共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
C R Pace-Asciak 《Prostaglandins》1977,13(5):811-817
3.
The development of mass spectrometry-based techniques is opening new insights into the understanding of arachidonic acid (AA) metabolism. AA incorporation, remodeling and release are collectively controlled by acyltransferases, phospholipases and transacylases that exquisitely regulate the distribution of AA between the different glycerophospholipid species and its mobilization during cellular stimulation. Traditionally, studies involving phospholipid AA metabolism were conducted by using radioactive precursors and scintillation counting from thin layer chromatography separations that provided only information about lipid classes. Today, the input of lipidomic approaches offers the possibility of characterizing and quantifying specific molecular species with great accuracy and within a biological context associated to protein and/or gene expression in a temporal frame. This review summarizes recent results applying mass spectrometry-based lipidomic approaches to the identification of AA-containing glycerophospholipids, phospholipid AA remodeling and synthesis of oxygenated metabolites. 相似文献
4.
Alma M. AstudilloDavid Balgoma María A. BalboaJesús Balsinde 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2012,1821(2):249-256
The development of mass spectrometry-based techniques is opening new insights into the understanding of arachidonic acid (AA) metabolism. AA incorporation, remodeling and release are collectively controlled by acyltransferases, phospholipases and transacylases that exquisitely regulate the distribution of AA between the different glycerophospholipid species and its mobilization during cellular stimulation. Traditionally, studies involving phospholipid AA metabolism were conducted by using radioactive precursors and scintillation counting from thin layer chromatography separations that provided only information about lipid classes. Today, the input of lipidomic approaches offers the possibility of characterizing and quantifying specific molecular species with great accuracy and within a biological context associated to protein and/or gene expression in a temporal frame. This review summarizes recent results applying mass spectrometry-based lipidomic approaches to the identification of AA-containing glycerophospholipids, phospholipid AA remodeling and synthesis of oxygenated metabolites. 相似文献
5.
Oxidative stress does not influence carotenoid mobilization and plumage pigmentation 总被引:3,自引:0,他引:3
Oxidative stress has been suggested to create a link between 'good genes' and carotenoid coloration via an allocation conflict between external pigmentation and internal antioxidant functions. However, although carotenoid displays have been extensively investigated, there are no experimental tests of the antioxidant efficiency of carotenoids in vivo. We induced oxidative stress in a small passerine (the great tit, Parus major) under both carotenoid deprivation and supplementation, and investigated the effect on carotenoid mobilization (i.e. plasma) and allocation (i.e. deposition in feather incorporation and liver storage). We found no effects of the stressor on either mobilization or allocation of carotenoids. These results reject the previously suggested superior role of carotenoid's function as antioxidant in vivo with important implications for signal content and honesty. 相似文献
6.
Phospholipase A(2) regulation of arachidonic acid mobilization 总被引:9,自引:0,他引:9
Phospholipase A(2) (PLA(2)) constitutes a growing superfamily of lipolytic enzymes, and to date, at least 19 distinct enzymes have been found in mammals. This class of enzymes has attracted considerable interest as a pharmacological target in view of its role in lipid signaling and its involvement in a variety of inflammatory conditions. PLA(2)s hydrolyze the sn-2 ester bond of cellular phospholipids, producing a free fatty acid and a lysophospholipid, both of which are lipid signaling molecules. The free fatty acid produced is frequently arachidonic acid (AA, 5,8,11,14-eicosatetraenoic acid), the precursor of the eicosanoid family of potent inflammatory mediators that includes prostaglandins, thromboxanes, leukotrienes and lipoxins. Multiple PLA(2) enzymes are active within and surrounding the cell and these enzymes have distinct, but interconnected roles in AA release. 相似文献
7.
