首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 717 毫秒
1.
The stability of biocatalysis in systems containing organic solvents is reviewed. Among the examples presented are homogeneous mixtures of water and water-miscible organic solvents, aqueous/organic two-phase systems, solid biocatalysts suspended in organic solvents, enzymes in reverse micelles and modified enzymes soluble in water immiscible solvents. The stability of biocatalysts in organic solvents depends very much on the conditions. The hydrophobicity or the polarity of the solvent is clearly of great importance. More hydrophobic solvents (higher log P values) are less harmful to enzymes than less hydrophobic solvents. The water content of the system is a very important parameter. Some water is essential for enzymatic activity; however, the stability of enzymes decreases with increasing water content. Mechanisms of enzyme inactivation are discussed.  相似文献   

2.
Biocatalysis in ionic liquids - advantages beyond green technology   总被引:12,自引:0,他引:12  
In recent years researchers have started to explore a particular class of organic solvents called room temperature ionic liquids - or simply ionic liquids - to identify their unique advantages for biocatalysis. Because they lack vapour pressure, ionic liquids hold potential as green solvents. Furthermore, unlike organic solvents of comparable polarity, they often do not inactivate enzymes, which simplifies reactions involving polar substrates such as sugars. Biocatalytic reactions in ionic liquids have also shown higher selectivity, faster rates and greater enzyme stability; however, these solvents present other challenges, among them difficulties in purifying ionic liquids and controlling water activity and pH, higher viscosity and problems with product isolation.  相似文献   

3.
We have examined enzymes in nearly anhydrous organic solvents spanning a wide range of dielectric constants using a combination of electron paramagnetic resonance (EPR) spectroscopy, molecular dynamics simulations, high-pressure kinetic studies and the electrostatic model of Kirkwood. This approach enabled us to investigate the relationship between catalytic activity, protein flexibility and solvent polarity for an enzymatic reaction proceeding through a highly polar transition state in the near absence of water. Further insights into water-protein interactions and the involvement of water in enzyme structure and function have been obtained by EPR and multinuclear nuclear magnetic resonance studies of enzymes suspended and immobilized in organic solvents with and without added water. In these systems, correlations were observed between the water content and enzyme activity, flexibility, and active-site polarity, although the structural properties of suspended and immobilized enzymes differed markedly. These results have helped to elucidate the role of water in molecular events at the enzymic active site leading to improved biocatalysis in low-water environments.  相似文献   

4.
Aims:  Solvent-tolerant bacteria have emerged as a new class of micro-organisms able to grow at high concentrations of toxic solvents. Such bacteria and their solvent-stable enzymes are perceived to be useful for biotransformations in nonaqueous media. In the present study, the solvent-responsive features of a lipase–producing, solvent-tolerant strain Pseudomonas aeruginosa PseA have been investigated to understand the cellular mechanisms followed under solvent-rich conditions.
Methods and Results:  The solvents, cyclohexane and tetradecane with differing log P -values (3·2 and 7·6 respectively), have been used as model systems. Effect of solvents on (i) the cell morphology and structure (ii) surface hydrophobicity and (iii) permeability of cell membrane have been examined using transmission electron microscopy, atomic force microscopy and other biochemical techniques. The results show that (i) less hydrophobic (low log P -value) solvent cyclohexane alters the cell membrane integrity and (ii) cells adapt to organic solvents by changing morphology, size, permeability and surface hydrophobicity. However, no such changes were observed in the cells grown in tetradecane.
Conclusions:  It may be concluded that P. aeruginosa PseA responds differently to solvents of different hydrophobicities. Bacterial cell membrane is more permeable to less hydrophobic solvents that eventually accumulate in the cytoplasm, while highly hydrophobic solvents have lesser tendency to access the membrane.
Significance and Impact of the Study:  To the best of our knowledge, these are first time observations that show that way of bacterial solvent adaptability depends on nature of solvent. Difference in cellular responses towards solvents of varying log P -values (hydrophobicity) might prove useful to search for a suitable solvent for carrying out whole-cell biocatalysis.  相似文献   

5.
The influence of several organic solvents (esters, phthalates, alkanes, alcohols and perfluorchemicals) on the oxygen metabolism of Tagetes minuta (marigolds) was tested by incubating the cells in medium mixed with 1, 5 or 10% (v/v) of the organic solvents. The results were in good agreement with the general rules (log P) for the influence of organic solvents on biocatalytic activity. Immobilization of the cells in calcium alginate provided a slight protection of the cells against the toxic solvents.  相似文献   

