首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The otic vesicle (otocyst) occupies a pivotal position in inner ear development, bridging the gap between otic placode determination, and morphogenesis of vestibular and auditory compartments. The molecular mechanisms underlying the progressive subdivision of the developing inner ear into different compartments, and the molecular control and execution of the different developmental processes involved, are largely unknown. Since relatively few genes have been implicated in these processes, we have undertaken this study to identify genes involved in these early embryonic stages. We have used cDNA subtractions of mouse otic vesicle against adult liver cDNA, and describe a set of 280 candidate genes. We have also performed otic vesicle RNA hybridizations against DNA chips to not only confirm the efficacy of the library approach, but also to investigate the utility of DNA array alternatives. To begin to dissect potential developmental roles, we investigated the spatial pattern of gene expression for a selected set of 80 genes in developing mouse embryos at mid-gestation by whole-mount in situ hybridization. These data illustrate the compartmentalisation of gene expression in the otic vesicle for the majority of genes tested, and furthermore, implicate many of the genes tested with distinct developmental subprocesses.  相似文献   

2.
The vertebrate inner ear, a complex sensory organ with vestibular and auditory functions, is derived from a single ectoderm structure called the otic placode. Currently, the molecular mechanisms governing the differentiation and specification of the otic epithelium are poorly understood. We present here a detailed expression study of LMO1-4 in the developing mouse inner ear using a combination of in situ hybridization and immunohistochemistry. LMO1 is specifically expressed in the vestibular and cochlear hair cells as well as the vestibular ganglia of the developing inner ear. LMO2 expression is detected in the periotic mesenchyme of the developing mouse cochlea from E12.5 to E14.5. The expression of LMO3 expression is first observed in the cochlea at E13.5 and becomes confined to the lesser epithelial ridge (LER) from E14.5 to E17.5. LMO3 is also expressed in some of the vestibular ganglion cells. LMO4 is initially expressed in the dorsolateral portion of the otic vesicle and its expression persists in the semicircular canals, macula, crista, and the spiral ganglia throughout embryogenesis. Thus, the regionalized expression patterns of LMO1-4 are closely associated with the morphogenesis of the inner ear.  相似文献   

3.
Development of the cartilaginous capsule of the inner ear is dependent on interactions between otic epithelium and its surrounding periotic mesenchyme. During these tissue interactions, factors endogenous to the otic epithelium influence the differentiation of the underlying periotic mesenchyme to form a chondrified otic capsule. We report the localization of Sonic hedgehog (Shh) protein and expression of the Shh gene in the tissues of the developing mouse inner ear. We demonstrate in cultures of periotic mesenchyme that Shh alone cannot initiate otic capsule chondrogenesis. However, when Shh is added to cultured periotic mesenchyme either in combination with otic epithelium or otic epithelial-derived fibroblast growth factor (FGF2), a significant enhancement of chondrogenesis occurs. Addition of Shh antisense oligonucleotide (AS) to cultured periotic mesenchyme with added otic epithelium decreases levels of endogenous Shh and suppresses the chondrogenic response of the mesenchyme cells, while supplementation of Shh AS-treated cultures with Shh rescues cultures from chondrogenic inhibition. We demonstrate that inactivation of Shh by targeted mutation produces anomalies in the developing inner ear and its surrounding capsule. Our results support a role for Shh as a regulator of otic capsule formation and inner ear development during mammalian embryogenesis.  相似文献   

4.
Homologues of Drosophila germ cell determinant genes such as vasa, nanos and tudor have recently been implicated in development of the male germline in mice. In the present study, the mouse gene encoding Tudor domain containing protein 5 (TDRD5) was isolated from a 12.5-13.5 days post coitum (dpc) male-enriched subtracted cDNA library. Whole-mount in situ hybridization analysis of Tdrd5 expression in the mouse embryonic gonad indicated that this gene is upregulated in the developing testis from 12.5 dpc, with expression levels remaining higher in testis than ovary throughout embryogenesis. Expression of Tdrd5 was absent in testes isolated from We/We embryos, which lack germ cells. In situ hybridization (ISH) on cryosectioned 13.5 dpc testes suggests that expression of Tdrd5, like that of Oct4, is restricted to germ cells. Northern hybridization analysis of expression in adult tissues indicated that Tdrd5 is expressed in the testis only, implying that expression of this gene is restricted to the male germline throughout development to adulthood.  相似文献   

