首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have shown previously that low density lipoprotein (LDL) subjected to vortexing forms self-aggregates that are avidly phagocytosed by macrophages. That phagocytic uptake is mediated by the LDL receptor. We now show that LDL self-aggregation is strongly inhibited (80-95%) by the presence of high density lipoprotein (HDL) or apolipoprotein (apo) A-I. Another type of LDL aggregation, namely that induced by incubation of LDL with phospholipase C, was also markedly inhibited by HDL or apoA-I. The aggregation of LDL induced by vortexing was not inhibited by 2.5 M NaCl, and apoA-I was still able to block LDL aggregation at this high salt concentration, strongly suggesting hydrophobic interactions as the basis for the effect of apoA-I. The fact that apoA-I protected against LDL aggregation induced by two apparently quite different procedures suggests that the aggregation in these two cases has common features. We propose that these forms of LDL aggregation result from the exposure of hydrophobic domains normally masked in LDL and that the LDL-LDL association occurs when these domains interact. ApoA-I, because of its amphipathic character, is able to interact with the exposed hydrophobic domains of LDL and thus block the intermolecular interactions that cause aggregation.  相似文献   

2.
Zhang X  Chen B 《Biological chemistry》2011,392(5):423-429
It has been shown that apolipoprotein A-V (apoA-V) over-expression significantly lowers plasma triglyceride levels and decreases atherosclerotic lesion development. To assess the feasibility of recombinant high density lipoprotein (rHDL) reconstituted with apoA-V and apolipoprotein A-I (apoA-I) as a therapeutic agent for hyperlipidemic disorder and atherosclerosis, a series of rHDL were synthesized in vitro with various mass ratios of recombinant apoA-I and apoA-V. It is interesting to find that apoA-V of rHDL had no effect on lipoprotein lipase (LPL) activation in vitro and very low density lipoprotein (VLDL) clearance in HepG2 cells and in vivo. By contrast, LPL activation and VLDL clearance were inhibited by the addition of apoA-V to rHDL. Furthermore, the apoA-V of rHDL could not redistribute from rHDL to VLDL after incubation at 37°C for 30 min. These findings suggest that an increase of apoA-V in rHDL could not play a role in VLDL clearance in vitro and in vivo, which could, at least in part, attribute to the lost redistribution of apoA-V from rHDL to VLDL and LPL binding ability of apoA-V in rHDL. The therapeutic application of rHDL reconstituted with apoA-V and apoA-I might need the construction of rHDL from which apoA-V could freely redistribute to VLDL.  相似文献   

3.
We prepared and isolated defined, reconstituted high density lipoprotein (r-HDL) particles containing apolipoprotein A-I (apoA-I), palmitoyloleoylphosphatidylcholine, and cholesterol. The initial r-HDL were prepared by the sodium cholate method, then part of the preparation was depleted of phospholipid by exposure to LDL, and the resulting, stable r-HDL species were isolated by gel filtration. The isolated r-HDL were characterized in terms of their size, alpha-helix content, and the conformation of apoA-I as reported by the fluorescence properties of the tryptophan residues. Then the relative reactivity of the r-HDL with lecithin cholesterol acyltransferase was assessed. The isolated, discoidal r-HDL contained 2 and 3 apoA-I molecules/particle, and had 77 and 109 A diameters, respectively. Their spectral properties were essentially identical and were distinct from the larger particles in the class of r-HDL with 2 apoA-I molecules/particle (particles with diameters of 86 and 96 A). In addition, the reactivity of the 77 and 109 A particles with pure lecithin cholesterol acyltransferase was similar and about 10-fold lower than for the 86 and 96 A particles. We conclude that the stable, limiting r-HDL particles in each class (77 and 109 A) can arise from the larger particles of the same class by depletion of phospholipids. These limiting particles have very similar apoA-I conformations, with decreased alpha-helix contents and compact protein regions, that are very poor in activating lecithin cholesterol acyltransferase. Based on these results, we propose a model to explain the origin of the different classes and subclasses of the discoidal r-HDL particles.  相似文献   