6.
The stability and activity of three hydrolytic enzymes, acid phosphatase (EC 3.1.3.2), beta-fructofuranosidase (EC 3.2.1.26), and beta-glucosidase (EC 3.2.1.4), were studied at 30 degrees C in two-phase systems. They were prepared with equal quantities of buffered water and a water-immiscible organic solvent. Low-molecular-weight acetates and paraffins were tested in this investigation. The kinetic constant of storage inactivation was correlated with the logarithm of solvent polarity. Enzyme stability in the presence of organic phases, whose log P value was included in 1.2-2.2, was greater than the one measured in pure buffered aqueous media. On the other hand, a dramatic enzyme denaturation took place making use of solvents at higher log P-value. Experiments carried out during the 24-h operation clarified that the reaction yield does not depend solely on solvent polarity. Acid phosphatase and beta-glucosidase, which are less resistant than beta-fructofuranosidase to temperature and shear in buffered solutions, showed especially significant enhancement of catalytic activity when hydrolysis was performed with the addition of acetates (50% v/v).  相似文献   

7.
The biotransformation of toluene to 3-methycatechol (3MC) via Pseudomonas putida MC2 was used as a model system for the development of a biphasic process offering enhanced overall volumetric productivity. Three factors were investigated for the identification of an appropriate organic solvent and they included solvent toxicity, bioavailability of the solvent as well as solvent affinity for 3MC. The critical log P (log P(crit)) of the biocatalyst was found to be 3.1 and log P values were used to predict a solvent's toxicity. The presence of various functional groups of candidate solvents were used to predict the absorption of 3MC and it was found that solvents possessing polarity showed an affinity towards 3MC. Bis (2-ethylhexyl) sebecate was selected for use in the biphasic system as it fulfilled all selection criteria. A two-phase biotransformation with BES and a 50% phase volume ratio, achieved an overall volumetric productivity of 440 mg 3MC/L-h, which was an improvement by a factor of approximately 4 over previously operated systems. Additional work focused on reducing the toluene feed in order to minimize possible toxicity and decrease loss of substrate (toluene), a result of volatilization. Toluene losses were reduced by a factor of 4, compared to previously operated systems, without suffering an appreciable loss in overall volumetric productivity.  相似文献   

8.
A strain named DS9 excreting organic solvent-stable lipase was screened and later identified asBacillus subtilis based on its phenotypes, biochemical test, and 16S rRNA gene sequence. Strain DS9 grows well on the medium with 10% (v/v) organic solvent with log P values equal to or above 2.5. The organic solvent-tolerant lipase excreted by strain DS9 had a wider tolerance for organic solvents. The relative activity of the lipase was above 60% at 37 °C, 200 rpm, 30 min in the present of 25% (v/v) organic solvents such as 1-butanol, hexanol, benzene, and toluene. The lipase was not only stable but also activated by n-hexane, xylene, heptane, isooctane, and n-decane. The optimal pH and temperature were 8.0 and 40 °C, respectively. Both the organic solvent-tolerant microorganism and the organic solvent-stable lipase produced by this strain could be used as a biocatalyst for application in non-aqueous biocatalysis.  相似文献   

9.
The log P value of pressurized CO(2) at 50 degrees C was determined from the solubility of 1-octanol in CO(2) and compared with other solvent parameters such as permittivity, epsilon, and polarity parameter, E(T)(30). The log P indicated that pressurized CO(2) is rather hydrophilic although it seems hydrophobic being judged from epsilon(r) and E(T)(30). With a change in pressure from 3 to 11.8 MPa, the log P changed from 0.9 to 2.0 while epsilon(r) and E(T)(30) changed only slightly. The log P was linearly correlated to the logarithm of the solubility of water among organic solvents. Pressurized CO(2) was located close to the linear correlation line among the solvents at high pressure (>11 MPa) but its location deviated to the hydrophilic side with a decrease in pressure. Lipase-catalyzed esterification of stearic acid with ethanol and hydrolysis of ethyl stearate were carried out in pressurized CO(2), benzene (log P = 2.0), and n-hexane (log P = 3.5). In spite of the lowest log P value for CO(2), the reaction rate in CO(2) was the highest among solvents tested in pressure range over 10 MPa. The reaction rate was strongly dependent on pressure of CO(2).  相似文献   