5.
Interactions between epithelial and mesenchymal tissues in the developing inner ear direct the formation of its cartilaginous capsule. Recent work indicates that many growth factors are distributed in the early embryo in vivo in a temporal-spatial pattern that correlates with sites of ongoing morphogenetic events. We report here that the localization of transforming growth factor beta 1 (TGF-beta 1) in both epithelial and mesenchymal tissues of the mouse inner ear between 10 and 16 days of embryonic development (E10-E16). In addition, utilizing a high-density culture system as an in vitro model of otic capsule chondrogenesis, we show that modulation of chondrogenesis by TGF-beta 1 in cultured mouse periotic mesenchyme mimics the in vitro effects of otic epithelium on the expression of chondrogenic potential. We provide evidence of a causal relationship of this growth factor to otic capsule formation in situ by demonstrating that the actual sequence of chondrogenic events that occur in the developing embryo is reproduced in culture by the addition of exogenous TGF-beta 1 peptide. Furthermore, in cultures of mesenchyme containing otic epithelium, we demonstrate the localization of endogenous TGF-beta 1, first within the epithelial tissue and later within both the epithelium and its surrounding periotic mesenchyme, contrasted to an absence of endogenous TGF-beta 1 in cultures of mesenchyme alone. Our results suggest that TGF-beta 1 is one of the signal molecules that mediate the effects of otic epithelium in influencing the formation of the cartilaginous otic capsule.  相似文献   

6.
The mammalian sex determining region on the Y chromosome, SRY, is the founding member of the SOX gene family. SOX genes share a common DNA-binding motif termed the HMG box and have diverse roles in vertebrate embryonic development and tissue differentiation. Sox15 expression was analysed during mouse embryogenesis by whole-mount in situ hybridisation and Real Time RT-PCR. Sox15 was found to be expressed in developing mouse gonads from 11.5 dpc to 13.5 dpc with a peak of expression at 12.5 dpc. Expression was approximately twice as high in the male gonad as in the female gonad.  相似文献   

7.
L-azetidine-2-carboxylic acid (LACA), a l-proline analog, disrupts collagen secretion by cells and prevents normal morphogenesis of in vitro developing organ rudiments. Otic explants derived from 10.5-through 14-day-old mouse embryos were continuously exposed to LACA in the nutrient medium at concentrations of 75, 150, and 300 micrograms/ml. LACA disrupted normal in vitro otic morphogenesis in inner ears explanted from embryos of 10.5 through 13 days' gestation. Development of 14-day-old otic explants were not affected by LACA at the concentrations tested. There was a direct correlation between the embryonic age of the explant when exposed to LACA, and the severity of otic dysmorphogenesis. The younger explants (10.5-to 12-day-old) developed abnormalities of both vestibular and auditory structures, but with increasing embryonic age of the explants (12-to 13.5-day-old) abnormalities were confined more to the auditory portion of the inner ear. Disruption of collagen secretion of connective tissue cells of the otic explants are a major teratogenic action of LACA on inner ear development. Disrupted collagen secretion alters otic extracellular matrix production, which in turn affects the tissue interactions that regulate the progressive expression of otic morphogenesis and differentiation.  相似文献   

8.
Components of the Wnt signaling pathway are expressed in the developing inner ear. To explore their role in ear patterning, we used retroviral gene transfer to force the expression of an activated form of beta-catenin that should constitutively activate targets of the canonical Wnt signaling pathway. At embryonic day 9 (E9) and beyond, morphological defects were apparent in the otic capsule and the membranous labyrinth, including ectopic and fused sensory patches. Most notably, the basilar papilla, an auditory organ, contained infected sensory patches with a vestibular phenotype. Vestibular identity was based on: (1) stereociliary bundle morphology; (2) spacing of hair cells and supporting cells; (3) the presence of otoliths; (4) immunolabeling indicative of vestibular supporting cells; and (5) expression of Msx1, a marker of certain vestibular sensory organs. Retrovirus-mediated misexpression of Wnt3a also gave rise to ectopic vestibular patches in the cochlear duct. In situ hybridization revealed that genes for three Frizzled receptors, c-Fz1, c-Fz7, and c-Fz10, are expressed in and adjacent to sensory primordia, while Wnt4 is expressed in adjacent, nonsensory regions of the cochlear duct. We hypothesize that Wnt/beta-catenin signaling specifies otic epithelium as macular and helps to define and maintain sensory/nonsensory boundaries in the cochlear duct.  相似文献   