4.
Light-dependent Ca2+ efflux via the Ca2+/H+ antiport in the photosynthetic purple sulfur bacterium Chromatium vinosum was inhibited by three phenothiazines: chlorpromazine; trifluoperazine and phenothiazine. The inhibitors had no effect on Ca2+ uptake by C. vinosum in the dark nor any effect on the light-dependent efflux of either Na+ or Tl+ catalyzed, respectively, by the C. vinosum Na+/H+ or K+/H+ antiports. Ruthenium red and LaCl3, neither of which inhibited light-dependent Ca2+ efflux in C. vinosum, markedly inhibited Ca2+ uptake in the dark by C. vinosum cells. Ruthenium red had no effect on the uptake of either Na+or the K+ analog T1+ by C. vinosum cells in the dark. These results have been interpreted in terms of two separate Ca2+ transport systems in C. vinosum: (i) a phenothiazine-sensitive and ruthenium red, La3+-insensitive Ca2+/H+ antiport responsible for Ca2+ efflux in the light; and (ii) a ruthenium red and La3+-sensitive but phenothiazine-insensitive Ca2+ uptake system.  相似文献   

5.
Our aim was to characterize HDL subspecies and fat-soluble vitamin levels in a kindred with familial apolipoprotein A-I (apoA-I) deficiency. Sequencing of the APOA1 gene revealed a nonsense mutation at codon -2, Q[-2]X, with two documented homozygotes, eight heterozygotes, and two normal subjects in the kindred. Homozygotes presented markedly decreased HDL cholesterol levels, undetectable plasma apoA-1, tuboeruptive and planar xanthomas, mild corneal arcus and opacification, and severe premature coronary artery disease. In both homozygotes, analysis of HDL particles by two-dimensional gel electrophoresis revealed undetectable apoA-I, decreased amounts of small alpha-3 migrating apoA-II particles, and only modestly decreased normal amounts of slow alpha migrating apoA-IV- and apoE-containing HDL, while in the eight heterozygotes, there was loss of large alpha-1 HDL particles. There were no significant decreases in plasma fat-soluble vitamin levels noted in either homozygotes or heterozygotes compared with normal control subjects. Our data indicate that isolated apoA-I deficiency results in marked HDL deficiency with very low apoA-II alpha-3 HDL particles, modest reductions in the separate and distinct plasma apoA-IV and apoE HDL particles, tuboeruptive xanthomas, premature coronary atherosclerosis, and no evidence of fat malabsorption.  相似文献   

6.
The fate of apo C in rat plasma very low density lipoprotein (VLDL) during lipolysis was studied using VLDL labeled specifically with 125I-labeled apo C and purified bovine milk lipoprotein lipase. Incubations were carried out in vitro and included serum-containing systems and albumin containing systems. Free fatty acids generation proceeded with time of incubation in the two systems. It, however, was enhanced 1.5--2 fold by the presence of serum. 125I-labeled apo C equilibrated between very low and high density lipoprotein (HDL) in both systems even when enzyme was not present in the incubation medium, or when the incubation was carried out at 0 degrees C. Upon initiation of lipolysis, more 125I-labeled apo C was transferred to HDL and the transfer was proportional to the magnitude of free fatty acids release. 125I-labeled apo C was also progressively removed from VLDL in the albumin-containing system, although no known lipoprotein acceptor to apo C was present in the medium. The 125I-labeled apo C was recovered predominantly with the medium fraction of d greater than 1.21 g/ml (60--70%), and to a lesser degree with that of d= 1.019--1.21 g/ml. However, the relationship between lipolysis (measured as free fatty acids release) and removal of 125I-labeled apo C from VLDL were indistinguinshable in the albumin containing system and the serum containing system. On the basis of these observations, it is postulated that the removal of apo C during lipolysis of VLDL reflects the nature of the partially degraded VLDL particles, and is independent of the presence of a lipoprotein acceptor to apo C.  相似文献   