10.
Lipase catalyzed esterification of glycidol in organic solvents   总被引:1,自引:0,他引:1  
We studied the resolution of racemic glycidol through esterification with butyric acid catalyzed by porcine pancreatic lipase in organic media. A screening of seven solvents (log P values between 0.49 and 3.0, P being the n-octanol-water partition coefficient of the solvent) showed that neither log P nor the logarithm of the molar solubility of water in the solvent provides good correlations between enantioselectivity and the properties of the organic media. Chloroform was one of the best solvents as regards the enantiomeric purity (e. p.) of the ester produced. In this solvent, the optimum temperature for the reaction was determined to be 35 degrees C. The enzyme exhibited maximum activity at a water content of 13 +/- 2% (w/w). The enantiomeric purity obtained was 83 +/- 2% of (S)-glycidyl butyrate and did not depend on the alcohol concentration or the enzyme water content for values of these parameters up to 200 mM and 25% (w/w), respectively. The reaction was found to follow a BiBi mechanism. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
We used computer simulation to calculate the electric dipole moments of the alpha- and beta-tubulin monomers and dimer and found those to be |p(alpha)| = 552D, |p(beta)| = 1193D and |p(alphabeta)| = 1740D, respectively. Independent surface plasmon resonance (SPR) and refractometry measurements of the high-frequency dielectric constant and polarizability strongly corroborated our previous SPR-derived results, giving Deltan/Deltac approximately 1.800 x 10(-3)ml/mg. The refractive index of tubulin was measured to be n(tub) approximately 2.90 and the high-frequency tubulin dielectric constant k(tub) approximately 8.41, while the high-frequency polarizability was found to be alpha(tub) approximately 2.1 x 10(-33)C m(2)/V. Methods for the experimental determination of the low-frequency p are explored, as well as ways to test the often conjectured quantum coherence and entanglement properties of tubulin. Biobits, bioqubits and other applications to bioelectronics are discussed.  相似文献   

12.
The rate constants (K) for steroid transport across the isolated cuticle of Ascaris suum were, linearly related to partition coefficients (P) of steroids in model solvents. The slope of log P vs log K for an isolated cuticle was closest to unity for the more polar solvents, octanol and ether, suggesting that the barrier to steroid movement across the cuticle has partition properties similar to these solvents. The transcuticular movement of steroids into intact adult A. suum and infective larvae of Haemonchus contortus was predicted by the P in model solvents suggesting that the same barriers for transcuticular solute movement may exist in intact worms as in isolated cuticles.  相似文献   

13.
Simultaneous production and selective extraction of beta-carotene from living cells of Dunaliella salina in a two-phase system of aqueous and organic phases has been investigated. Solvents with values of log P(octanol), which denotes hydrophobicity of a compound, ranging from 3 to 9 were used as organic phase. Viability and activity of Dunaliella salina in the presence of organic solvents were checked by microscopic observation and photosynthetic oxygen-production-rate measurements, respectively. Extraction ability of different solvents for both beta-carotene and chlorophyll was determined spectrophotometrically. In addition, beta-carotene contents of the cells growing in the aqueous phase and extracted beta-carotene by the different organic phases were quantified by the same method. Results showed that solvents having log P(octanol) > 6 can be considered biocompatible for this alga. Moreover, pigment extraction ability of a solvent is inversely dependent on its log P(octanol) value. By increasing the degenerative hydrophobicity the extraction ability for both chlorophyll and beta-carotene, decreases. However, this decrease is more profound for chlorophyll. Therefore, selective extraction of beta-carotene becomes feasible. Comparison of the total beta-carotene produced in the presence and in the absence of solvents shows that the presence of a second phase of biocompatible solvents in the culture media may induce the beta-carotene production pathway. The beta-carotene productivity per cell in a two-phase system with dodecane was the highest observed. Extraction ability of the biocompatible solvents dodecane, tetradecan, and hexadecane was similar.  相似文献   

14.
Biphasic systems can overcome the problem of low productivity in conventional media and have been exploited for biocatalysis. Solvent-tolerant microorganisms are useful in biotransformation with whole cells in biphasic reactions. A solvent-tolerant desulfurizing bacterium, Pseudomonas putida A4, was constructed by introducing the biodesulfurizing gene cluster dszABCD, which was from Rhodococcus erythropolis XP, into the solvent-tolerant strain P. putida Idaho. Biphasic reactions were performed to investigate the desulfurization of various sulfur-containing heterocyclic compounds in the presence of various organic solvents. P. putida A4 had the same substrate range as R. erythropolis XP and could degrade dibenzothiophene at a specific rate of 1.29 mM g (dry weight) of cells(-1) h(-1) for the first 2 h in the presence of 10% (vol/vol) p-xylene. P. putida A4 was also able to degrade dibenzothiophene in the presence of many other organic solvents at a concentration of 10% (vol/vol). This study is a significant step in the exploration of the biotechnological potential of novel biocatalysts for developing an efficient biodesulfurization process in biphasic reaction mixtures containing toxic organic solvents.  相似文献   

