首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A basis for the reorganization of the bilayer structure in biological membranes is the different aggregate structures formed by lipids in water. The phase equilibria of all individual lipids and several in vivo polar lipid mixtures from acyl chain modified membranes of Acholeplasma laidlawii were investigated with different NMR techniques. All dioleoyl (DO) polar lipids, except monoglucosyldiglyceride (MGDG), form lamellar liquid crystalline (L alpha) phases only. The phase diagram of DOMGDG reveals reversed cubic (III), reversed hexagonal (HII), and L alpha phases. In mixtures of DOMGDG and dioleoyldiglycosyldiglyceride (DODGDG), the formation of an III (or HII) phase is enhanced by DOMGDG and low hydration or high temperatures. For in vivo mixtures of all polar DO lipids, a transition from an L alpha to an III phase is promoted by low hydration or high temperatures (50 degrees C). The phospholipids are incorporated in this III phase. Likewise, III and HII phases are formed at similar temperatures in a series of in vivo mixtures with different extents of acyl chain unsaturation. However, their melting temperatures (Tm) vary in an expected manner. All cubic and hexagonal phases, except the III phase with DOMGDG, exist in equilibrium with excess water. The maximum hydration of MGDG and DGDG is similar and increases with acyl chain unsaturation but is substantially lower than that for, e.g., phosphatidylcholine. The translational diffusion of the lipids in the cubic phases is rapid, implying bicontinuous structures. However, their appearances in freeze-fracture electron microscope pictures are different. The III phase of DOMGDG belongs to the Ia3d space group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The packing of lipids into different aggregates, such as spheres, rods, or bilayers, is dependent on the hydrophobic volume, the hydrocarbon-water interfacial area, and the hydrocarbon chain length of the participating molecules, according to the self-assembly theory [Israelachvili, J. N., Marcelja, S., & Horn, R. G. (1980) Q. Rev. Biophys. 13, 121-200]. The origin of the participating molecules should be of no importance with respect to their abilities to affect the above-mentioned parameters. In this investigation, Acholeplasma laidlawii, with a defined acyl chain composition of the membrane lipids, has been grown in the presence of three different classes of foreign molecules, known to partition into model and biological membranes. This results in an extensive metabolic alteration in the lipid polar head group composition, which is expressed as changes in the molar ratio between the lipids monoglucosyldiglyceride (MGDG) and diglucosyldiglyceride (DGDG), forming reversed hexagonal and lamellar phases in excess water, respectively. The formation of nonlamellar phases by A. laidlawii lipids depends critically upon the MGDG concentration [Lindblom, G., Brentel, I., Sj?lund, M., Wikander, G., & Wieslander, A. (1986) Biochemistry (preceding paper in this issue)]. The foreign molecules tested belong to the following groups: nonpolar organic solvents, alcohols, and detergents. Their effects on the gel to liquid crystalline phase transition temperature (Tm), on the order parameter of the acyl chains, and on the phase equilibria between lamellar and nonlamellar liquid crystalline phases in lipid-water model systems are known in several instances.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Acholeplasma laidlawii was grown with different fatty acids for membrane lipid synthesis (saturated straight- and branched-chain acids and mono- and di-unsaturated acids). The ability of 12 different sterols to affect cell growth, lipid head group composition, the order parameter of the acyl chains, and the phase equilibria of in vivo lipid mixtures was studied. The following two effects were observed with respect to cell growth: with a given acyl chain composition of the membrane lipids, growth was stimulated, unaffected, reduced, or completely inhibited (lysis), depending on the sterol structure; and the effect of a certain sterol depended on the acyl chain composition (most striking for epicoprostanol, cholest-4-en-3-one, and cholest-5-en-3-one, which stimulated growth with saturated acyl chains but caused lysis with unsaturated chains). The three lytic sterols were the only sterols that caused a marked decrease in the ratio between the major lipids monoglucosyldiglyceride and diglucosyldiglyceride and hence a decrease in bilayer stability when the membranes were enriched in saturated (palmitoyl) chains. With these chains correlations were found for several sterols between the glucolipid ratio and the order parameter of the acyl chains, as well as the lamellar-reversed hexagonal phase transition, in model systems. A shaft experiment revealed a marked decrease in the ratio of monoglucosyldiglyceride to diglucosyldiglyceride with the lytic sterols in unsaturated (oleoyl) membranes. The two cholestenes induced nonlamellar phases in in vivo mixtures of oleoyl A. laidlawii lipids. The order parameters of the oleoyl chains were almost unaffected by the sterols. Generally, the observed effects cannot be explained by an influence of the sterols on the gel-to-liquid crystalline phase transition.  相似文献   