7.
Incubation of low (LDL), intermediate (IDL), or very low density lipoproteins (VLDL) with palmitic acid and either high density lipoproteins (HDL), delipidated HDL, or purified apolipoprotein (apo) A-I resulted in the formation of lipoprotein particles with discoidal structure and mean particle diameters ranging from 146 to 254 A by electron microscopy. Discs produced from IDL or LDL averaged 26% protein, 42% phospholipid, 5% cholesteryl esters, 24% free cholesterol, and 3% triglycerides; preparations derived from VLDL contained up to 21% triglycerides. ApoA-I was the predominant protein present, with smaller amounts of apoA-II. Crosslinking studies of discs derived from LDL or IDL indicated the presence of four apoA-I molecules per particle, while those derived from large VLDL varied more in size and contained as many as six apoA-I molecules per particle. Incubation of discs derived from IDL or LDL with purified lecithin:cholesterol acyltransferase (LCAT), albumin, and a source of free cholesterol produced core-containing particles with size and composition similar to HDL2b. VLDL-derived discs behaved similarly, although the HDL products were somewhat larger and more variable in size. When discs were incubated with plasma d greater than 1.21 g/ml fraction rather than LCAT, core-containing particles in the size range of normal HDL2a and HDL3a were also produced. A variety of other purified free fatty acids were shown to promote disc formation. In addition, some mono and polyunsaturated fatty acids facilitated the formation of smaller, spherical particles in the size range of HDL3c. Both discoidal and small spherical apoA-I-containing lipoproteins were generated when native VLDL was incubated with lipoprotein lipase in the presence of delipidated HDL. We conclude that lipolysis product-mediated dissociation of lipid-apoA-I complexes from VLDL, IDL, or LDL may be a mechanism for formation of HDL subclasses during lipolysis, and that the availability of different lipids may influence the type of HDL-precursors formed by this mechanism.  相似文献   

8.
C Talussot  G Ponsin 《Biochimie》1991,73(9):1173-1178
Recent reports have shown that apolipoprotein A-I (apo A-I), the major protein of high density lipoprotein (HDL) may exist in different conformational states. We studied the effects of apolipoprotein A-II and/or cholesterol on the conformation of apo A-I in reassembled HDL. Analysis of tryptophan fluorescence quenching in the presence of iodine suggested that cholesterol increased the number of apo A-I tryptophan residues accessible to the aqueous phase, but decreased their mean degree of hydration. These observations cannot be totally explained on the basis of the effect of cholesterol on phospholipid viscosity as determined by fluorescence anisotropy of diphenyl hexatriene. We did not observe any effect of apo A-II on the conformation of apo A-I.  相似文献   

9.
Obese mice without leptin (ob/ob) or the leptin receptor (db/db) have increased plasma HDL levels and accumulate a unique lipoprotein referred to as LDL/HDL1. To determine the role of apolipoprotein A-I (apoA-I) in the formation and accumulation of LDL/HDL1, both ob/ob and db/db mice were crossed onto an apoA-I-deficient (apoA-I(-/-)) background. Even though the obese apoA-I(-/-) mice had an expected dramatic decrease in HDL levels, the LDL/HDL1 particle persisted. The cholesterol in this lipoprotein range was associated with both alpha- and beta-migrating particles, confirming the presence of small LDLs and large HDLs. Moreover, in the obese apoA-I(-/-) mice, LDL particles were smaller and HDLs were more negatively charged and enriched in apoE compared with controls. This LDL/HDL1 particle was rapidly remodeled to the size of normal HDL after injection into C57BL/6 mice, but it was not catabolized in obese apoA-I(-/-) mice even though plasma hepatic lipase (HL) activity was increased significantly. The finding of decreased hepatic scavenger receptor class B type I (SR-BI) protein levels may explain the persistence of LDL/HDL1 in obese apoA-I(-/-) mice. Our studies suggest that the maturation and removal of large HDLs depends on the integrity of a functional axis of apoA-I, HL, and SR-BI. Moreover, the presence of large HDLs without apoA-I provides evidence for an apoA-I-independent pathway of cholesterol efflux, possibly sustained by apoE.  相似文献   

