not been identified.The product of the homologous UL53 open reading frame (ORF) of herpes simplex virus type 1 (HSV-1) is gK (13, 32). gK was detected in nuclear membranes and in membranes of the endoplasmic reticulum but was not observed in the plasma membrane (14). Also, it did not appear to be present in purified virion preparations (15). The latter result was surprising since earlier studies identified several mutations in HSV-1 gK resulting in syncytium-inducing phenotypes (7, 14), which indicates participation of gK in membrane fusion events during HSV-1 infection. Moreover, HSV-1 mutants in gK exhibited a delayed entry into noncomplementing cells, which is difficult to reconcile with absence of gK from virions (31). Mutants deficient for gK expression have been isolated and investigated by different groups (16, 17). Mutant F-gKβ carries a lacZ gene insertion in the HSV-1 strain F gK gene, which interrupts the ORF after codon 112 (16). In mutant ΔgK, derived from HSV-1 KOS, almost all of the UL53 gene was deleted (17). Both mutants formed small plaques on Vero cells, and virus yield was reduced to an extent which varied with the different confluencies of the infected cells, cell types, and mutants used for infection. However, both HSV-1 gK mutants showed a defect in efficient translocation of virions from the cytoplasm to the extracellular space, and only a few enveloped virions were present in the extracellular space after infection of Vero cells (16, 17). The authors therefore suggested that HSV-1 gK plays a role in virion transport during egress.Different routes of final envelopment and egress of alphaherpesvirions are discussed. It has been suggested that HSV-1 nucleocapsids acquire their envelope at the inner nuclear membrane and are transported as enveloped particles through the endoplasmic reticulum to the Golgi stacks, where glycoproteins are modified in situ during transport (5, 6, 19, 39), although other potential egress pathways cannot be excluded (4). In contrast, maturation of varicella-zoster virus and PrV involves primary envelopment at the nuclear membrane, followed by release of nucleocapsids into the cytoplasm and secondary envelopment in the trans-Golgi area (10, 12, 43). Final egress of virions appears to occur via transport vesicles containing one or more virus particles by fusion of vesicle and cell membrane. The possibility of different routes of virion egress is supported by studies of other proteins involved in egress, e.g., the UL20 proteins of HSV-1 and PrV and the PrV UL3.5 protein, which lacks a homolog in the HSV-1 genome (1, 8, 9). In UL20-negative HSV-1, virions accumulated in the perinuclear cisterna of Vero cells (1), while PrV UL20 virions accumulated and were retained in cytoplasmic vesicles (9). PrV UL3.5 is important for budding of nucleocapsids into Golgi-derived vesicles during secondary envelopment (8). Thus, there appear to be profound differences in the egress pathways. Since HSV-1 gK was also implicated in egress, we were interested in identifying the PrV homolog and analyzing its function.  相似文献   

15.
The UL35 open reading frame (ORF) of herpes simplex virus type 1 (HSV-1) has been predicted from DNA sequence analysis to encode a small polypeptide with a molecular weight of 12,095. We have investigated the protein product of the UL35 ORF by using a trpE-UL35 gene fusion to produce a corresponding fusion protein in Escherichia coli. The TrpE-UL35 chimeric protein was subsequently isolated and used as a source of immunogen for the production of rabbit polyclonal antiserum directed against the UL35 gene product. The TrpE-UL35 antiserum was found to recognize a 12-kDa protein which was specifically present in HSV-1-infected cells. By utilizing the TrpE-UL35 antiserum, the kinetics of synthesis of the UL35 gene product was examined, and these studies indicate that UL35 is expressed as a gamma 2 (true late) gene. The 12-kDa protein recognized by the TrpE-UL35 antiserum was associated with purified HSV-1 virions and type A and B capsids, suggesting that the UL35 ORF may encode the 12-kDa capsid protein variably designated p12, NC7, or VP26. To confirm this assignment, immunoprecipitation and immunoblotting studies were performed to demonstrate that the TrpE-UL35 antiserum reacts with the same polypeptide as an antiserum directed against the purified p12 capsid protein (anti-NC7) (G.H. Cohen, M. Ponce de Leon, H. Diggelmann, W.C. Lawrence, S.K. Vernon, and R.J. Eisenberg, J. Virol. 34:521-531, 1980). Furthermore, the anti-NC7 serum was also found to react with the TrpE-UL35 chimeric protein isolated from E. coli, providing additional evidence that the UL35 gene encodes p12. On the basis of these studies, we conclude that UL35 represents a true late gene which encodes the 12-kDa capsid protein of HSV-1.  相似文献   

