首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this study was to test the following hypotheses: (i) that oocyte maturation is controlled by surrounding follicular cells; (ii) that a meiosis-regulating factor of follicular origin is not species-specific; (iii) that one of the follicular regulators of oocyte maturation is IGF-I; and, (iv) that Cumulus oophorus and tyrosine kinase-dependent intracellular mechanisms do not mediate IGF-I action on oocytes. It was found that co-culture of cumulus-enclosed bovine oocytes with isolated bovine ovarian follicles or with isolated porcine ovarian follicles significantly increased the proportion of matured oocytes (at metaphase II of meiosis) after culture. Porcine oocytes without cumulus investments had lower maturation rates than cumulus-enclosed oocytes. Co-culture with isolated porcine ovarian follicles resulted in stimulation of maturation of both cumulus-free and cumulus-enclosed porcine oocytes. These observations suggest that follicular cells (whole follicles or Cumulus oophorus) support bovine and porcine oocyte maturation, and that follicular maturation-promoting factor is not species-specific. The release of significant amounts of IGF-I by cultured bovine and porcine isolated follicles and granulosa cells was demonstrated. Addition of IGF-I to culture medium at 10 or 100 (but not 1000) ng/ml stimulated meiotic maturation of both cumulus-enclosed and cumulus-free porcine oocytes. Neither of the tyrosine kinase blockers, genistein or lavendustin (100 ng/ml medium), changed the stimulating effect of IGF-I on porcine oocytes. The present data suggest that at least one of the follicular stimulators of oocyte nuclear maturation is IGF-I, and that its effect is probably not mediated by cumulus investment or by tyrosine kinase-dependent intracellular mechanisms.  相似文献   

2.
Out of the breeding season the in vitro maturation of Rana temporaria oocytes in the state of maturation inertia or close to it depends on the follicular cells. In 28 females the presence of follicular cells stimulated oocyte maturation, in 12 females inhibited it. Dibutyrylcyclic AMP (5 X 10(-5) M) increased the percentage of maturation of follicle--enclosed oocytes close to the state of maturation inertia; estrone (4 X 10(-5)-10(-7) M and more) decreased the percentage of maturation of oocytes in the state of inertia, both with and without follicular envelopes.  相似文献   

3.
This study examines the effect of sheep and human follicular fluid on the in vitro maturation (IVM) of sheep follicular oocytes. Oocyte cumulus complexes recovered post mortem were matured for 24 to 26 h at 38.6 degrees C, 5% CO(2) in air, in TCM-199 bicarbonate medium supplemented with 20% fetal calf serum (FCS) and, where stated, with maturation hormones, including FSH (5.0 ug/ml), LH (5.0 ug/ml) and estradiol (1 ug/ml), or with sheep follicular fluid recovered from large (>5mm) or small (2 to 5mm) ovarian follicles post mortem, or with human periovular follicular fluid obtained during routine IVF procedures. The matured oocytes were then denuded, and their maturation stage and developmental capacity were assessed by in vitro fertilization (IVF) and culture (IVC). It was found that inclusion of sheep or human follicular fluid or hormone supplements in the IVM media more than doubled the number of oocytes completing maturation (FCS alone 33%, compared with 76.2% for maturation hormones, 84.2% for fluid from large and 69.6% for fluid from small sheep follicles and 82.6% for human follicular fluid), and significantly increased fertilization rates (FCS alone 51.6%, compared with 71.9% for maturation hormones, 78.4% for fluid from the large and 75.7% for fluid from small sheep follicles and 73.1% for human follicular fluid) without discernible adverse effects on the development of the cleaving embryos to the morula or blastocyst stage in culture. Omission of FCS and supplements from the IVM medium resulted in a marked reduction (56%) in the number of oocytes maturing. This reduction could be offset to a large part, but not completely, by inclusion of human follicular fluid or human follicular fluid plus LH (5 ug/ml) in the medium. The results of this study show that addition of sheep or human follicular fluid to maturation medium can enhance rather than inhibit the maturation and fertilizability of sheep follicular oocytes in vitro.  相似文献   