10.
The high density lipoproteins (HDL) in human plasma are classified on the basis of apolipoprotein composition into those containing apolipoprotein (apo) A-I but not apoA-II, (A-I)HDL, and those containing both apoA-I and apoA-II, (A-I/A-II)HDL. Cholesteryl ester transfer protein (CETP) transfers core lipids between HDL and other lipoproteins. It also remodels (A-I)HDL into large and small particles in a process that generates lipid-poor, pre-beta-migrating apoA-I. Lipid-poor apoA-I is the initial acceptor of cellular cholesterol and phospholipids in reverse cholesterol transport. The aim of this study is to determine whether lipid-poor apoA-I is also formed when (A-I/A-II)rHDL are remodeled by CETP. Spherical reconstituted HDL that were identical in size had comparable lipid/apolipoprotein ratios and either contained apoA-I only, (A-I)rHDL, or (A-I/A-II)rHDL were incubated for 0-24 h with CETP and Intralipid(R). At 6 h, the apoA-I content of the (A-I)rHDL had decreased by 25% and there was a concomitant formation of lipid-poor apoA-I. By 24 h, all of the (A-I)rHDL were remodeled into large and small particles. CETP remodeled approximately 32% (A-I/A-II)rHDL into small but not large particles. Lipid-poor apoA-I did not dissociate from the (A-I/A-II)rHDL. The reasons for these differences were investigated. The binding of monoclonal antibodies to three epitopes in the C-terminal domain of apoA-I was decreased in (A-I/A-II)rHDL compared with (A-I)rHDL. When the (A-I/A-II)rHDL were incubated with Gdn-HCl at pH 8.0, the apoA-I unfolded by 15% compared with 100% for the apoA-I in (A-I)rHDL. When these incubations were repeated at pH 4.0 and 2.0, the apoA-I in the (A-I)rHDL and the (A-I/A-II)rHDL unfolded completely. These results are consistent with salt bridges between apoA-II and the C-terminal domain of apoA-I, enhancing the stability of apoA-I in (A-I/A-II)rHDL and possibly contributing to the reduced remodeling and absence of lipid poor apoA-I in the (A-I/A-II)rHDL incubations.  相似文献   

11.
Reconstitution of apolipoprotein A-I was found to occur readily with bovine brain sphingomyelin (BBSM), with a maximum rate occurring at a temperature of 28 degrees C, a temperature approximating the phase transition temperature for this naturally occurring phospholipid. At BBSM:A-I weight ratios of 7.5:1 or less, a single recombinant product was observed which contained three A-I molecules per particle, which had a BBSM:A-I molar ratio of 360 to 1 and which appeared in the electron microscope as a discoidal complex with a thickness of 68 A and a diameter of 217 A. By these criteria, as well as by gel filtration, this product appears very similar to that obtained by recombination of A-I with phosphatidylcholine at elevated ratios of phospholipid/protein. No evidence was found for the existence of any BBSM:A-I complexes comparable to the smaller lecithin:A-I complex containing 200-250 mol of phospholipid and two A-I molecules per complex which has been previously reported. At BBSM:A-I ratios of 15:1 (w/w), a new type of complex was observed which was discoidal by electron microscopy but possessed a larger diameter (390 A) and higher phospholipid:protein molar ratio (535:1) than has been observed previously for recombinant complexes. The BBSM:A-I complexes were found to be significantly more resistant to denaturation by guanidine hydrochloride than the dimyristoyl phosphatidylcholine:A-I recombinant complexes. It is concluded that the mechanisms of interaction between apolipoprotein A-I and either bovine brain sphingomyelin or phosphatidylcholines are similar, but that the nature of the protein-lipid interactions with BBSM are such as to produce larger and more stable complexes than are observed with the phosphatidylcholines.  相似文献   

