首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L Ramdas  R M Disher  T G Wensel 《Biochemistry》1991,30(50):11637-11645
Transducin, the signal coupling protein of retinal rod photoreceptor cells, is one of a family of G proteins that can be inactivated by pertussis toxin. We have investigated the nature of this inactivation in order to determine (1) whether it requires the toxin-catalyzed transfer of ADP-ribose from NAD+ to cysteine-347 of the alpha subunit and (2) whether it involves locking the alpha subunit in the inactive conformation characteristic of its GDP-bound state, or is limited to disruption of binding to photoexcited rhodopsin (R*). Our results indicate that all observed effects of pertussis toxin treatment, including a shift in the electrophoretic mobility of transducin's alpha subunit and functional inactivation, require NAD+ and that the appearance of the shift parallels incorporation of ADP-ribose. We have also found that, apart from interactions with photoexcited rhodopsin, the functional properties of ADP-ribosylated transducin are essentially the same as those of unmodified transducin. Normal spontaneous nucleotide exchange kinetics and the ability to activate cGMP phosphodiesterase are preserved following quantitative ADP-ribosylation, as are the abilities to hydrolyze GTP, to bind to a dye affinity column, and to display enhanced fluorescence upon addition of Al3+ and F-. Thus, ADP-ribosylation merely blocks catalysis of transducin nucleotide exchange by R* and does not lock transducin in an inactive state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
B Eide  P Gierschik  A Spiegel 《Biochemistry》1986,25(21):6711-6715
Rabbits immunized with ADP-ribose chemically conjugated to carrier proteins developed antibodies reactive against guanine nucleotide binding proteins (G proteins) that had been mono-ADP-ribosylated by bacterial toxins. Antibody reactivity on immunoblots was strictly dependent on incubation of substrate proteins with both toxin and NAD and was quantitatively related to the extent of ADP-ribosylation. Gi, Go, and transducin (ADP-ribosylated by pertussis toxin) and elongation factor II (EF-II) (ADP-ribosylated by pseudomonas exotoxin) all reacted with ADP-ribose antibodies. ADP-ribose antibodies detected the ADP-ribosylation of an approximately 40-kilodalton (kDa) membrane protein related to Gi in intact human neutrophils incubated with pertussis toxin and the ADP-ribosylation of an approximately 90-kDa cytosolic protein, presumably EF-II, in intact HUT-102 cells incubated with pseudomonas exotoxin. ADP-ribose antibodies represent a novel tool for the identification and study of G proteins and other substrates for bacterial toxin ADP-ribosylation.  相似文献   

3.
Mono(ADP-ribosylation) in rat liver mitochondria   总被引:3,自引:0,他引:3  
B Frei  C Richter 《Biochemistry》1988,27(2):529-535
This paper investigates protein mono(ADP-ribosylation) in rat liver mitochondria. In isolated inner mitochondrial membranes, in the presence of both ADP-ribose and NAD+, a protein is mono-(ADP-ribosylated) with high specificity. The reaction apparently consists of enzymatic NAD+ glycohydrolysis and subsequent binding of free ADP-ribose to the acceptor protein. In terms of chemical stability, the resulting bond is unique among the ADP-ribose linkages thus far characterized. Formation of a Schiff base adduct between free ADP-ribose and the acceptor protein is excluded. In intact mitochondria at least three classes of proteins are ADP-ribosylated in vivo. One ADP-ribose-protein linkage is of the carboxylate ester type as indicated by its lability in neutral buffer. Another class of ADP-ribosylated proteins requires hydroxylamine for release of ADP-ribose. The third class is stable in hydroxylamine but labile to alkali, similar to the ADP-ribose-cysteine linkage in transducin formed by pertussis toxin.  相似文献   