4.
We determined the effects of follicular fluid in the maturation medium on bovine oocyte maturation, fertilization and subsequent development, as well as on the number of cells in blastocysts following culture. Fluid and oocytes from bovine follicles less than 5 mm in diameter were collected from the ovaries of slaughtered cows. For the maturation medium, follicular fluid at concentrations of 10, 30 or 60% (v/v) was added to Medium 199 with Earle's salts supplemented with 0.1 microg/ml estradiol-17 beta (E(2), Experiment 1) or 0.1 microg/ml E2 and 100 IU/ml hCG (Experiment 2). The control medium contained polyvinylpyrrolidone (PVP; 3 mg/ml) instead of follicular fluid. After maturation for 24 h, oocytes were fertilized in vitro with bull frozen-thawed spermatozoa and cultured on a monolayer of granulosa cells for 9 d. There were no differences in maturation or fertilization rates of oocytes. In Experiment 1, maturation medium containing 10% follicular fluid did not affect the developmental rate of the oocytes to > 2-cell, 8 to 16-cell, blastocyst and hatched blastocyst stage embryos, respectively; whereas 60% decreased embryonic development (P < 0.05) compared with the control. Blastocysts and hatched blastocysts developed from fertilized oocytes which had been matured in medium containing 10 and 30% follicular fluid/E(2) had more cells than the controls (P < 0.01). In Experiment 2, maturation medium containing 10 or 30% follicular fluid did not affect the development fertilized oocytes to the blastocyst stage compared with the control, but decreased at 60% (P < 0.01). There were no differences in the number of cells from Day 9 blastocysts and hatched blastocysts from fertilized oocytes matured in maturation medium containing follicular fluid and E(2) + hCG. The results of these experiments suggest that the addition of bovine follicular fluid to the maturation medium enhances the cell numbers in blastocysts from bovine follicular oocytes matured in vitro.  相似文献   

5.
The effect of N alpha-tosyl-L-lysine chloromethylketone (TLCK), an inhibitor of trypsin-type proteases, on luteinizing hormone (LH)-induced and spontaneous meiotic maturation and follicular production of cAMP in mice was determined. When follicle-enclosed mouse oocytes were incubated with LH (1 micron/ml), they underwent the breakdown of the germinal vesicle (GVBD). TLCK (0.02-0.5 mM) inhibited LH-induced GVBD in folliculated oocytes. The concentration (0.5 mM) of TLCK that inhibited LH-induced GVBD did not significantly suppress LH-induced cAMP production by follicle cells. The effect of TLCK on spontaneous maturation in cumulus cell-enclosed and denuded oocytes was also determined. TLCK strongly inhibited spontaneous maturation in denuded oocytes only if it was added to the incubation medium for 1-3 h before oocytes were liberated from the follicular tissue. The inhibition of oocyte maturation by TLCK was significantly greater in cumulus cell-enclosed oocytes than in denuded oocytes, either with or without preincubation with TLCK. These results suggest that trypsin-type protease in oocytes participates in the process of meiotic maturation in mouse oocytes.  相似文献   

6.
Three experiments were conducted to evaluate the effect of oocyte and sperm treatments on rates of in vitro fertilization (IVF) in the horse and to determine the capacity of in vitro-matured horse oocytes to be fertilized in vivo. There was no effect of duration of oocyte maturation (24 vs. 42 h) or calcium ionophore concentration during sperm capacitation (3 microM vs. 7.14 microM) on in vitro fertilization rates. Oocytes matured in 100% follicular fluid had significantly higher fertilization (13% to 24%) than did oocytes matured in maturation medium or in 20% follicular fluid (0% to 12%; P < 0.05). There was no significant difference in fertilization rate among 3 sperm treatments utilizing 7.14 microM calcium ionophore (12% to 21%). Of in vitro-matured oocytes recovered 40-44 h after transfer to the oviducts of inseminated mares, 77% showed normal fertilization (2 pronuclei to normal cleavage). Cleavage to 2 or more cells was seen in 22% of oocytes matured in follicular fluid and 63% of oocytes matured in maturation medium; this difference was significant (P < 0.05). We conclude that in vitro-matured horse oocytes are capable of being fertilized at high rates in the appropriate environment and that in vitro maturation of oocytes in follicular fluid increases fertilization rate in vitro but reduces embryo development after fertilization in vivo. Further work is needed to determine the optimum environment for sperm capacitation and IVF in the horse.  相似文献   