12.
The lecithin:cholesterol acyltransferase (LCAT)-induced transformation of two discrete species of model complexes that differ in number of apolipoprotein A-I (apoA-I) molecules per particle was investigated. One complex species (designated 3A-I(UC)-complexes) contained 3 apoA-I per particle, was discoidal (13.5 X 4.4 nm), and had a molar composition of 22:78:1 (unesterified cholesterol (UC):egg yolk phosphatidylcholine (egg yolk PC):apoA-I). The other complex species (designated 2A-I(UC)complexes) containing 2 apoA-I per particle was also discoidal (8.4 X 4.1 nm) and had a molar composition of 6:40:1. Transformation of 3A-I(UC)complexes by partially purified LCAT yielded a product (24 hr, 37 degrees C) with a cholesteryl ester (CE) core, 3 apoA-I, and a mean diameter of 9.2 nm. The 2A-I(UC)complexes were only partially transformed to a core-containing product (24 hr, 37 degrees C) which also had 3 apoA-I; this product, however, was smaller (diameter of 8.5 nm) than the product from 3A-I(UC)complexes. Transformation of 3A-I(UC)complexes appeared to result from build-up of core CE directly within the precursor complex. Transformation of 2A-I(UC)complexes, however, followed a stepwise pathway to the product with 3 apoA-I, apparently involving fusion of transforming precursors and release of one apoA-I from the fusion product. In the presence of low density lipoprotein (LDL), used as a source of additional cholesterol, conversion of 2A-I(UC)complexes to the product with 3 apoA-I was more extensive. The transformation product of 3A-I(UC)complexes in the presence of LDL also had 3 apoA-I but was considerably smaller in size (8.6 vs. 9.2 nm, diameter) and had a twofold lower molar content of PC compared with the product formed without LDL. LDL appeared to act both as a donor of UC and an acceptor of PC. Transformation products with 3 apoA-I obtained under the various experimental conditions in the present studies appear to be constrained in core CE content (between 13 to 22 CE per apoA-I; range of 9 CE molecules) but relatively flexible in content of surface PC molecules they can accommodate (between 24 to 49 PC per apoA-I; range of 25 PC molecules). The properties of the core-containing products with 3 apoA-I compare closely with those of the major subpopulation of human plasma HDL in the size range of 8.2-8.8 nm that contains the molecular weight equivalent of 3 apoA-I molecules.  相似文献   

13.
To elucidate further the conformation of human apolipoprotein A-I (apoA-I) in lipid-bound states and its effect on the reaction with lecithin cholesterol acyltransferase (LCAT), we prepared reconstituted HDL (rHDL) particles from a reaction mixture containing dipalmitoylphosphatidylcholine/cholesterol/apoA-I in the molar ratios of 150:7.5:1. The particles were separated by gel filtration into three classes of highly homogeneous and reproducible discs with diameters of 97, 136, and 186 A, containing 2, 3, and 4 molecules of apoA-I/disc, respectively, and increasing proportions of phospholipid and cholesterol. These three classes of particles were then investigated by a variety of fluorescence techniques, to probe the average environment and mobility of the tryptophan (Trp) residues in the structure of apoA-I. We found small, gradual changes in the fluorescence parameters with changes in the size of the rHDL, consistent with a shift of Trp residues to a more hydrophobic and more rigid environment, as well as an increased resistance of apoA-I to denaturation by guanidine hydrochloride in the larger particles. In contrast, circular dichroism measurements and binding studies with seven monoclonal antibodies indicated a similar alpha-helical structure (73%) for apoA-I in all the particles, and similar exposure of apoA-I epitopes in the COOH-terminal two-thirds of the apolipoprotein. Thus the structure of apoA-I is comparable for the three classes of particles and is consistent with the presence of eight alpha-helical segments per apoA-I in contact with the lipid. In addition, we obtained the apparent kinetic parameters for the reaction of the rHDL particles with lecithin cholesterol acyltransferase. The apparent Km values were similar but the apparent Vmax decreased almost 8-fold, going from the 97- to the 186-A particles; therefore, the decreasing reactivity for the larger particles can be attributed mainly to differences in the catalytic rate constant. The rate limiting step is probably affected by local structural differences in the apoA-I, or by the interfacial properties of the lipid.  相似文献   