4.
Purified recombinant S1 subunit of pertussis toxin (rS1) possessed similar NAD glycohydrolase and ADP-ribosyltransferase activities as S1 subunit purified from pertussis toxin. Purified rS1 and C180 peptide, a deletion peptide which contains amino acids 1-180 of rS1, had Km values for NAD of 24 and 13 microM and kcat values of 22 and 24 h-1, respectively, in the NAD glycohydrolase reaction. In contrast, under linear velocity conditions, the C180 peptide possessed less than 1% of the ADP-ribosyltransferase activity of rS1 using transducin as target. Radiolabeled tryptic peptides of transducin that had been ADP-ribosylated by either rS1 or C180 peptide were identical which suggested that both rS1 and C180 peptide ADP-ribosylated the same amino acid within transducin. To extend the functional primary amino acid map of the S1 subunit, two carboxyl-terminal deletions were constructed. One deletion, C195, removed the 40 carboxyl-terminal amino acids and the other, C219, removed the 16 carboxyl-terminal amino acids of the S1 subunit. Both C195 and C219 migrated in reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis with apparent molecular masses of 22,000 and 27,500 Da, respectively. Relative to the C180 peptide C195 possessed 10-20-fold increase and C219 possessed 100-150-fold increase in ADP-ribosyltransferase activities. In addition, C219 appeared to have the same ADP-ribosyltransferase activity as rS1. These studies indicate that (i) rS1, purified from Escherichia coli, possesses biochemical properties similar to S1 subunit purified from pertussis toxin, (ii) amino acids 1-180 of the S1 subunit contain residues required for NAD binding, N-glycosidic cleavage, and transfer of ADP-ribose to transducin, and (iii) residues between 181 and 219 of the S1 subunit are required for efficient ADP-ribosyltransferase activity.  相似文献   

5.
Adenine nucleotides directly stimulate pertussis toxin   总被引:6,自引:0,他引:6  
Both cholera toxin and pertussis toxin catalyzed ADP-ribosylation of purified bovine brain tubulin. The effect of cholera toxin was evident in the absence or presence of nucleotides. In contrast, pertussis toxin required adenine nucleotides for its ADP-ribosylating activity. ATP, ATP gamma S, App(NH)p, deoxy-ATP, and ADP all supported pertussis toxin-catalyzed ADP-ribosylations in the absence or presence of EDTA, suggesting that nucleotide hydrolysis was not involved. Adenine nucleotides also promoted pertussis toxin-catalyzed ADP-ribosylation of heat-treated bovine serum albumin. This result suggests that adenine nucleotides directly affect pertussis toxin. ATP stimulation of pertussis toxin-catalyzed hydrolysis of NAD to ADP-ribose supports this hypothesis.  相似文献   

6.
The kinetic constants for the ADP-ribosylation of transducin were determined for the recombinant S1 subunit of pertussis toxin (rS1, composed of 235 amino acids) and two genetically derived deletion peptides, C180 and C195, which are composed of the 180 and 195 amino-terminal residues of the S1 subunit, respectively. Titration of NAD in the presence of a constant concentration of transducin (0.5 microM) showed that the KmappNAD in the ADP-ribosylation of transducin were similar, approximately 20 microM, for rS1, C195, and C180. In contrast, titration of transducin in the presence of a constant concentration of NAD (25 nM) showed that rS1 possessed a lower Kmapp(transducin) and greater kcat than either C195 or C180. Previous studies (Cortina, G., and Barbieri, J.T. (1991) J. Biol. Chem. 266, 3022-3030) showed that the 16 carboxyl terminal residues of the S1 subunit did not function in the ADP-ribosylation of transducin. It thus appears that residues between 195 and 219 of the S1 subunit are required for high affinity transducin binding and may be involved in the transfer of ADP-ribose to transducin. To localize the defect in the recognition of transducin by C180, rS1 and C180 were assayed for the ability to ADP-ribosylate either transducin or the purified alpha subunit of transducin (T alpha). Upon saturation of the target protein, rS1 ADP-ribosylated equivalent moles of transducin or T alpha, with the linear velocity of rS1-mediated ADP-ribosylation of transducin approximately 16-fold more rapid than the rate of ADP-ribosylation of T alpha. In contrast, the initial linear velocity of C180-mediated ADP-ribosylation of transducin was only 1.7-fold more rapid than the rate of ADP-ribosylation of T alpha. These data indicate that the amino-terminal 180 amino acids of S1 confer the specificity for ADP-ribosylation primarily through the interaction with T alpha, while residues between 195 and 219 of S1 confer high affinity binding to transducin primarily through the interaction, either directly or indirectly, with T beta gamma.  相似文献   

