首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AKV and AKR mink cell focus-forming virus-specific probes from the envelope and long terminal repeat (LTR) regions were prepared for study of the structure of recombinant proviruses in tumor tissues of AKR mice. The results showed that (i) all somatically acquired proviruses possessed, besides a recombinant gp70 gene, an altered U3 LTR; (ii) in a substantial portion of the somatically acquired AKR mink cell focus-forming proviruses, the LTR comprised sequences derived from the same xenotropic-like provirus; (iii) this U3 LTR donating parental provirus (Xeno-dL) was present only once per genome equivalent in several mouse strains; (iv) in the strains containing the Xeno-dL provirus, the provirus was present in the same chromosomal site; (v) restriction analysis of the Xeno-dL revealed that the mink cell focus-forming gp70 sequences were derived from a parental provirus, different from Xeno-dL. Therefore, at least two non-ecotropic parents participate in the generation of leukemogenic AKR mink cell focus-forming viruses: a xenotropic-like virus, Xeno-dL, donating U3 LTR sequences, and another xenotropic-like virus or viruses providing gp70 sequences.  相似文献   

2.
3.
4.
5.
6.
In adult T-cell leukemia (ATL) cells, a defective human T-cell leukemia virus type 1 (HTLV-1) provirus lacking the 5' long terminal repeat (LTR), designated type 2 defective provirus, is frequently observed. To investigate the mechanism underlying the generation of the defective provirus, we sequenced HTLV-1 provirus integration sites from cases of ATL. In HTLV-1 proviruses retaining both LTRs, 6-bp repeat sequences were adjacent to the 5' and 3' LTRs. In 8 of 12 cases with type 2 defective provirus, 6-bp repeats were identified at both ends. In five of these cases, a short repeat was bound to CA dinucleotides of the pol and env genes at the 5' end, suggesting that these type 2 defective proviruses were formed before integration. In four cases lacking the 6-bp repeat, short (6- to 26-bp) deletions in the host genome were identified, indicating that these defective proviruses were generated after integration. Quantification indicated frequencies of type 2 defective provirus of less than 3.9% for two carriers, which are much lower than those seen for ATL cases (27.8%). In type 2 defective proviruses, the second exons of the tax, rex, and p30 genes were frequently deleted, leaving Tax unable to activate NF-kappaB and CREB pathways. The HTLV-1 bZIP factor gene, located on the minus strand, is expressed in ATL cells with this defective provirus, and its coding sequences are intact, suggesting its significance in oncogenesis.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Male GR mice develop T-cell leukemia at low frequency late in life. These leukemia cells invariably contain large amounts of mouse mammary tumor virus (MMTV) RNA and MMTV proteins and have extra MMTV proviruses integrated in their DNA. We show here that the extra MMTV proviruses are all derived from the endogenous MMTV provirus associated with the Mtv-2 locus and that the T-cell leukemias are clonal with respect to the acquired MMTV proviruses. The extra MMTV proviruses in six transplantable T-cell leukemia lines studied had rearranged, shortened long terminal repeats (LTRs); each T-cell leukemia, however, had a different LTR rearrangement within its extra MMTV provirus. The alteration within the extra LTRs of T-cell leukemia line 42 involved deletion of 453 nucleotides and generation of a tandem repeat region consisting of regions flanking the deletion. This alteration generated a sequence similar to the adenovirus enhancer core sequence. The viral RNAs in the T-cell leukemias contained corresponding alterations in their U3 regions. These results demonstrate that expression of MMTV in T-cell leukemias of GR mice may be the consequence of the generation of a novel enhancer, which could also stimulate expression of any adjacent cellular oncogene.  相似文献   

16.
17.
18.
Polytropic murine leukemia viruses (MuLVs) are generated by recombination of ecotropic MuLVs with env genes of a family of endogenous proviruses in mice, resulting in viruses with an expanded host range and greater virulence. Inbred mouse strains contain numerous endogenous proviruses that are potential donors of the env gene sequences of polytropic MuLVs; however, the precise identification of those proviruses that participate in recombination has been elusive. Three different structural groups of proviruses in NFS/N mice have been described and different ecotropic MuLVs preferentially recombine with different groups of proviruses. In contrast to other ecotropic MuLVs such as Friend MuLV or Akv that recombine predominantly with a single group of proviruses, Moloney MuLV (M-MuLV) recombines with at least two distinct groups. In this study, we determined that only three endogenous proviruses, two of one group and one of another group, are major participants in recombination with M-MuLV. Furthermore, the distinction between the polytropic MuLVs generated by M-MuLV and other ecotropic MuLVs is the result of recombination with a single endogenous provirus. This provirus exhibits a frameshift mutation in the 3' region of the surface glycoprotein-encoding sequences that is excluded in recombinants with M-MuLV. The sites of recombination between the env genes of M-MuLV and endogenous proviruses were confined to a short region exhibiting maximum homology between the ecotropic and polytropic env sequences and maximum stability of predicted RNA secondary structure. These observations suggest a possible mechanism for the specificity of recombination observed for different ecotropic MuLVs.  相似文献   

19.
20.
The ras genes of BALB and Harvey sarcoma viruses contain point mutations in codon 12 or codons 12 and 59, relative to proto-ras from normal animal and human cells. By in vitro recombination between cloned rat proto-ras and cloned BALB and Harvey sarcoma proviruses, we constructed recombinant proviruses with normal proto-ras-coding regions. These recombinant proviruses transformed mouse 3T3 cells upon transfection. However, when the transforming efficiencies of proviral DNAs were compared after transfection with helper provirus, recombinant proviruses were 2 to 30 times less efficient than the corresponding wild-type proviruses. Recombinant sarcoma viruses isolated from cells transformed by cloned proviral DNA contained the expected normal ras-coding region. They transformed rat embryo cells and induced erythroblastosis and sarcomas in newborn mice as efficiently as wild-type viruses did. We conclude that conversion of normal proto-ras genes to viral ras genes depends on truncation of normal proto-ras regulatory elements and substitution by retroviral (long terminal repeat) promoters and that the transforming function of long terminal repeat-ras genes is enhanced by point mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号