7.
Fully grown germinal vesicle-stage oocytes are induced to resume meiosis and acquire the capacity to undergo fertilization in response to a surge of gonadotropins. The present study examined possible direct and indirect roles of gonadotropins in the maturation and fertilization of rat oocytes by determining 1) the effect of exogenous administration of gonadotropins (priming) to immature rats prior to oocyte collection on the capacity of oocytes to undergo maturation and fertilization in vitro, 2) the effect of follicle-stimulating hormone (FSH) in the maturation media on the resumption of meiosis and subsequent capacity of oocytes to undergo fertilization, and 3) the capacity of oocytes to undergo maturation and fertilization following culture in preovulatory follicular fluid or in conditioned media obtained from gonadotropin-stimulated granulosa cell (GC) cultures. In the first experiment, oocytes from unprimed rats underwent spontaneous meiotic maturation in vitro and 17% underwent subsequent fertilization. Priming increased the proportion of oocytes undergoing fertilization. Maturation of oocytes in media supplemented with various concentrations of FSH or for various lengths of time (6-16 h) in medium with 500 ng FSH/ml indicated that FSH slowed the rate of meiotic maturation, but had no effect on the capacity of the oocytes to be fertilized. Oocytes obtained from primed animals and cultured in the presence of preovulatory follicular fluid were fertilized in proportions similar to those cultured in serum-containing medium. In the third experiment, medium conditioned by FSH-stimulated GC for 40 h slowed the rate of meiotic maturation; the addition of luteinizing hormone (LH) to the FSH-stimulated cells produced a medium in which the rate of oocyte maturation was not different from that of control oocytes (in medium from unstimulated cells). Medium conditioned by FSH- or LH-stimulated GC, but not fibroblasts, increased the proportions of oocytes undergoing fertilization following maturation in those media. FSH + LH stimulation of GC increased the fertilization of oocytes to proportions significantly higher than with either gonadotropin alone. These data suggest that GC respond to gonadotropin stimulation by providing a factor(s) that regulates the rate of oocyte maturation and promotes the capacity of oocytes to undergo fertilization.  相似文献   

8.
Meiotic maturation was induced in Xenopus laevis oocytes when the external Ca++ or Mg++ ion concentration was raised above 5 mM in the presence of the ionophore. Ionophore-divalent cation-induced maturation appears to be due to the stimulation of the oocyte itself. Cytoplasm of responding oocytes induced maturation when microinjected into ovarian oocytes. Cycloheximid, an inhibitor of progesterone-induced maturation, inhibited the maturational response induced by the ionophore and divalent cations. Ethidium bromide, an inhibitor of the follicular response to human chorionic gonadotropin, had no effect. The possible roles that Ca++ and Mg++ may play in the initiation of maturation are discussed.  相似文献   

9.
Kim MK  Fibrianto YH  Oh HJ  Jang G  Kim HJ  Lee KS  Kang SK  Lee BC  Hwang WS 《Theriogenology》2005,63(5):1342-1353
Unlike in other domestic animals, in vitro maturation (IVM) of canine oocytes has had limited success. The present study investigated the effect of the estrous cycle and estradiol-17beta (E2) or progesterone (P4) supplementation on in vitro nuclear maturation of canine oocytes recovered from domestic dog ovaries in various reproductive states (follicular, luteal or anestrous stages). Oocytes were cultured in serum-free tissue culture medium (TCM)-199 supplemented with various concentrations of E2 (Exp. 1: 0, 0.1, 1.0 or 2.0 microg/ml) or P4 (Exp. 2; 0, 0.5, 1.0 or 2.0 microg/ml) for 72 h to determine the effective concentration of hormones. In Exp. 3, in order to investigate the synergistic effect of E2 and P4 supplementation, three groups of oocytes were cultured with 2 microg/ml E2 plus various concentrations of P4 (0, 0.5, 1.0 or 2.0 microg/ml). As results, the rate of maturation to metaphase II (MII) stage was significantly higher (P < 0.05) in oocytes from the follicular stage supplemented with 2 microg/ml E2 (14.7%) compared to the other groups (1.5-8.2%). Significantly higher (P < 0.05) maturation rate to MII stage was observed in oocytes from the follicular stage supplemented with 1.0 (10.0%) or 2.0 microg/ml (10.8%) P4 compared to the other groups (0-4.8%). Furthermore, more (P < 0.05) oocytes from the follicular stage supplemented with 2.0 microg/ml of E2 and P4 (16.6%) were matured to MII stage compared to oocytes from the follicular stage supplemented with 2.0 microg/ml E2 alone (10.4%) or the other groups of oocytes (0-7.8%). Interestingly, compared to 2.0 microg/ml E2 alone (10.4%), supplementation of 2 microg/ml E2 + 0.5 microg/ml P4 (3.4%) decreased the maturation of oocytes from the follicular stage to MII stage. In conclusion, the present study demonstrated that supplementation of the culture medium with E2 or P4 alone significantly increased maturation of canine oocyte to MII and that P4 supplementation with E2 further promote or decrease oocyte maturation compared to E2 alone depending on P4 concentration.  相似文献   