Moreno JJ 《Free radical biology & medicine》2003,35(9):1073-1081
Minor components of virgin olive oil may explain the healthy effects of the Mediterranean diet on the cardiovascular system and cancer development. The uncontrolled production of reactive oxygen species (ROS) and arachidonic acid (AA) metabolites contributes to the pathogenesis of cardiovascular disease and cancer, and inflammatory cells infiltrated in the atheroma plaque or tumor are a major source of ROS and eicosanoids. We aimed to determine the effects of squalene, beta-sitosterol, and tyrosol, which are representative of the hydrocarbons, sterols, and polyphenols of olive oil, respectively, on superoxide anion (O2(-)), hydrogen peroxide (H2O2), and nitric oxide (*NO) levels. We also studied AA release and eicosanoid production by phorbol esters (PMA)-stimulated macrophages RAW 264.7. beta-Sitosterol and tyrosol decreased the O2(-) and H2O2 production induced by PMA, and tyrosol scavenged the O2(-) released by a ROS generating system. These effects were correlated with the impairment of [3H]AA release, cyclooxygenase-2 (COX-2) expression, and prostaglandin E(2)/leukotriene B(4) synthesis in RAW 264.7 cultures stimulated by PMA. beta-Sitosterol exerted its effects after 3-6 h of preincubation. Tyrosol inhibited the [3H]AA release induced by exogenous ROS. beta-Sitosterol and tyrosol also reduced the *NO release induced by PMA, which was correlated with the impairment of inducible nitric oxide synthase (iNOS) levels. This may be correlated with the modulation of NF-kappaB activation. Further studies are required to gain more insight into the potential healthy effects of minor components of extra virgin olive oil. 相似文献
8.
Ethanol interferes with collagen-induced platelet activation by inhibition of arachidonic acid mobilization 总被引:2,自引:0,他引:2
R Rubin 《Archives of biochemistry and biophysics》1989,270(1):99-113
The effect of ethanol on signal generation in collagen-stimulated human platelets was evaluated. Incubation of washed human platelets with physiologically relevant concentrations of ethanol (25-150 mM) resulted in a dose-dependent inhibition of aggregation and secretion in response to collagen (0.5-10 micrograms/ml), but did not inhibit shape change. In platelets labeled with [3H]arachidonic acid, ethanol significantly inhibited the release of arachidonic acid from phospholipids, in both the presence and the absence of indomethacin. Thromboxane B2 formation was also inhibited in proportion to the reduction in free arachidonic acid. There was a close correlation between the extent of inhibition of arachidonic acid release and secretion. The inhibition of platelet aggregation and secretion by ethanol was partially overcome by the addition of exogenous arachidonic acid. In the presence of indomethacin, ethanol had no effect on the activation of phospholipase C by collagen as determined by the formation of inositol phosphates and phosphatidic acid. Moreover, ethanol had no effect on the mobilization of intracellular calcium by collagen and only minimally inhibited the early phases of the phosphorylation of myosin light chain (20 kDa) and a 47-kDa protein, a known substrate for protein kinase C. Arachidonic acid formation was also inhibited by ethanol in response to ionomycin under conditions where phospholipase C activation was prevented. The results suggest that the functional effects of ethanol on collagen-stimulated platelets are due, at least in part, to an inhibition of phospholipase A2. 相似文献
9.
Guijas C Astudillo AM Gil-de-Gómez L Rubio JM Balboa MA Balsinde J 《Biochimica et biophysica acta》2012,1821(11):1386-1393
Cells metabolize arachidonic acid (AA) to adrenic acid (AdA) via 2-carbon elongation reactions. Like AA, AdA can be converted into multiple oxygenated metabolites, with important roles in various physiological and pathophysiological processes. However, in contrast to AA, there is virtually no information on how the cells regulate the availability of free AdA for conversion into bioactive products. We have used a comparative lipidomic approach with both gas chromatography and liquid chromatography coupled to mass spectrometry to characterize changes in the levels of AA- and AdA-containing phospholipid species in RAW 264.7 macrophage-like cells. Incubation of the cells with AA results in an extensive conversion to AdA but both fatty acids do not compete with each other for esterification into phospholipids. AdA but not AA, shows preference for incorporation into phospholipids containing stearic acid at the sn-1 position. After stimulation of the cells with zymosan, both AA and AdA are released in large quantities, albeit AA is released to a greater extent. Finally, a variety of phosphatidylcholine and phosphatidylinositol molecular species contribute to AA; however, AdA is liberated exclusively from phosphatidylcholine species. Collectively, these results identify significant differences in the cellular utilization of AA and AdA by the macrophages, suggesting non-redundant biological actions for these two fatty acids. 相似文献
10.