4.
We have studied the biosynthetic regulation of the membrane lipid polar headgroup distribution in Acholeplasma laidlawii B cells made fatty acid auxotrophic by growth in the presence of the biotin-binding agent avidin to test whether this organism has the ability to coherently regulate the lamellar/nonlamellar phase propensity of its membrane lipids. The addition of various single normal growth-supporting exogenous fatty acids to such cell cultures produces fatty acid-homogeneous cells in which the hydrocarbon chain length and structure of the fatty acyl chains of the membrane lipids can be independently varied. Moreover, in analyzing our results, we consider the fact that the individual membrane lipid classes of this organism can form either normal micellar, lamellar, or reversed cubic or hexagonal phases in isolation (Lewis, R. N. A. H., and McElhaney, R. N. (1995) Biochemistry 34, 13818-13824). When A. laidlawii cells are highly enriched in one of a homologous series of methyl isobranched, methyl anteisobranched, or omega-cyclohexyl fatty acids, neither the ratio of normal micellar/lamellar nor of inverted cubic or hexagonal/lamellar phase-forming lipids are coherently regulated, and in fact in the former case, the changes in lipid polar headgroup composition observed are generally in a direction opposite to that required to maintain the overall lamellar/nonlamellar phase preference of the total membrane lipids constant when hydrocarbon chain length is varied. Similarly, when lipid hydrocarbon structure is varied at a constant effective chain length, a similar lack of coherent regulation of membrane lipid polar headgroup distribution is also observed, although in this case a weak overall trend in the expected direction occurs. We also confirm our previous finding (Foht, P. J., Tran, Q. M., Lewis, R. N. A. H., and McElhaney, R. N. (1995) Biochemistry 34, 13811-13817) that the ratio of inverted phase-forming monoglucosyl diacylglycerol to the lamellar phase-forming glycolipid diglucosyl diacylglycerol, previously used to estimate membrane lipid phase preference in A. laidlawii A and B, is not by itself a reliable indicator of the overall lamellar/nonlamellar phase propensity of the total membrane lipids of these organisms. Our results indicate that A. laidlawii B lacks a coherent mechanism to biosynthetically regulate the polar headgroup distribution of its membrane lipids to maintain the micellar/lamellar/inverted phase propensity constant in the face of induced variations in either the chain length or the structure of its lipid hydrocarbon chains. Finally, we suggest that the lack of a coherent regulatory mechanism to regulate the overall phase-forming propensity of the total membrane lipids of this organism under these circumstances may result in part from its inability to optimize all of the biologically relevant physical properties of its membrane lipid bilayer simultaneously.  相似文献   

5.
We have synthesized a number of 1,2-diacyl phosphatidylcholines with hydrophobic substituents adjacent to the carbonyl group of the fatty acyl chain and studied their thermotropic phase behavior by differential scanning calorimetry, 31P-nuclear magnetic resonance spectroscopy, and x-ray diffraction. Our results indicate that the hydrocarbon chain-melting phase transition temperatures of these lipids are lower than those of the n-saturated diacylphosphatidylcholines of similar chain length. In the gel phase, the 2-alkyl substituents on the fatty acyl chains seem to inhibit the formation of tightly packed, partially dehydrated, quasi-crystalline bilayers (Lc phases), although possibly promoting the formation of chain-interdigitated bilayers. In the liquid-crystalline state, however, these 2-alkyl substituents destabilize the lamellar phase with respect to one or more inverted nonlamellar structures. In general, increases in the length, bulk, or rigidity of the alkyl substituent result in an increased destabilization of the lamellar gel and liquid-crystalline phases and a greater tendency to form inverted nonlamellar phases, the nature of which depends upon the size of the 2-alkyl substituent. Unlike normal non-lamella-forming lipids such as the phosphatidylethanolamines, increases in the length of the main acyl chain stabilize the lamellar phases and reduce the tendency to form nonlamellar structures. Our results establish that with a judicious choice of a 2-alkyl substituent and hydrocarbon chain length, phosphatidylcholines (and probably most other so-called "bilayer-preferring" lipids) can be induced to form a range of inverted nonlamellar structures at relatively low temperatures. The ability to vary the lamellar/nonlamellar phase preference of such lipids should be useful in studies of bilayer/nonbilayer phase transitions and of the molecular organization of various nonlamellar phases. Moreover, because the nonlamellar phases can easily be induced at physiologically relevant temperatures and hydration levels while avoiding changes in polar headgroup composition, this new class of 2-alkyl-substituted phosphatidylcholines should prove valuable in studies of the physiological role of non-lamella-forming lipids in reconstituted lipid-protein model membranes.  相似文献   