7.
Certain microbial toxins are ADP-ribosyltransferases, acting on specific substrate proteins. Although these toxins have been of great utility in studies of cellular regulatory processes, a simple procedure to directly study toxin-catalyzed ADP-ribosylation in intact cells has not been described. Our approach was to use [2-3H]adenine to metabolically label the cellular NAD+ pool. Labeled proteins were then denatured with SDS, resolved by PAGE, and detected by flurography. In this manner, we show that pertussis toxin, after a dose-dependent lag period, [3H]-labeled a 40-kD protein intact cells. Furthermore, incubation of the gel with trichloroacetic acid at 95 degrees C before fluorography caused the release of label from bands other than the pertussis toxin substrate, thus, allowing its selective visualization. The modification of the 40-kD protein was ascribed to ADP-ribosylation of a cysteine residue on the basis of inhibition of labeling by nicotinamide and the release of [3H]ADP-ribose from the labeled protein by mercuric acetate. Cholera toxin catalyzed the [3H]-labeling of a 46-kD protein in the [2-3H]adenine-labeled cells. Pretreatment of the cells with pertussis toxin before the labeling of NAD+ with [2-3H]adenine blocked [2-3H]ADP-ribosylation catalyzed by pertussis toxin, but not that by cholera toxin. Thus, labeling with [2-3H]adenine permits the study of toxin-catalyzed ADP-ribosylation in intact cells. Pasteurella multocida toxin has recently been described as a novel and potent mitogen for Swiss 3T3 cell and acts to stimulate the phospholipase C-mediated hydrolysis of polyphosphoinositides. The basis of the action of the toxin is not known. Using the methodology described here, P. multocida toxin was not found to act by ADP-ribosylation.  相似文献   

8.
We reported previously that the ADP-ribosyltransferase in C1 and D botulinum toxins specifically catalyzes ADP-ribosylation of an Mr 22,000 guanine nucleotide-binding protein and that this substrate named Gb (b = botulinum) has an amino acid sequence homologous to that deduced from the rho gene (Narumiya, S., Sekine, A., and Fujiwara, M. (1988) J. Biol. Chem. 263, 17255-17257). In this study we have determined the amino acid sequence at its ADP-ribosylation site. Purified substrate was [32P]ADP-ribosylated by C1 botulinum toxin and digested with trypsin. The radioactive peptides were isolated by reversed-phase high performance liquid chromatography and digested further either with protease V8, with proteases V8 and thermolysin, or with proline endopeptidase and thermolysin. By this procedure three radioactive peptides were obtained, and their amino acid sequences were X-Tyr-Val-Ala-Asp-Ile-Glu, X-Tyr, and Val-Phe-Glu-X-Tyr in which no amino acid peak was found in X. During the sequencing the radioactivity quantitatively adhered to the sequencing filter and was not eluted with either of the identified amino acid residues. Analysis of the protein without the ADP-ribosylation yielded the corresponding sequence as Thr-Val-Phe-Glu-Asn-Tyr which corresponds to Thr37-Tyr42 in the amino acid sequence deduced from the Aplysia rho gene. These results strongly suggest that the asparagine residue is the ADP-ribosylation site in the rho gene product. This ADP-ribose protein bond was stable in 0.5 M hydroxylamine at pH 7.5 at 37 degrees C for at least 5 h. The ADP-ribosylation of this protein affected neither its GTPase- nor its [35S]guanosine 5'-O-thiotriphosphate-binding activity.  相似文献   

9.
Hydroxylamine stability has been used to classify (ADP-ribose)protein bonds into sensitive and resistant linkages, with the former representing (ADP-ribose)glutamate, and the latter, (ADP-ribose)arginine. Recently, it was shown that cysteine also serves as an ADP-ribose acceptor. The hydroxylamine stability of [cysteine([32P]ADP-ribose)]protein and [arginine([32P] ADP-ribose)]protein bonds was compared. In transducin, pertussis toxin catalyzes the ADP-ribosylation of a cysteine residue, whereas choleragen (cholera toxin) modifies an arginine moiety. The (ADP-ribose)cysteine bond formed by pertussis toxin was more stable to hydroxylamine than was the (ADP-ribose)arginine bond formed by choleragen. The (ADP-ribose)cysteine bond apparently represents a third class of ADP-ribose bonds. Pertussis toxin ADP-ribosylates the inhibitory guanyl nucleotide-binding regulatory protein (Gi) of adenylate cyclase, whereas choleragen modifies the stimulatory guanyl nucleotide-binding regulatory protein (Gs). These (ADP-ribose)protein linkages are identical in stability to those formed in transducin by the two toxins, consistent with the probability that cysteine and arginine are modified in Gi and Gs, respectively. Bonds exhibiting differences in hydroxylamine-stability were found in membranes from various non-intoxicated mammalian cells following incubation with [32P]NAD, which may reflect the presence of endogenous NAD:protein-ADP-ribosyl-transferases.  相似文献   