9.
Background: Retinoic acid (RA) is essential for inner ear development. However, exposure to excess RA at a critical period leads to inner ear defects. These defects are associated with disruption in epithelial–mesenchymal interactions. METHODS: This study investigates the role of Dlx5 in the epithelial–mesenchymal interactions that guide otic capsule chondrogenesis, as well as the effect of excess in utero RA exposure on Dlx5 expression in the developing mouse inner ear. Control of Dlx5 by Fgf3 and Fgf10 under excess RA conditions is investigated by examining the developmental window during which Fgf3 and Fgf10 are altered by in utero RA exposure and by testing the ability of Fgf3 and Fgf10 to mitigate the reduction in chondrogenesis and Dlx5 expression mediated by RA in high‐density cultures of periotic mesenchyme containing otic epithelium, a model of epithelial–mesenchymal interactions in which chondrogenic differentiation of periotic mesenchyme ensues in response to induction by otic epithelium. RESULTS: Dlx5 deletion alters expression of TGFβ1, important for otic capsule chondrogenesis, in the developing inner ear and compromises the ability of cultured periotic mesenchyme containing otic epithelium, harvested from Dlx5 null embryos, to differentiate into cartilage when compared with control cultures. Downregulation in Dlx5 ensues as a consequence of in utero RA exposure in association with inner ear dysmorphogenesis. This change in Dlx5 is noted at embryonic day 10.5 (E10.5), but not at E9.5, suggesting that Dlx5 is not a direct RA target. Before Dlx5 downregulation, Fgf3 and Fgf10 expression is modified in the inner ear by excess RA, with the ability of exogenous Fgf3 and Fgf10 to rescue chondrogenesis and Dlx5 expression in RA‐treated cultures of periotic mesenchyme containing otic epithelium supporting these fibroblast growth factors (FGFs) as intermediary genes by which RA mediates its effects. CONCLUSIONS : Disruption in an Fgf3, ‐10/Dlx5 signaling cascade is operant in molecular mechanisms of inner ear teratogenesis by excess RA. Birth Defects Res (Part B) 2008. ©2008 Wiley‐Liss, Inc.  相似文献   

10.
The vertebrate inner ear consists of a complex labyrinth of epithelial cells that is surrounded by a bony capsule. The molecular mechanisms coordinating the development of the membranous and bony labyrinths are largely unknown. Previously, using avian retrovirus encoding Noggin (RCAS-Noggin) or beads soaked with Noggin protein, we have shown that bone morphogenetic proteins (BMPs) are important for the development of the otic epithelium in the chicken inner ear. Here, using two additional recombinant avian retroviruses, dominant negative and constitutively active forms of BMP receptors IB (BMPRIB), we show that BMPs, possibly acting through BMPRIB, are important for otic capsule formation. We also show that Bmp2 is strongly expressed in the prospective semicircular canals starting from the canal outpouch stage, suggesting that BMP2 plays an important role in canal formation. In addition, by correlating expression patterns of Bmps, their receptors, and localization of phosphorylated R-Smad (phospho R-Smad) immunoreactivity, an indicator of BMP activation, we show that BMPs emanating from the otic epithelium influence chondrogenesis of the otic capsule including the cartilage surrounding the semicircular canals.  相似文献   

11.
12.
To isolate the genes involved in mouse primordial germ cell (PGC) development, we carried out subtraction cDNA cloning between PGC-derived embryonic germ (EG) cells and inner cell mass-derived embryonic stem cells. Among the genes preferentially expressed in EG cells, we found a gene encoding a receptor tyrosine kinase ErbB3. By in situ hybridization and immunohistochemical staining, the expression of ErbB3 as well as that of ErbB2, a coreceptor for ErbB3, was detected in PGCs in genital ridges at 12.5 dpc (days postcoitum). The expression was, however, downregulated at 14.5 dpc when the PGCs underwent growth cessation. Neuregulin-beta, a ligand for ErbB2 and ErbB3, was also expressed in genital ridges. In addition, a recombinant Neuregulin-beta enhanced the number of PGCs in 12.5-dpc embryos in culture. Taken together, these observations suggest that ErbB signaling controls the growth or survival of PGCs in genital ridges.  相似文献   

13.
Cadherins are cell adhesion molecules that have been implicated in development of a variety of organs including the ear. In this study we analyzed expression patterns of three zebrafish cadherins (Cadherin-2, -4, and -11) in the embryonic and larval zebrafish inner ear using both in situ hybridization and immunocytochemical methods. All three Cadherins exhibit distinct spatiotemporal patterns of expression during otic vesicle morphogenesis. Cadherin-2 and Cadherin-4 proteins and their respective mRNAs were detected mainly in the sensory patches and the statoacoustic ganglion (SAg), respectively. In contrast, cadherin-11mRNA was widely expressed earlier in the otic placode, and later became restricted to a subset of cells in the inner ear, including hair cells.  相似文献   