10.
Human follicular fluid from healthy mature Graafian follicles and from pathologic ovarian cyst fluid was found to be inhibitory to progesterone-induced meiotic maturation of oocytes from the South African clawed toad, Xenopus laevis. Human follicular fluid but not human serum, collected from the same individuals, demonstrated a linear dose-response inhibition on the maturation of oocytes in the Xenopus assay system. These findings indicate that the human follicular and cyst fluids contain oocyte maturation inhibitor (OMI). This human OMI was inactivated when subjected to a boiling water bath for 2 min. The OMI action was shown to be reversible in its inhibitory action. The fact that OMI can act directly on the oocyte was demonstrated by its inhibitory action on maturation in defolliculated oocytes. The findings demonstrate that the inhibitory action of human OMI is not species-specific. Xenopus oocytes provide a simple, readily available, year-round bioassay material for testing follicular oocyte maturation inhibitor.  相似文献   

11.
The effect of meiotic competence of oocytes and time of their maturation on the efficiency of fertilization was studied in pigs. Cycling gilts with synchronized estrous cycles were used as oocyte donors. To obtain oocytes with different meiotic competence, oocytes were recovered separately from small and medium follicles in the early, middle and late luteal or early follicular phase. They were matured for 40 h, 43 h or 47 h and fertilized by spermatozoa of a proven boar. The penetration and monospermy rates, and total efficiency of fertilization were assessed. The same data were related to the follicle size, with or without regard to the phase, and to the maturation time. Regardless of the phase and the time of maturation, the monospermy rate and total efficiency of fertilization were significantly lower for the small follicle-derived oocytes than for the medium follicle-derived oocytes (38.5±10.4% vs 63.1±7.0% and 24.7±6.3% vs 42.5±3.8%). With regard to the phase, in the small follicle-derived oocytes, the monospermy rate increased significantly (P<0.05) from the early luteal to the late luteal phase (from 25.4±2.4% to 46.4±3.9%) and remained unchanged in the early follicular phase. A similar tendency was observed in the total efficiency of fertilization. No differences were found in either of these parameters in medium follicle-derived oocytes in the late luteal and early follicular phase. With regard to the time of maturation, the total efficiency of fertilization was significantly higher (P<0.05) in the small follicle-derived oocytes matured for 47 h than in those matured for 40 h (27.7±7.4% vs. 20.5±6.1%) and in the medium follicle-derived oocytes matured for 40 h as compared with those matured for 47 h (47.1±1.9% vs. 32.7±1.1%). With regard to the phase and the time of maturation, the differences were significant only in the late luteal and early follicular phases. It can be concluded that greater meiotic competence of porcine oocytes positively influences monospermy rate and total efficiency of fertilization process. However adequate time of maturation is an important factor for oocytes with different meiotic competence to improve the IVF procedure.  相似文献   