The previous paper (Biochim. Biophys. Acta 1006 (1989) 272-277) has demonstrated that oligomers of prostaglandin B1 are effective in vitro inhibitors of a wide range of both cell-derived and extracellular phospholipases A2. The present study has investigated the effects of prostaglandin oligomers on agonist-stimulated phospholipase activity on intact human cells. PGBx, an oligomer (n = 6) or PGB1, and PGB-trimer inhibit as much as 95% of the A23187-stimulated release of arachidonic acid from human neutrophils. The effect is dose-dependent, with an IC50 of 4-5 microM; near maximal inhibition is obtained with as little as 1 min of preincubation with PGB-trimer. Consistent with its role as a phospholipase A2 inhibitor, PGB-trimer also inhibits the A23187-stimulated incorporation of [3H]acetate into platelet-activating factor. PGBx and PGB-trimer also inhibit the release of arachidonic acid from human umbilical vein endothelial cells stimulated with histamine, thrombin, or ionophore A23187; inhibition of the basal or unstimulated turnover of both arachidonic acid and oleic acid is also observed. Inhibition by PGB-trimer can be blocked by simultaneous addition of 50 microM albumin; cells preincubated with PGB-trimer are not affected by albumin. Furthermore, removal of exogenous PGB-trimer prior to challenge with A23187 does not reverse the inhibition of either endothelial cells and neutrophils. Thus, prostaglandin B1 oligomers are taken up by human neutrophils and vascular endothelial cells and serve as potent inhibitors of arachidonic acid mobilization. One mechanism for the pharmacological effects of PGBx may be inhibition of cell-associated and extracellular phospholipase A2. 相似文献
11.
Chitosan-induced phospholipase A2 activation and arachidonic acid mobilization in P388D1 macrophages 总被引:8,自引:0,他引:8
We have found that chitosan, a polysaccharide present in fungal cell walls, is able to activate macrophages for enhanced mobilization of arachidonic acid in a dose- and time-dependent manner. Studies aimed at identifying the intracellular effector(s) implicated in chitosan-induced arachidonate release revealed the involvement of the cytosolic Group IV phospholipase A2 (PLA2), as judged by the inhibitory effect of methyl arachidonoyl fluorophosphonate but not of bromoenol lactone. Interestingly, priming of the macrophages with lipopolysaccharide renders the cells more sensitive to a subsequent stimulation with chitosan, and this enhancement is totally blocked by the secretory PLA2 inhibitor 3-(3-acetamide)-1-benzyl-2-ethylindolyl-5-oxy-propanesulfonic acid (LY311727). Collectively, the results of this work establish chitosan as a novel macrophage-activating factor that elicits AA mobilization in P388D1 macrophages by a mechanism involving the participation of two distinct phospholipases A2. 相似文献
12.
Vasta V Meacci E Catarzi S Donati C Farnararo M Bruni P 《Biochimica et biophysica acta》2000,1483(1):154-160
In the present paper, the effect of sphingosine 1-phosphate (Sph-1-P) on arachidonic acid mobilization in A549 human lung adenocarcinoma cells was investigated. Sph-1-P provoked a rapid and relevant release of arachidonic acid which was similar to that elicited by bradykinin, well-known pro-inflammatory agonist. The Sph-1-P-induced release of arachidonic acid involved Ca(2+)-independent phospholipase A(2) (iPLA2) activity, as suggested by the dose-dependent inhibition exerted by the rather specific inhibitor bromoenol lactone. The Sph-1-P-induced release of arachidonic acid was pertussis toxin-sensitive, pointing at a receptor-mediated mechanism, which involves heterotrimeric Gi proteins. The action of Sph-1-P was totally dependent on protein kinase C (PKC) catalytic activity and seemed to involve agonist-stimulated phospholipase D (PLD) activity. This study represents the first evidence for Sph-1-P-induced release of arachidonic acid which occurs through a specific signaling pathway involving Gi protein-coupled receptor(s), PKC, PLD and iPLA2 activities. 相似文献
13.