14.
Endothelial lipase (EL) is a triglyceride lipase gene family member that has high phospholipase and low triglyceride lipase activity. The aim of this study was to determine whether the phospholipase activity of EL is sufficient to remodel HDLs into small particles and mediate the dissociation of apolipoprotein A-I (apoA-I). Spherical, reconstituted HDLs (rHDLs) containing apoA-I only [(A-I)rHDLs], apoA-II only [(A-II)rHDLs], or both apoA-I and apoA-II [(A-I/A-II) rHDLs] were prepared. The rHDLs, which contained only cholesteryl esters in their core and POPC on the surface, were incubated with EL. As the rHDLs did not contain triacylglycerol, only the POPC was hydrolyzed. Hydrolysis was greater in the (A-I/A-II)rHDLs than in the (A-I)rHDLs. The (A-II)rHDL phospholipids were not hydrolyzed by EL. EL remodeled the (A-I)rHDLs and (A-I/A-II)rHDLs, but not the (A-II)rHDLs, into smaller particles. The reduction in particle size was related to the amount of phospholipid hydrolysis, with the diameter of the (A-I/A-II)rHDLs decreasing more than that of the (A-I)rHDLs. These changes did not affect the conformation of apoA-I, and neither apoA-I nor apoA-II dissociated from the rHDLs. Comparable results were obtained when human plasma HDLs were incubated with EL. These results establish that the phospholipase activity of EL remodels plasma HDLs and rHDLs into smaller particles without mediating the dissociation of apolipoproteins.  相似文献   

15.
Clusterin/human complement lysis inhibitor (CLI) is incorporated stoichiometrically into the soluble terminal complement complex and inhibits the cytolytic reaction of purified complement components C5b-9 in vitro. Using an anti-clusterin affinity column, we found that an additional protein component with a molecular mass of 28-kDa co-purifies with clusterin from human plasma. We show by immunoblotting and amino acid sequencing that this component is apolipoprotein A-I (apoA-I). By using physiological salt buffers containing 0.5% Triton X-100, apoA-I is completely dissociated from clusterin bound to the antibody column. Free clusterin immobilized on the antibody-Sepharose selectively retains apoA-I from total human plasma. Delipidated apoA-I and to a lesser extent ultracentrifugation-purified high density lipoproteins (HDL) adsorbed to nitrocellulose also have a binding affinity for purified clusterin devoid of apoA-I. The isolated apoA-I-clusterin complex contains approximately 22% (w/w) lipids which are composed of 54% (mole/mol) total cholesterol (molar ratio of unesterified/esterified cholesterol, 0.58), 42% phospholipids, and 4% triglycerides. In agreement with the low lipid content, apoA-I-clusterin complexes are detected only in trace amounts in HDL fractions prepared by density ultracentrifugation. In free flow isotachophoresis, the purified apoA-I-clusterin complex has the same mobility as the native clusterin complex in human plasma and is found in the slow-migrating HDL fraction of fasting plasma. Our data indicate that clusterin circulates in plasma as a HDL complex, which may serve not only as an inhibitor of the lytic terminal complement cascade, but also as a regulator of lipid transport and local lipid redistribution.  相似文献   

16.
Dissociation of apolipoprotein A-I from pig and steer high density lipoproteins (HDL) deficient in apoA-II was determined by exposing native HDL fractions to 6 M guanidine hydrochloride (Gdn-HCl) at 37 degrees C for periods from 5 min to 18 h. Bovine high density lipoprotein (HDL-B) was isolated at d 1.063--1.100 g/ml while porcine high density lipoprotein (HDL-P) was isolated at d 1.125--1.21 g/ml. Incubation for 5 min with Gdn-HCl resulted in a 45 and 3% loss of apo-A-I from HDL-P and HDL-B, respectively. Exposure to the denaturant for 3 h resulted in a 75% loss of apoA-I from HDL-P and a 30% loss from HDL-B. Analytic ultracentrifugation, patterns paralleled the degree of apoA-I dissociation from each HDL species. The initial flotation peak for HDL-P shifted from F degrees 1.20 2.68 to F degrees 1.20 10.75 after 3 h exposure while HDL-B showed only a small shift from F degrees 1.20 8.30 to F degrees 1.20 8.96 after 3 h exposure. HDL-P particle diameter increased 25% after 5 min of Gdn-HCl treatment and large, flattened structures predominated after 3 h. There was no changes in the size of HDL-B after 5 min exposure and only 16% increase in particle diameter after 3 h. The difference in behavior of HDL-B and HDL-P to Gdn-HCl exposure is discussed in terms of differences in apolipoprotein A-I amino acid composition, interaction of apolipoprotein A-I with phospholipids and the possible involvement of the cholesteryl ester core.  相似文献   