12.
The fertilizability of hamster oocytes matured in vitro was examined along with two factors potentially affecting nuclear maturation in culture. The four amino acids (isoleucine, methionine, phenylalanine, and glutamine) necessary for nuclear maturation of cumulus-free oocytes (Gwatkin and Haidri, '74) were not required if oocytes recovered on the morning of proestrus (day 4) were cultured with intact cumuli. Although follicular oocytes recovered on day 3 of the estrous cycle (late diestrus) had somewhat lower frequencies of maturation in vitro compared to those recovered on day 4 (76 vs. 95%, respectively), they still had a substantial frequency of spontaneous maturation. Follicular oocytes recovered on day 3 and matured in vitro were fertilized at frequencies equivalent to oviducal oocytes (80 vs. 82%, respectively) when incubation of oocytes with precapacitated sperm was continued for 6 h. Penetration of follicular oocytes was lower (37.4%) after only 4 h of sperm/egg incubation, indicating a delay in sperm penetration with follicular oocytes matured in vitro. Incubation for 4 h is sufficient time for penetration of 80% or more of oviducal oocytes. While 98% of penetrated oviducal oocytes were fertilized normally, only 2% of penetrated follicular oocytes were normal. The majority (85%) of follicular oocytes, unlike oviducal oocytes, were unable to cause decondensation of sperm nuclei after 6 h of sperm/egg incubation. Use of a highly defined system for in vitro fertilization of hamster gametes has provided rigorous proof that isolated cumulus-oocyte complexes do not undergo complete maturation in vitro.  相似文献   

13.
In the mare, rates of fertilization and development are low in oocytes matured in vitro, and a closer imitation of in vivo conditions during oocyte maturation might be beneficial. The aims of the present study were, therefore, to investigate whether (1) equine oocytes can be matured in vitro in pure equine preovulatory follicular fluid, (2) priming of the follicular fluid donor with crude equine gonadotrophins (CEG) before aspiration of preovulatory follicular fluid promotes the in vitro maturation rate, (3) the in vitro maturation rate differs between oocytes aspirated during estrus and those aspirated again 8 days after the initial follicular aspiration, and (4) high follicular concentrations of meiosis activating sterols (MAS) are beneficial for in vitro maturation of equine oocytes. During estrus, 19 pony mares were treated with 25 mg CEG. After 24 h (Al) and again after 8 days (A2), all follicles >4mm were aspirated and incubated individually for 30 h in the following culture media: standard culture medium (SM), preovulatory follicular fluid collected before CEG containing low MAS concentrations (FF1), preovulatory follicular fluid collected before CEG containing high MAS concentrations (FF2) or preovulatory follicular fluid collected 35 h after administration of CEG containing low MAS concentrations (FF3). Cumulus expansion rate was significantly affected by culture medium. The overall nuclear maturation rate was significantly higher for oocytes collected at A1 (67%) than for oocytes collected at A2 (30%). For oocytes collected at A1, the maturation rates were 71% (FF1), 61% (FF2), 79% (FF3) and 56% (SM). An electrophoretic protein analysis of the culture media revealed the presence of a 200-kDa protein in FF3. The results demonstrate that (1) equine oocytes can be matured during culture in pure equine preovulatory follicular fluid, (2) preovulatory follicular fluid collected after gonadotrophin-priming seems superior in supporting in vitro maturation than standard culture medium, (3) oocytes aspirated 8 days after a previous aspiration are less competent for in vitro maturation than oocytes recovered during the initial aspiration, and (4) the regulation of meiotic resumption during in vitro culture of equine oocytes might be related to the presence of a 200-kDa protein.  相似文献   

14.
Oocytes and follicular components obtained from ovaries recovered from mature Hereford cows at slaughter were used to determine follicular influence on oocyte maturation. Some oocytes were fixed immediately to determine the stage of maturation. The remaining oocytes were cultured for 32 to 34 hr in various environments to determine the influences of the granulosum and follicular fluids on meiotic changes. All noncultured oocytes had dictyate nuclei except one in premetaphase. Oocytes cultured in 50 or 100% follicular fluid or in contact with stratum granulosum cells showed some meiotic inhibition both before and after germinal vesicle breakdown (GVB). The least resumption of meiosis occurred in oocytes cultured in their intact follicles.  相似文献   