Pignatelli P Lenti L Sanguigni V Frati G Simeoni I Gazzaniga PP Pulcinelli FM Violi F 《American journal of physiology. Heart and circulatory physiology》2003,284(1):H41-H48
Carnitine is a physiological cellular constituent that favors intracellular fatty acid transport, whose role on platelet function and O(2) free radicals has not been fully investigated. The aim of this study was to seek whether carnitine interferes with arachidonic acid metabolism and platelet function. Carnitine (10-50 microM) was able to dose dependently inhibit arachidonic acid incorporation into platelet phospholipids and agonist-induced arachidonic acid release. Incubation of platelets with carnitine dose dependently inhibited collagen-induced platelet aggregation, thromboxane A(2) formation, and Ca(2+) mobilization, without affecting phospholipase A(2) activation. Furthermore, carnitine inhibited platelet superoxide anion (O(2)(-)) formation elicited by arachidonic acid and collagen. To explore the underlying mechanism, arachidonic acid-stimulated platelets were incubated with NADPH. This study showed an enhanced platelet O(2)(-) formation, suggesting a role for NADPH oxidase in arachidonic acid-mediated platelet O(2)(-) production. Incubation of platelets with carnitine significantly reduced arachidonic acid-mediated NADPH oxidase activation. Moreover, the activation of protein kinase C was inhibited by 50 microM carnitine. This study shows that carnitine inhibits arachidonic acid accumulation into platelet phospholipids and in turn platelet function and arachidonic acid release elicited by platelet agonists. 相似文献
14.
Samar Basu 《Prostaglandins, leukotrienes, and essential fatty acids》2010,82(4-6):219-225
Oxidative stress is implicated as one of the key causes underlying many diseases. Free radicals are important constituents of basal physiology. Assessment of free radicals or the end products of their action has proved to be difficult. Consequently, authentication of the contribution of free radicals to physiology and pathology has usually been equivocal. Isoprostanes are biosynthesized in vivo, predominantly through free radical attack on arachidonic acid and are now regarded as robust biomarkers of oxidative stress in vivo. Isoprostanes are associated with many human diseases, and their concentration is altered over the course of normal human pregnancy, but their (patho)physiological roles have not yet been clearly defined. Measurement of F2-isoprostanes in body fluids could offer a unique analytical opportunity to study the role of free radicals in physiology and pathophysiology in order to comprehend both oxidative strain and oxidative stress. 相似文献
15.
Exposure of mouse peritoneal macrophages to ionophore A23187 caused a rapid and extensive Ca2+-dependent phospholipid degradation and mobilization of arachidonic acid. Phosphatidylinositol, phosphatidylcholine and phosphatidylethanolamine all contributed to the arachidonic acid release, although the ethanolamine phospholipids incorporated [3H]arachidonic acid more slowly during the prelabeling period, particularly the plasmalogen form. Several enzymatic pathways could be positively identified as contributing to the ionophore-induced phospholipid degradation by the use of several different radiolabeled phospholipid precursors: (i) a phospholipase A-mediated deacylation, (ii) a phosphodiesterase (phospholipase C) reaction, rapidly generating diacylglycerol units from inositol phospholipids, and (iii) enzymatic processes generating diacylglycerol and CDP- and phosphocholine/ethanolamine from phosphatidylcholine/ethanolamine. The diacylglycerol formed was in part phosphorylated and in part hydrolyzed to monoacylglycerol, with retention of its arachidonic acid. These, and other, results indicate that the Ca2+-ionophore activates several apparently distinct phospholipid-degrading processes, in contrast to stimuli acting via cellular receptors. 相似文献
16.
Stimulation of phospholipid hydrolysis and arachidonic acid mobilization in human uterine decidua cells by phorbol ester. 总被引:1,自引:0,他引:1
下载免费PDF全文

Vasopressin and oxytocin both stimulated inositol phosphate accumulation in isolated uterine decidua cells. Pretreatment of cells with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) prevented this agonist-induced phosphoinositide hydrolysis. TPA (0.1 microM) alone had no effect on basal inositol phosphate accumulation, but stimulated phosphoinositide deacylation, as indicated by a 2-fold increase in lysophosphatidylinositol and glycerophosphoinositol. TPA also stimulated a dose-related release of arachidonic acid from decidua-cell phospholipid [phosphatidylcholine (PC) much greater than phosphatidylinositol (PI) greater than phosphatidylethanolamine]. The phorbol ester 4 beta-phorbol 12,13-diacetate (PDA) at 0.1 microM had no effect on arachidonic acid mobilization. The TPA-stimulated increase in arachidonic acid release was apparent by 2 1/2 min (116% of control), maximal after 20 min (283% of control), and remained around this value (306% of control) after 120 min incubation. TPA also stimulated significant increases in 1,2-diacylglycerol and monoacylglycerol production at 20 and 120 min. Although the temporal increases in arachidonic acid and monoacylglycerol accumulation in the presence of TPA continued up to 120 min, that of 1,2-diacylglycerol declined after 20 min. In decidua cells prelabelled with [3H]choline, TPA also stimulated a significant decrease in radiolabelled PC after 20 min, which was accompanied by an increased release of water-soluble metabolites into the medium. Most of the radioactivity in the extracellular pool was associated with choline, whereas the main cellular water-soluble metabolite was phosphorylcholine. TPA stimulated extracellular choline accumulation to 183% and 351% of basal release after 5 and 20 min respectively and cellular phosphorylcholine production to 136% of basal values after 20 min. These results are consistent with a model in which protein kinase C activation by TPA leads to arachidonic acid mobilization from decidua-cell phospholipid by a mechanism involving phospholipase A-mediated PI hydrolysis and phospholipase C-mediated PC hydrolysis, coupled with further hydrolysis of the 1,2-diacylglycerol product. 相似文献
17.