17.
The effects of injection of purified human or rat apolipoprotein (apo) A-I (1.7 mg/100 g body weight) on the size and composition of rat high density lipoprotein (HDL) particles have been investigated. The injection of human apo A-I results in the formation (over a period of 3 to 6 h) of a population of smaller HDL particles resembling human HDL3. This population of smaller particles contains human apo A-I and rat apo A-IV but lacks rat apo A-I and rat apo E. Small HDL3-like particles are not detected in rat plasma following the injection of rat apo A-I. Associated with the injection of either human or rat apo A-I is a gradual increase of plasma cholesterol levels of 20 to 50% (over 24 h) and the appearance of larger HDL particles. The results suggest that the smaller HDL particles in human plasma compared to rat plasma are not simply due to the action of lipid modifying enzymes or lipid transfer proteins but a specific property of human apo A-I.  相似文献   

18.
We compared the in vivo metabolism of prebeta HDL particles isolated by anti-human apolipoprotein A-I (apoA-I) immunoaffinity chromatography (LpA-I) in human apoA-I transgenic (hA-I Tg) mice with that of lipid-free apoA-I (LFA-I) and small LpA-I. After injection, prebeta LpA-I were removed from plasma more rapidly than were LFA-I and small LpA-I. Prebeta LpA-I and LFA-I were preferentially degraded by kidney compared with liver; small LpA-I were preferentially degraded by the liver. Five minutes after tracer injection, 99% of LFA-I in plasma was found to be associated with medium-sized (8.6 nm) HDL, whereas only 37% of prebeta tracer remodeled to medium-sized HDL. Injection of prebeta LpA-I doses into C57Bl/6 recipients resulted in a slower plasma decay compared with hA-I Tg recipients and a greater proportion (>60%) of the prebeta radiolabel that was associated with medium-sized HDL. Prebeta LpA-I contained one to four molecules of phosphatidylcholine per molecule of apoA-I, whereas LFA-I contained less than one. We conclude that prebeta LpA-I has two metabolic fates in vivo, rapid removal from plasma and catabolism by kidney or remodeling to medium-sized HDL, which we hypothesize is determined by the amount of lipid associated with the prebeta particle and the particle's ability to bind to medium-sized HDL.  相似文献   

19.
To examine the consequences of increased apolipoprotein A-I production on cholesterol and lipoprotein metabolism, we have produced two lines of transgenic rats; one expressing moderate and one very high levels of human apolipoprotein A-I. The rats were produced by microinjection of a 13 kbp DNA fragment containing the human apolipoprotein A-I gene plus 10 kbp of its 5′ flanking sequence and 1 kbp of its 3′ flanking sequence. Both lines of transgenic rats express human apolipoprotein A-I mRNA in liver and human apolipoprotein A-I in plasma. Sera from these rats contain significantly higher levels of total apolipoprotein A-I, high density lipoprotein cholesterol and phospholipid than sera from non-transgenic littermates. Transgenic rats expressing high levels of human apolipoprotein A-I have reduced levels of serum rat apolipoprotein A-I suggesting a mechanism exists to down-regulate apolipoprotein A-I production. These transgenic rats provide a unique animal model to examine the effects of increased apolipoprotein A-I production on lipid and lipoprotein metabolism.  相似文献   

20.
Apolipoprotein A-I (apoA-I) is the principal protein of high density lipoprotein particles (HDL). ApoA-I contains a globular N-terminal domain (residues 1-43) and a lipid-binding C-terminal domain (residues 44-243). Here we propose a detailed model for the smallest discoidal HDL, consisting of two apoA-I molecules wrapped beltwise around a small patch of bilayer containing 160 lipid molecules. The C-terminal domain of each monomer is ringlike, a curved, planar amphipathic alpha helix with an average of 3.67 residues per turn, and with the hydrophobic surface curved toward the lipids. We have explored all possible geometries for forming the dimer of stacked rings, subject to the hypothesis that the optimal geometry will maximize intermolecular salt bridge interactions. The resulting model is an antiparallel arrangement with an alignment matching that of the (nonplanar) crystal structure of lipid-free apoA-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号