10.
The guanine nucleotide-binding protein G(o alpha) has been implicated in the regulation of Ca2+ channels in neural tissues. Covalent modification of G(o alpha) by pertussis toxin-catalyzed ADP-ribosylation of a cysteine (position 351) four amino acids from the carboxyl terminus decouples G(o alpha) from receptor. To define the structural requirements for ADP-ribosylation, preparations of recombinant G(o alpha) with mutations within the five amino acids at the carboxyl terminus were evaluated for their ability to serve as pertussis toxin substrates. As expected, the mutant in which cysteine 351 was replaced by glycine (C351G) was not a toxin substrate. Other inactive mutants were G352D and L353 delta/Y354 delta. Mutations that had no significant effect on toxin-catalyzed ADP-ribosylation included G350D, G350R, Y354 delta, and L353V/Y354 delta. Less active mutants were L353G/Y354 delta, L353A/Y354 delta, and L353G. ADP-ribosylation of the active mutants, like that of wild-type G(o alpha), was enhanced by the beta gamma subunits of bovine transducin. It appears that three of the four terminal amino acids critically influence pertussis toxin-catalyzed ADP-ribosylation of G(o alpha).  相似文献   

11.
ADP-ribosylation of transducin by pertussis toxin   总被引:8,自引:0,他引:8  
Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is [32P]ADP-ribosylated by pertussis toxin and [32P]NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and 32 kDa. The amino terminus of both 38- and 32-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The 32-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of [32P]ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [32P]ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed [32P]ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma. The amino terminus of T alpha, while it does not contain the pertussis toxin ADP-ribosylation site, appeared critical to its reactivity.  相似文献   

12.
ADP-ribosylation of bovine S-antigen by cholera toxin   总被引:2,自引:0,他引:2  
The S-antigen (alias 48K protein or arrestin) of bovine rod photoreceptors contains two stretches of amino acid sequence homologous to the ADP-ribosylation sites of the alpha subunit of transducin (Ta). We have found that cholera toxin transfers the ADP-ribosyl group from NAD to purified bovine S-antigen as well as to S-antigen in rod outer segment membranes, while Bordetella pertussis toxin is unable to catalyze the transfer reaction efficiently. Under the same conditions, both toxins catalyzed ADP-ribosylation of Ta in rod outer segments. The ADP-ribosylation of S-antigen by cholera toxin indicates that S-antigen not only exhibits sequence homology with the ADP-ribosylation sites of Ta, but it must also resemble Ta in the tertiary structure of the domain which determines the susceptibility of S-antigen to the catalytic action of cholera toxin. These results suggest that S-antigen may function as a competitor of Ta in some stage of the cGMP cascade of visual transduction.  相似文献   