van der Vusse Ger J. Cornelussen Richard N. Roemen Theo H.M. Snoeckx Luc H.E.H. 《Molecular and cellular biochemistry》1998,185(1-2):205-211
Heat stress pretreatment of the heart is known to protect this organ against an ischemic/reperfusion insult 24 h later. Degradation of membrane phospholipids resulting in tissue accumulation of polyunsaturated fatty acids, such as arachidonic acid, is thought to play an important role in the multifactorial process of ischemia/reperfusion-induced damage.The present study was conducted to test the hypothesis that heat stress mitigates the postischemic accumulation of arachidonic acid in myocardial tissue, as a sign of enhanced membrane phospholipid degradation. The experiments were performed on hearts isolated from rats either 24 h after total body heat treatment (42°C for 15 min) or 24 h after sham treatment (control). Hearts were made ischemic for 45 min and reperfused for another 45 min.Heat pretreatment resulted in a significant improvement of postischemic hemodynamic performance of the isolated rat hearts. The release of creatine kinase was reduced from 30 ± 14 (control group) to 17 ± 5 units/g wet wt per 45 min (heat-pretreated group) (p < 0.05). Moreover, the tissue content of the inducible heat stress protein HSP70 was found to be increased 3-fold 24 h after heat treatment. Preischemic tissue levels of arachidonic acid did not differ between heat-pretreated and control hearts. The postischemic ventricular content of arachidonic acid was found to be significantly reduced in heat-pretreated hearts compared to sham-treated controls (6.6 ± 3.3. vs. 17.8 ± 12.0 nmol/g wet wt). The findings suggest that mitigation of membrane phospholipid degradation is a potential mechanism of heat stress-mediated protection against the deleterious effects of ischemia and reperfusion on cardiac cells. 相似文献
18.
A role for protein kinase C-mediated phosphorylation in the mobilization of arachidonic acid in mouse macrophages 总被引:1,自引:0,他引:1
Mouse peritoneal macrophages respond to activators of protein kinase C and to zymosan particles and calcium ionophore by rapid enhancement of a phospholipase A pathway and mobilization of arachidonic acid. The pattern of protein phosphorylation induced in these cells by 4 beta-phorbol 12-myristate 13-acetate (PMA), 1,2-dioctanoyl-sn-glycerol, exogenous phospholipase C and by zymosan and ionophore A23187 was found to be virtually identical. The time course of phosphorylation differed among the phosphoprotein bands and in only some of those identified (i.e., those of 45 and 65 kDa) was the phosphorylation sufficiently rapid to be involved in the activation of the phospholipase A pathway. Phosphorylation of lipocortin I or II could not be detected. Down-regulation of kinase C by a 24-h pretreatment with PMA resulted in extensive inhibition of both protein phosphorylation and the mobilization of arachidonic acid in response to PMA or dioctanoylglycerol. The phosphorylation of the 45 kDa protein in response to zymosan and A23187 was also inhibited by pretreatment with PMA, while only arachidonic acid release induced by zymosan was inhibited by this pretreatment. Depletion of intracellular calcium had little effect on kinase C-dependent phosphorylation, although arachidonic acid mobilization is severely inhibited under these conditions. Bacterial lipopolysaccharide and lipid A induced a phosphorylation pattern different from that induced by PMA, and down-regulation of protein kinase C did not affect lipopolysaccharide-induced protein phosphorylation. The results indicate (i) that protein kinase C plays a critical role also in zymosan-induced activation of the phospholipase A pathway mobilizing arachidonic acid; (ii) that such activation requires calcium at some step distal to kinase C-mediated phosphorylation and (iii) that phosphorylation of lipocortins does not explain the kinase C-dependent activation. 相似文献
19.