16.
Mo C  Suen J  Sommer M  Arvin A 《Journal of virology》1999,73(5):4197-4207
Varicella-zoster virus (VZV) is an alphaherpesvirus that is the causative agent of chickenpox and herpes zoster. VZV open reading frame 5 (ORF5) encodes glycoprotein K (gK), which is conserved among alphaherpesviruses. While VZV gK has not been characterized, and its role in viral replication is unknown, homologs of VZV gK in herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV) have been well studied. To identify the VZV ORF5 gene product, we raised a polyclonal antibody against a fusion protein of ORF5 codons 25 to 122 with glutathione S-transferase and used it to study the protein in infected cells. A 40,000-molecular-weight protein was detected in cell-free virus by Western blotting. In immunogold electron microscopic studies, VZV gK was in enveloped virions and was evenly distributed in the cytoplasm in infected cells. To determine the function of VZV gK in virus growth, a series of gK deletion mutants were constructed with VZV cosmid DNA derived from the Oka strain. Full and partial deletions in gK prevented viral replication when the gK mutant cosmids were transfected into melanoma cells. Insertion of the HSV-1 (KOS) gK gene into the endogenous VZV gK site did not compensate for the deletion of VZV gK. The replacement of VZV gK at a nonnative AvrII site in the VZV genome restored the phenotypic characteristics of intact recombinant Oka (rOka) virus. Moreover, gK complementing cells transfected with a full gK deletion mutant exhibited viral plaques indistinguishable from those of rOka. Our results are consistent with the studies of gK proteins of HSV-1 and PRV showing that gK is indispensable for viral replication.  相似文献   

17.
Most spontaneously occurring mutations that cause extensive herpes simplex virus type 1 (HSV-1)-induced cell fusion are single amino acid changes within glycoprotein K (gK). Despite the strong genetic association of gK with virus-induced cell fusion, its direct involvement in cellular membrane fusion has been controversial, largely due to previously unsuccessful efforts to detect gK expression on virion and cellular surfaces. Recently, we showed that gK is expressed on HSV-1 virions and functioned in virus entry (T. P. Foster, G. V. Rybachuk, and K. G. Kousoulas, J. Virol. 75:12431-12438, 2001). To determine whether gK is expressed on cellular surfaces, as well as its membrane topology, we generated the recombinant viruses gKV5DI, gKV5DII, gKV5DIII, and gKV5DIVcontaining insertions of the V5 antigenic epitope within each of four domains of gK predicted to localize either in the cytoplasmic side or in the extracytoplasmic side of cellular membranes. Immunohistochemical and confocal microscopy analyses of infected cells showed that both wild-type and syncytial forms of gK were expressed on cell surfaces. Analysis of the topology of the V5-tagged gK revealed that gK domains I and IV were located extracellularly, whereas domains II and III were localized intracellularly. Transiently expressed gK failed to localize in cellular plasma membranes. In contrast, infection of gK-transfected cells with the gK-null virus DeltagK enabled expression of gK on cell surfaces, as well as gK-mediated membrane fusion. Transient-coexpression experiments revealed that the UL20 protein enabled cell surface expression of gK, but not gK-mediated cell-to-cell fusion, indicating that additional viral proteins are required for expression of the gK syncytial phenotype.  相似文献   

18.
Herpesvirus envelope glycoproteins play important roles in the interaction between virions and target cells. In the alphaherpesvirus pseudorabies virus (PrV), seven glycoproteins that all constitute homologs of glycoproteins found in herpes simplex virus type 1 (HSV-1) have been characterized, including a homolog of HSV-1 glycoprotein H (gH). Since HSV-1 gH is found associated with another essential glycoprotein, gL, we analyzed whether PrV also encodes a gL homolog. DNA sequence analysis of a corresponding part of the UL region adjacent to the internal inverted repeat in PrV strains Kaplan and Becker revealed the presence of two open reading frames (ORF). Deduced proteins exhibited homology to uracil-DNA glycosylase encoded by HSV-1 ORF UL2 (54% identity) and gL encoded by HSV-1 ORF UL1 (24% identity), respectively. To identify the PrV UL1 protein, rabbit antisera were prepared against two synthetic oligopeptides that were predicted by computer analysis to encompass antigenic epitopes. Sera against both peptides reacted in Western blots of purified virions with a 20-kDa protein. The specificity of the reaction was demonstrated by peptide competition. Since the PrV UL1 sequence did not reveal the presence of a consensus N-linked glycosylation site, concanavalin A affinity chromatography and enzymatic deglycosylation of virion glycoproteins were used to ascertain that the PrV UL1 product is O glycosylated. Therefore, we designated this protein PrV gL. Analysis of mutant PrV virions lacking gH showed that concomitantly with the absence of gH, gL was also missing in purified virions. In summary, we identified and characterized a novel structural PrV glycoprotein, gL, which represents the eighth PrV glycoprotein described. In addition, we show that virion location of PrV gL is dependent on the presence of PrV gH.  相似文献   