13.
Anti-[ADP-ribosylated elongation factor 2 (EF-2)] antiserum has been used to immunoprecipitate the modified form of EF-2 from polyoma-virus-transformed baby hamster kidney (pyBHK) cells [Fendrick, J. L. & Iglewski, W. J. (1989) Proc. Natl Acad. Sci. USA 86, 554-557]. This antiserum also immunoprecipitates a 32P-labelled protein of similar size to EF-2 from a variety of primary and continuous cell lines derived from many species of animals. One of these cell lines, chinese hamster ovary CHO-K1 cells was further characterized. The time course of labelling of ADP-ribosylated EF-2 with [32P]orthophosphate was similar in pyBHK cells and in CHO-K1 cells. The kinetics of labelling were more rapid for cells cultured in 2% serum than 10% serum, with incorporation of 32P reaching a maximum at 6 h and 10 h, respectively. EF-2 mutants of pyBHK and CHO-K1 cells resistant to diphtheria-toxin-catalyzed ADP-ribosylation of EF-2 remain sensitive to cellular ADP-ribosylation of EF-2. The 32P-labelled moiety of ADP-ribosylated EF-2 was digested by snake venom phosphodiesterase and the product was identified as AMP. The same 32P-labelled tryptic peptide was modified by toxin in wild-type EF-2 and by the cellular transferase in mutant EF-2. When purified EF-2 from pyBHK cells was incubated with [carbonyl-14C]nicotinamide and diphtheria toxin fragment A, under conditions for reversal of the ADP-ribosylation reaction, [14C]NAD was generated. The results suggest that cellular ADP-ribosylated EF-2 exists in a variety of cell types, and the ribosylated product is identical to that produced by toxin ADP-ribosylation of EF-2, except in diphthamide mutant cells. Studies with the mutant cell lines indicate that the toxin and the cellular transferase, however, recognize different determinants at the ADP-ribose acceptor site in EF-2. The cellular transferase does not require the diphthamide modification of the histidine ring in the amino acid sequence of EF-2 for the transfer of ADP-ribose to the ring. Therefore, we would expect the cellular transferase active site to be similar to, but not identical to, the critical amino acids demonstrated in the active site of diphtheria toxin and Pseudomonas exotoxin A.  相似文献   

14.
The majority of the biological effects of pertussis toxin (PT) are the result of a toxin-catalyzed transfer of an adenosine diphosphate-ribose (ADP-ribose) moiety from NAD(+)to the alpha-subunits of a subset of signal-transducing guanine-nucleotide-binding proteins (G-proteins). This generally leads to an uncoupling of the modified G-protein from the corresponding receptor and the loss of effector regulation. This assay is based on the PT S1 subunit enzymatic transfer of ADP-ribose from NAD to the cysteine moiety of a fluorescent tagged synthetic peptide homologous to the 20 amino acid residue carboxyl-terminal sequence of the alpha-subunit of the G(i3)protein. The tagged peptide and the ADP-ribosylated product were characterized by HPLC/MS and MS/MS for structure confirmation. Quantitation of this characterized ADP-ribosylated fluorescently tagged peptide was by HPLC fluorescence using Standard Addition methodology. The assay was linear over a five hr incubation period at 20 degrees C at PT concentrations between 0.0625 and 4.0 microg/ml and the sensitivity of the assay could be increased several fold by increasing the incubation time to 24 h. Purified S1 subunit of PT exhibited 68.1+/-10.1% of the activity of the intact toxin on a molar basis, whereas the pertussis toxin B oligomer, the genetically engineered toxoid, (PT-9K/129G), and several of the other components of the Bordetella pertussis organism possessed little (<0.6%) or no detectable ribosylation activity. Commonly used pertussis vaccine reference materials, US PV Lot #11, BRP PV 66/303, and BRP PV 88/522, were assayed by this method against Bordetella pertussis Toxin Standard 90/518 and demonstrated to contain, respectively, 0.323+/-0.007, 0.682+/-0.045, and 0.757+/-0.006 microg PT/ml (Mean+/-SEM) or in terms of microg/vial: 3.63, 4.09 and 4.54, respectively. A survey of several multivalent pertussis vaccine products formulated with both whole cell as well as acellular components indicated that products possessed a wide range of ribosylation activities. The pertussis toxin S1 subunit catalyzed ADP- ribosylation of the FAC-Galpha(i3)C20 peptide substrate and its subsequent quantitation by HPLC was demonstrated to be a sensitive and quantitative method for measuring intrinsic pertussis toxin activity. This methodology not only has the potential to be an alternative physicochemical method to replace existing bioassay methodology, but has the added advantage of being a universal method applicable to the assay of pertussis toxin in both whole cell and acellular vaccines as well as bulk and final formulated vaccine products. Acceptance of this method by regulatory agencies and industry as a credible alternative to existing methods would, however, require validation in an international collaborative study against the widely accepted bioassay methods.  相似文献   