15.
Tao F  Liu Y  Luo Q  Su F  Xu Y  Li F  Yu B  Ma C  Xu P 《Bioresource technology》2011,102(20):9380-9387
Biodesulfurization is an attractive alternative to hydrodesulfurization for lowering the sulfur content of petroleum products. However, the fuel oils are toxic to microorganisms, which have seriously hindered the application of biodesulfurization. Here, a solvent-tolerant desulfurizing bacterium, Pseudomonas putida DS23, was developed using one of the organic solvent-responsive expression vectors newly constructed for biocatalysis, in which gene expression could be regulated in an organic solvent-dependent fashion. The biodesulfurizing activity of P. putida DS23 could be induced by all the organic solvents used. P. putida DS23 cells induced by n-hexane were able to degrade 56% of 0.5 mM DBT in 12 h in the biphasic reaction containing 33.3% (v/v) n-hexane, while the strain induced by isopropyl β-D-1-thiogalactopyranoside could only degrade 26% of 0.5 mM DBT. These results suggested that use of the constructed organic solvent-responsive expression vectors can facilitate the biphasic biocatalysis involving organic solvents.  相似文献   

16.
An alcohol dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix was activated by water-miscible organic solvents. This activation was influenced by the kind and the concentration of the added organic solvents. The k(cat) was increased by a factor of over ten when the mole fraction of acetonitrile was 0.1. This effect was large when organic solvents with large log P values were added. In fact, the k(cat) showed a strong positive correlation with the log P value of the mixed solvent at a constant mole fraction of water, while it was not affected by the kind of organic solvents added. Both the activation enthalpy and the entropy decreased with an increase in log P. The contribution of the activation enthalpy to the free energy of activation was larger than that of the activation entropy, and the free energy of activation decreased with an increase in log P.  相似文献   

17.
The rate of cholesterol oxidation has been studied in cholesterol oxidase containing reversed micellar media consisting of the surfactant cetyltrimethylammonium bromide (CTAB), the surfactant octanol, a buffered aqueous solution, and a variety of organic solvents. By varying the composition of the medium systematically it could be deduced that the rate of cholesterol oxidation obeys the same rules as described earlier for the conversion of apolar steroids by 20β-hydroxysteroid dehydrogenase in CTAB-hexanol-organic solvent reversed micelles (Hilhorst et al. 1984). The general applicability of these rules in optimizing biocatalysis in reversed micelles is discussed.  相似文献   

18.
We attempted to apply the directed evolution approach to enhancing enzyme properties in the presence of organic solvents, in which enzyme stability and activity were often drastically reduced. Stability and catalytic activity of phospholipase A(1) in the presence of an organic solvent were enhanced by error-prone polymerase chain reaction (PCR) and DNA shuffling followed by a filter-based visual screening. Three mutants (SA8, SA17 and SA20) were isolated on indicator plates (i.e., 1% phosphatidylcholine gels containing 30% dimethyl sulfoxide (DMSO)) after a second mutant library was treated in 50% DMSO for 36 h. The half-life values of the three mutants exhibited an approximately 4-fold increase. The three mutants also exhibited increased stability in all organic solvents tested compared with the wild-type enzyme. Thus, an enzyme variant having superior catalytic efficiency in most of the organic solvents could be obtained by using any solvent suitable for designing the efficient screening system, regardless of the properties of the particular solvent.  相似文献   

19.
The synthesis of N-acetyl tryptophan phenylethyl ester in organic media is catalyzed by suspended agarose beads with multipoint covalently attached chymotrypsin. A dilute aqueous phase is trapped within the gel beads and may be manipulated separately from the organic phase. The equilibrium position becomes more favorable as the solvent polarity decreases, with K(eq) increasing 38 times between 2-butanone and 1,1,1-trichloroethane. The more apolar solvents also give faster kinetics. Addition of cosolvents (up to 10% dimethylformamide or 20% acetonitrile) does not affect the rate but does substantially reduce the equilibrium yield, presumably also by making the organic phase more polar. With trichloroethane as solvent the enzyme appears to be kinetically saturated with 1M phenylethanol. Doubling this concentration also does not cause the expected increase in equilibrium conversion, probably again because K(eq) is reduced in the more polar organic phase. Increased temperature raises the reaction rate as expected but has little effect on the equilibrium. (c) 1992 John Wiley & Sons, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号