19.
Herpes simplex virus 1 (HSV-1) glycoprotein K (gK) is expressed on virions and functions in entry, inasmuch as HSV-1(KOS) virions devoid of gK enter cells substantially slower than is the case for the parental KOS virus (T. P. Foster, G. V. Rybachuk, and K. G. Kousoulas, J. Virol. 75:12431-12438, 2001). Deletion of the amino-terminal 68-amino-acid (aa) portion of gK caused a reduction in efficiency and kinetics of virus entry similar to that of the gK-null virus in comparison to the HSV-1(F) parental virus. The UL20 membrane protein and gK were readily detected on double-gradient-purified virion preparations. Immuno-electron microscopy confirmed the presence of gK and UL20 on purified virions. Coimmunoprecipitation experiments using purified virions revealed that gK interacted with UL20, as has been shown in virus-infected cells (T. P. Foster, V. N. Chouljenko, and K. G. Kousoulas, J. Virol. 82:6310-6323, 2008). Scanning of the HSV-1(F) viral genome revealed the presence of a single putative tobacco etch virus (TEV) protease site within gD, while additional TEV predicted sites were found within the UL5 (helicase-primase helicase subunit), UL23 (thymidine kinase), UL25 (DNA packaging tegument protein), and UL52 (helicase-primase primase subunit) proteins. The recombinant virus gDΔTEV was engineered to eliminate the single predicted gD TEV protease site without appreciably affecting its replication characteristics. The mutant virus gK-V5-TEV was subsequently constructed by insertion of a gene sequence encoding a V5 epitope tag in frame with the TEV protease site immediately after gK amino acid 68. The gK-V5-TEV, R-gK-V5-TEV (revertant virus), and gDΔTEV viruses exhibited similar plaque morphologies and replication characteristics. Treatment of the gK-V5-TEV virions with TEV protease caused approximately 32 to 34% reduction of virus entry, while treatment of gDΔTEV virions caused slightly increased virus entry. These results provide direct evidence that the gK and UL20 proteins, which are genetically and functionally linked to gB-mediated virus-induced cell fusion, are structural components of virions and function in virus entry. Site-specific cleavage of viral glycoproteins on mature and fully infectious virions utilizing unique protease sites may serve as a generalizable method of uncoupling the roles of viral glycoproteins in virus entry and virion assembly.  相似文献   

20.
A viral deletion mutant (delta UL21) that lacked the sequences encoding 484 of the predicted first 535 amino acids of the UL21 open reading frame was genetically engineered and studied with respect to its phenotype in cells in culture. We report the following. (i) The replication of delta UL21 was identical to that of the parent herpes simplex virus 1 (HSV-1) strain F in Vero cells, but the yields were three- to fivefold lower than those of the parent virus in human embryonic lung cells. (ii) To characterize the UL21 protein, we immunized rabbits against a purified bacterial fusion protein consisting of glutathione S-transferase fused to the majority of the coding domain of the UL21 gene. Rabbit antiserum directed against the fusion protein recognized a broad band with an apparent M(r) of 62,000 to 64,000 in lysates of cells infected with HSV-1 strain F and in virions purified from the infected cell cytoplasm. This band was absent from lysates of mock-infected cells or cells infected with the delta UL21 virus. The band was significantly reduced in intensity in lysates of cells infected in the presence of phosphonoacetic acid, indicating that it is expressed as a late (gamma 1) gene. (iii) Immunofluorescence studies localized the UL21 antigen primarily in brightly staining granules in the cytoplasms of infected cells. Taken together, the data indicate that the UL21 protein is a virion component dispensable for all aspects of replication of HSV-1 in the cells tested. The electrophoretic mobility of the UL21 protein suggests that it is extensively modified posttranslationally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号