15.
The reverse reaction of the ADP-ribosylation of actin by Clostridium botulinum C2 toxin and Clostridium perfringens iota-toxin was studied. In the presence of nicotinamide (30-50 mM) C2 toxin and iota-toxin decreased the radioactive labeling of [32P]ADP-ribosylated actin and catalyzed the formation of [32P]NAD. The pH optima for both reactions were 5.5-6.0. Concomitant with the removal of ADP-ribose, the ability of actin to polymerize was restored and actin ATPase activity increased. Neither ADP-ribosylation nor removal of ADP-ribose was observed after treatment of actin with EDTA, indicating that the native structure of actin is required for both reactions. ADP-ribosylation of platelet actin by C2 toxin was reversed by iota-toxin, confirming recent reports that both toxins modify the same amino acid in actin. However, C. botulinum C2 toxin was not able to cleave ADP-ribose from skeletal muscle actin which had been incorporated by iota-toxin, corroborating the different substrate specificities of both toxins.  相似文献   

16.
Bovine cerebral cortex contains two major substrates for ADP-ribosylation by pertussis toxin: a 39-kDa protein, alpha 39, and a 41-kDa protein, alpha 41 (Neer, E. J., Lok, J. M., and Wolf, L. G. (1984) J. Biol. Chem. 259, 14222-14229). Both of these proteins bind guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) with a similar affinity (Kd = 30 +/- 10 nM for alpha 39, Kd = 32 +/- 14 nM for alpha 41). Both proteins associate with a beta X gamma subunit made up of a 36-kDa beta component and a 6-kDa gamma component. We have previously shown that the beta X gamma unit is required for pertussis toxin-catalyzed ADP-ribosylation (Neer et al. (1984)). By measuring the amount of beta X gamma required for maximal incorporation of ADP-ribose, we now find that the EC50 for beta X gamma in this reaction is 3 +/- 1 times lower for alpha 41 than for alpha 39. ADP-ribosylation by pertussis toxin does not prevent dissociation of alpha 41 X beta X gamma or alpha 39 X beta X gamma by GTP gamma S. GTP gamma S decreases the sedimentation coefficient of ADP-ribosylated alpha 41 from 4.2 S to 3.0 S and the sedimentation coefficient of ADP-ribosylated alpha 39 from 4.3 S to 2.9 S. The conclusion that GTP gamma S dissociates both ADP-ribosylated heterotrimers was confirmed by the observation that GTP gamma S blocks precipitation of ADP-ribosylated alpha 39 or alpha 41 by anti-beta antibody. Neither alpha 41 X beta X gamma nor alpha 39 X beta X gamma is dissociated by GTP whether or not the proteins are ADP-ribosylated. The observation that alpha 41 more readily associates with beta X gamma than does alpha 39 may explain our earlier observation that alpha 41 is more readily ADP-ribosylated than alpha 39. In most intact membranes, only a 41-kDa ADP-ribosylated protein is seen. However, alpha 39 is also present in most tissues since we can detect it with anti-alpha 39 antibody. The functional consequences of pertussis toxin treatment may depend on whether one or both proteins are ADP-ribosylated. This in turn may depend on the ratio of alpha 41 and alpha 39 to beta X gamma in a given tissue.  相似文献   

17.
ADP-ribosylation of a Mr 21,000 membrane protein by type D botulinum toxin   总被引:5,自引:0,他引:5  
When crude membrane fraction from bovine adrenal gland was incubated with type D botulinum toxin in the presence of NAD, a membrane protein with a molecular weight of 21,000 was specifically ADP-ribosylated. This ADP-ribosylation occurred dependent on the dose of the toxin and was abolished by prior boiling ADP-ribose transfer to the membrane protein was significantly suppressed when agmatine and L-arginine methyl ester were included in the reaction mixture. Dithiothreitol stimulated this ADP-ribosylation about 3-fold. Incubation of membrane fractions from mouse brain and pancreas with this toxin also resulted in ADP-ribosylation of a protein of the same molecular weight. These results suggested that type D botulinum toxin catalyzed transfer of an ADP-ribose moiety of NAD to the specific membrane protein common to secretory cells.  相似文献   