15.
The objective was to evaluate the effects of angiotensin II (Ang II), insulin-like growth factor-I (IGF-I) and insulin on the nuclear and cytoplasmic maturation of bovine oocytes in the presence of follicular cells. Cumulus-oocyte complexes (COCs) were cultured for 22h in the presence of follicular cells (control with cells) and Ang II, IGF-I or insulin (treatments), or in the absence of follicular cells (control without cells). Using these five groups, Experiment 1 was conducted with and without the addition of gonadotrophins. Only oocytes in the Ang II group resumed meiosis at rates (88.2+/-1.8% and 90.7+/-4.3% for oocytes cultured in the absence or presence of LH/FSH, respectively) similar to those observed for oocytes cultured in the absence of follicular cells (89.7+/-0.3% and 92.6+/-2.6%; P<0.01). In Experiment 2, the effect of Ang II alone and in combination with IGF-I or insulin on oocyte maturation for 7h (germinal vesicle breakdown), 12h (metaphase I) and 22h (metaphase II) was evaluated in a design similar to that of the first experiment. Ang II plus IGF-I or insulin induced the resumption of meiosis, irrespective of the presence of gonadotrophins (P<0.01). Experiment 3 used groups similar Experiment 2 to determine the rate of subsequent embryo development, using fetal calf serum (FCS) in the culture medium. The COCs were cultured in maturation medium for 1h (1+23h), 12h (12+12h) or 24h in the presence of follicular cells and the respective treatments and for the remaining period in the absence of follicular cells to complete 24h. In Experiment 4, BSA was used in lieu of serum in the maturation medium in a 12+12h maturation system. Oocytes matured using the 12+12h system with BSA or FCS in the presence of Ang II+IGF-I had higher rates of blastocyst formation than the other treatments (P<0.05). In conclusion, Ang II reversed the inhibitory effect of follicular cells on nuclear maturation of bovine oocytes, irrespective of the presence of gonadotrophins, IGF-I and insulin. However, oocyte cytoplasmatic maturation (i.e., subsequent embryo development), was higher when Ang II and IGF-I were present in the maturation medium containing follicular cells cultured for 12+12h.  相似文献   

16.
Meiotic competence of prepubertal goat oocytes   总被引:3,自引:0,他引:3  
The object of this work was to evaluate in vitro maturation of follicular oocytes from the ovaries of prepubertal goats obtained from the slaughterhouse. To obtain the oocytes, follicles were dissected and classified according to their diameters. In the first experiment, oocytes were matured in vitro with granulosa cells. No significant differences were detected in the percentages of maturation between adult and prepubertal goat oocytes recovered from follicles of 2.5 to 6.0 mm in diameter (81.82 vs 72.47%, respectively). The percentage of maturation increased to 88.0% in prepubertal goat oocytes from 3.0 to 6.0-mm follicles. In the second experiment, the percentage of maturation of prepubertal goat oocytes was greater after 27 than after 24 h. In the third experiment, the maturational capacity of prepubertal goat oocytes according to follicular diameter was evaluated. The percentages of maturation after 27 h of culture with no granulosa cells were 24.14, 56.60 and 74.78%, respectively, for follicles 1.0 to 1.9 mm, 2.0 to 2.9 mm, and 3.0 to 6.0 mm in diameter. As the follicular diameter increased, growth of the oocyte as well as a greater number of oocytes with more cumulus cell layers were observed. A correlation between the diamter of the oocyte and its competence to complete in vitro maturation was also observed. Oocytes with more cumulus cell layers showed only a slight superiority in their capacity for maturation in large-size follicles (3.0 to 6.0 mm), but the difference was not significant. In conclusion, oocytes from prepubertal goats complete their growth and reach meiotic competence in follicles larger than 3.0 mm. With these oocytes it is possible to obtain in vitro maturation results similar to those from adult goats.  相似文献   