14.
15.
16.
Competence, specification and commitment in otic placode induction   总被引:3,自引:0,他引:3  
The inner ear is induced from cranial ectoderm adjacent to the hindbrain. Despite almost a century of study, the molecular mechanisms of inner ear induction remain obscure. We have identified four genes expressed very early in the anlage of the inner ear, the otic placode. Pax-2, Sox-3, BMP-7 and Notch are all expressed in placodal ectoderm from the 4-5 somite stage (ss) onwards, well before the otic placode becomes morphologically visible at the 12-14ss. We have used these four molecular markers to show that cranial ectoderm becomes specified to form the otic placode at the 4-6ss, and that this ectoderm is committed to a placodal fate by the 10ss. We also demonstrate that much of the embryonic ectoderm is competent to generate an otic placode if taken at a sufficiently early age. We have mapped the location of otic placode-inducing activity along the rostrocaudal axis of the embryo, and have determined that this activity persists at least until the 10ss. Use of the four molecular otic placode markers suggests that induction of the otic placode in birds occurs earlier than previously thought, and proceeds in a series of steps that are independently regulated.  相似文献   

17.
Requirements for FGF3 and FGF10 during inner ear formation   总被引:8,自引:0,他引:8  
Members of the fibroblast growth factor (FGF) gene family control formation of the body plan and organogenesis in vertebrates. FGF3 is expressed in the developing hindbrain and has been shown to be involved in inner ear development of different vertebrate species, including zebrafish, Xenopus, chick and mouse. In the mouse, insertion of a neomycin resistance gene into the Fgf3 gene via homologous recombination results in severe developmental defects during differentiation of the otic vesicle. We have addressed the precise roles of FGF3 and other FGF family members during formation of the murine inner ear using both loss- and gain-of-function experiments. We generated a new mutant allele lacking the entire FGF3-coding region but surprisingly found no evidence for severe defects either during inner ear development or in the mature sensory organ, suggesting the functional involvement of other FGF family members during its formation. Ectopic expression of FGF10 in the developing hindbrain of transgenic mice leads to the formation of ectopic vesicles, expressing some otic marker genes and thus indicating a role for FGF10 during otic vesicle formation. Expression analysis of FGF10 during mouse embryogenesis reveals a highly dynamic pattern of expression in the developing hindbrain, partially overlapping with FGF3 expression and coinciding with formation of the inner ear. However, FGF10 mutant mice have been reported to display only mild defects during inner ear differentiation. We thus created double mutant mice for FGF3 and FGF10, which form severely reduced otic vesicles, suggesting redundant roles of these FGFs, acting in combination as neural signals for otic vesicle formation.  相似文献   

18.
Frenz DA  Liu W 《Teratology》2000,61(4):297-304
Background: Previous studies have shown that in utero exposure of the mouse embryo to high doses of all-trans-retinoic acid (atRA) produces defects of the developing inner ear and its surrounding cartilaginous capsule, while exposure of cultured periotic mesenchyme plus otic epithelium to high doses of exogenous atRA results in an inhibition of otic capsule chondrogenesis. Methods: In this study, we examine the effects of atRA exposure on the endogenous expression of transforming growth factor-beta(1) (TGF-beta(1)), a signaling molecule that mediates the epithelial-mesenchymal interactions that guide the development of the capsule of the inner ear. Results: Our results demonstrate a marked reduction in immunostaining for TGF-beta(1) in the periotic mesenchyme of atRA-exposed embryos of age E10.5 and E12 days in comparison with control specimens. Consistent with these in vivo findings, high-density cultures of E10.5 periotic mesenchyme plus otic epithelium, treated with doses of atRA that suppress chondrogenesis, showed significantly decreased levels of TGF-beta(1), as compared with TGF-beta(1) levels in untreated control cultures. Furthermore, we demonstrate a rescue of cultured periotic mesenchyme plus otic epithelium from atRA-induced chondrogenic suppression by supplementation of cultures with excess TGF-beta(1). Conclusions: Our results support the hypothesis that TGF-beta(1) plays a role in mechanisms of atRA teratogenicity during inner ear development.  相似文献   

19.
20.
Hoxa4 expression in developing mouse hair follicles and skin   总被引:1,自引:0,他引:1  
We have examined the expression of the Hoxa4 gene in embryonic vibrissae and developing and cycling postnatal pelage hair follicles by digoxigenin-based in situ hybridization. Hoxa4 expression is first seen in E13.5 vibrissae throughout the follicle placode. From E15.5 to E18.5 its expression is restricted to Henle's layer of the inner root sheath. Postnatally, Hoxa4 expression is observed at all stages of developing pelage follicles, from P0 to P4. Sites of expression include both inner and outer root sheaths, matrix cells, and the interfollicular epidermis. Hoxa4 is not expressed in hair follicles after P4. Hoxb4, however, is expressed both in developing follicles at P2 and in catagen at P19, suggesting differential expression of these two paralogous genes in the hair follicle cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号