18.
In vitro poly(ADP-ribosyl)ation of seminal ribonuclease   总被引:1,自引:0,他引:1  
The site of in vitro ADP-ribosylation of seminal ribonuclease was determined. Seminal enzyme was found to be a good receptor of [14C]ADP-ribose residues under the reaction conditions used. The recovery of [14C]ADP-ribosylated RNase was about 65% after purification. After tryptic digestion of modified enzyme, a fraction containing [14C]ADP-ribosylated peptides was separated from the others by ion-exchange chromatography on M82 resin. Radioactive peptides were then purified by affinity chromatography on anti-poly(ADP-ribose)IgG-Sepharose. High performance liquid chromatography of a mixture obtained after pronase digestion of purified ADP-ribosylated peptides revealed only one radioactive peptide whose amino acid composition corresponded to a peptide that has equimolar quantities of aspartic acid, serine, and glycine. Carboxypeptidase Y digestion of this peptide showed that its amino acid sequence was Asp-Ser-Gly. Only position 14-16 of seminal RNase corresponded to this sequence. The chemical stability of the ADP-ribose/enzyme linkage indicated that aspartic acid 14 is the modification site in seminal RNase.  相似文献   

19.
The bacterial toxins, choleragen and pertussis toxin, inhibit the light-stimulated GTPase activity of bovine retinal rod outer segments by catalysing the ADP-ribosylation of the alpha-subunit (T alpha) of transducin [Abood, Hurley, Pappone, Bourne & Stryer (1982) J. Biol. Chem. 257, 10540-10543; Van Dop, Yamanaka, Steinberg, Sekura, Manclark, Stryer & Bourne (1984) J. Biol. Chem. 259, 23-26]. Incubation of retinal rod outer segments with NAD+ and a purified NAD+:arginine ADP-ribosyltransferase from turkey erythrocytes resulted in approx. 60% inhibition of GTPase activity. Inhibition was dependent on both enzyme and NAD+, and was potentiated by the non-hydrolysable GTP analogues guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) and guanosine 5'-[beta gamma-methylene]triphosphate (p[CH2]ppG). The transferase ADP-ribosylated both the T alpha and T beta subunits of purified transducin. T alpha (39 kDa), after ADP-ribosylation, migrated as two distinct peptides with molecular masses of 42 kDa and 46 kDa on SDS/polyacrylamide-gel electrophoresis. T beta (36 kDa), after ADP-ribosylation, migrated as a 38 kDa peptide. With purified transducin subunits, it was observed that the GTPase activity of ADP-ribosylated T alpha, reconstituted with unmodified T beta gamma and photolysed rhodopsin, was decreased by 80%; conversely, reconstitution of T alpha with ADP-ribosyl-T beta gamma resulted in only a 19% inhibition of GTPase. Thus ADP-ribosylation of T alpha, the transducin subunit that contains the guanine nucleotide-binding site, has more dramatic effects on GTPase activity than does modification of the critical 'helper subunits' T beta gamma. To elucidate the mechanism of GTPase inhibition by transferase, we studied the effect of ADP-ribosylation on p[NH]pp[3H]G binding to transducin. It was shown previously that modification of transducin by choleragen, which like transferase ADP-ribosylates arginine residues, did not affect guanine nucleotide binding. ADP-ribosylation by the transferase, however, decreased p[NH]pp[3H]G binding, consistent with the hypothesis that choleragen and transferase inhibit GTPase by different mechanisms.  相似文献   

20.
1. Some of the actions of pertussis toxin on the rabbit luteal adenylyl cyclase system were analyzed. 2. Incubation of luteal membranes with pertussis toxin and [32P]NAD resulted in the [32P]ADP-ribosylation of a 40,000 Da protein that is distinct from the proteins ADP-ribosylated by cholera toxin. 3. Pertussis toxin specific [32P]ADP-ribosylation was time-dependent and dependent upon the concentration of pertussis toxin present during the incubation. 4. Pertussis toxin mediated [32P]ADP-ribosylation was enhanced by ATP, ADP, adenylyl imidodiphosphate, GTP, guanosine-5'-O-(2-thiodiphosphate), guanosine-5'-O-(3-thiotriphosphate), and NaF but not AMP or guanylyl imidodiphosphate [GMP-P(NH)P]. 5. Treatment of luteal membranes with NAD and pertussis toxin prevents GTP and enkephalin but not GMP-P(NH)P mediated inhibition of forskolin stimulated adenylyl cyclase, demonstrating the existence of a functional Gi in the rabbit corpus luteum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号