17.
The ovaries consist of large number of panoistic ovarioles in the last instar nymph and the adult dragonfly Orthetrum chrysis (Selys). In the nymph the vitellaria are compactly filled with the primary oocytes and the vitellogenesis takes place only in the adult stage. During vitellogenesis oocytes change widely in their shape, size and cytological organisation and their developmental stages can be divided into pre-vitellogenic, early-vitellogenic, vitellogenic, late-vitellogenic and maturation age. PAS-positive material appears first around the germinal vesicle in the early-vitellogenic stage and lateron it migrates towards the periphery. Glycogen appears in the late-vitellogenic stage. DNA is abundantly present in the nuclei of the oocytes during the pre-vitellogenic and completely absent in early-vitellogenic, vitellogenic, late-vitellogenic and maturation stages. It is observed in the nuclei of follicular epithelial cells of all the stages. RNA is abundantly present in cytoplasm of the pre-vitellogenic oocytes but lateron is gradually decreases. During the early-vitellogenic and vitellogenic stages high concentration of RNA in the follicular epithelial cells has been observed. The protein bodies appear first in the interfollicular spaces and towards the periphery of the oocytes just near the enveloping follicular epithelial cells, during the early-vitellogenic stage suggesting the formation of yolk proteins from the haemolymph. In Orthetrum chrysis the sudanophilic bodies appear first in the follicular cells and then lie in the peripheral region of the oocytes suggesting the incorporation of yolk lipid either from the follicular epithelium or from the haemolymph through the follicular epithelium. The phospholipids are synthesised in pre-vitellogenic to the late-vitellogenic stages. In the late-vitellogenic stages the phospholipid granules are present abundantly in the follicular epithelium while in the maturation stage they disappear suggesting their utilisation in the formation of membranes like vitelline and chorion. The neutral fats are present in the form of large number of droplets in the oocytes during the maturation stage.  相似文献   

18.
19.
New strategies were proposed to improve the developmental competence of calf oocytes through in vitro technologies. Cumulus-oocyte complexes were first prematured for 24 h in the presence of meiosis inhibitors. Both Roscovitine alone (50 microM) or in combination with Butyrolactone-I (12.5 microM Rosco+6.25 microM BL-I) prevented the progression of meiosis. Their effect on nuclear maturation was reversible after a further 17 or 24 h maturation step. However, a dramatic decrease in embryo development was observed after fertilization (abattoir oocytes: 4-9% blastocyst rate versus 14-17% for control embryos). Similar results were obtained with oocytes collected by Ovum Pick Up from living donors. No pregnancy was obtained after single transfer of two blastocysts obtained from prematured oocytes (0/2 versus 4/12 for control embryos). Adding low concentrations (1, 3 or 10 microM) of follicular fluid-meiosis activating sterol (FF-MAS) during the maturation step had a beneficial effect on nuclear maturation (73-86% metaphase II versus 58% for control oocytes). However, subsequent embryo development was not improved. Enriching the maturation medium, namely with hormones, growth factors and precursors of glutathione, induced a sixfold increase in glutathione in the oocyte and had a beneficial effect on embryo development (38% increase in blastocyst rate). In conclusion, in opposition to the results reported with adult oocytes, prematuring calf oocytes had a negative impact on their developmental potential. Although FF-MAS improved nuclear maturation, its addition in the maturation medium did not increase embryo development. However, enriching the maturation medium had a positive effect on embryo development, indicating that cytoplasmic maturation was improved.  相似文献   

20.
目的 利用在培养液中添加绵羊卵泡液和次黄嘌呤 ,抑制卵母细胞GVBD发生 ,延长转录活性 ,从而使卵母细胞真正成熟 ,提高胚胎质量及生产效率。方法 利用体外成熟技术对有屠宰采集的绵羊卵母细胞进行培养 ,培养液中添加卵泡液及次黄嘌呤 ,检查成熟效果。结果 将卵母细胞培养在 5 0 %和 10 0 %的卵泡液中 ,2 4h后处于GV期的卵母细胞分别为 19% (8 4 2 )和 33 3% (13 39)。在含有 4mmol L次黄嘌呤的培养液中 ,2 4h后有2 1 6 % (16 74 )的卵母细胞处GV期 ,而对照组中只有 6 % (3 5 0 ) ,经过次黄嘌呤处理的卵母细胞多数都停滞于PⅠ期(44 6 % ,33 74 )。在 4mmol L次黄嘌呤培养液中添加FSH并未使受到抑制的卵母细胞诱导成熟。结论 卵泡液和次黄嘌呤只能在有限的程度上抑制减数分裂的重新启动 ,并对减数分裂的全过程都有影响 ,这种影响程度与抑制因子的浓度相关 ,存在明显的剂量效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号