6.
M Sj?lund  L Rilfors  G Lindblom 《Biochemistry》1989,28(3):1323-1329
Investigations of lipid-alkane systems are important for an understanding of the interactions between lipids and hydrophobic/amphiphilic peptides or other hydrophobic biological molecules. A study of the formation of nonlamellar phases in several phosphatidylcholine (PC)-alkane-2H2O systems has been performed. The PC molecules chosen in this work are dipalmitoyl-PC (DPPC), 1-palmitoyl-2-oleoyl-PC (POPC), dioleoyl-PC (DOPC), and dilinoleoyl-PC (DLiPC), lipids that in excess water form just a lamellar liquid-crystalline phase up to at least 90 degrees C. The addition of n-alkanes (C8-C20) to these PC-2H2O systems induces the formation of reversed hexagonal (HII) and isotropic phases. The water and dodecane concentrations required to form these phases depend on the degree of acyl chain unsaturation of the PC molecules and increase in the order DLiPC approximately DOPC less than POPC less than DPPC. The most likely explanation to this result is that the diameter of the lipid-water cylinders in the HII phase grows gradually larger with increased acyl chain saturation and more water and dodecane are consequently needed to fill the water cylinders and the void volumes between the cylinders, respectively. The ability of the alkanes to promote the formation of an HII phase is strongly chain length dependent. Although the number of alkane carbon atoms added per DOPC molecule in the DOPC-n-alkane-2H2O mixtures was kept constant, this ability decreased on going from octane to eicosane. The thermal history of a DPPC-n-dodecane-2H2O sample was important for its phase behavior.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The membrane lipid composition of living cells generally adjusts to the prevailing environmental and physiological conditions. In this study, membrane activity and lipid composition of the Gram-negative bacterium Vibrio sp. DSM14379, grown aerobically in a peptone-yeast extract medium supplemented with 0.5, 1.76, 3, 5 or 10% (w/v) NaCl, was determined. The ability of the membrane to reduce a spin label was studied by EPR spectroscopy under different salt concentrations in cell suspensions labeled with TEMPON. For lipid composition studies, cells were harvested in a late exponential phase and lipids were extracted with chloroform-methanol-water, 1:2:0.8 (v/v). The lipid polar head group and acyl chain compositions were determined by thin-layer and gas-liquid chromatographies. 31P-NMR spectroscopy was used to study the phase behaviour of the cell lipid extracts with 20 wt.% water contents in a temperature range from −10 to 50 °C. The results indicate that the ability of the membrane to reduce the spin label was highest at optimal salt concentrations. The composition of both polar head groups and acyl chains changed markedly with increasing salinity. The fractions of 16:0, 16:1 and 18:0 acyl chains increased while the fraction of 18:1 acyl chains decreased with increasing salinity. The phosphatidylethanolamine fraction correlated inversely with the lysophosphatidylethanolamine fraction, with phosphatidylethanolamine exhibiting a minimum, and lysophosphatidylethanolamine a maximum, at the optimum growth rate. The fraction of lysophosphatidylethanolamine was surprisingly high in the lipid extracts. This lipid can form normal micellar and hexagonal phases and it was found that all lipid extracts form a mixture of lamellar and normal isotropic liquid crystalline phases. This is an anomalous behaviour since the nonlamellar phases formed by total lipid extracts are generally of the reversed type.  相似文献   

8.
9.
Lipid polymorphism and hydrocarbon order   总被引:4,自引:0,他引:4  
The use of 2H nuclear magnetic resonance for the characterization of the polymorphic behavior of lipids is illustrated. Different lipid phase preferences may be expected to influence the orientational order and its variation along the acyl chains. Several results are presented to support that view. An increase of motional freedom and a redistribution of the order along the acyl chains are observed during the lamellar-to-hexagonal phase transition, showing that the order profile is sensitive to the lipid phase symmetry. In addition, if the preferences for nonlamellar phases are not expressed explicitly, the presence of "nonbilayer" lipids constrained in bilayer environment induces increased hydrocarbon order. This suggests that order parameters of the acyl chains and lipid polymorphic tendencies are intimately related.  相似文献   

10.
M Lafleur  P R Cullis  B Fine  M Bloom 《Biochemistry》1990,29(36):8325-8333
The orientational order profile has been determined by using deuterium nuclear magnetic resonance (2H NMR) for POPE in the lamellar liquid-crystalline (L alpha) and the hexagonal (HII) phases and is shown to be sensitive to the symmetry of the lipid phase. In the HII phase, as compared to the L alpha phase, the acyl chains are characterized by a greater motional freedom, and the orientational order is distributed more uniformly along the lipid acyl chain. This is consistent with a change from a cylindrical to a wedge-shaped space available for the lipid chain. 2H NMR studies of POPE dispersions containing tetradecanol or decane, both of which can induce HII phase structure, show very different behavior. Tetradecanol appears to align with the phospholipid chains and experience the L alpha to HII phase transition with a similar change in motional averaging as observed for the phospholipid chains themselves. In contrast, decane is apparently deeply embedded in the lipid structure and exhibits only a small degree of orientation. The L alpha to HII phase transition for systems containing decane leads to a dramatic increase of the motional freedom of decane which is more pronounced than that observed for the lipid chains. This is consistent with a preferential partition of the decane molecules into a disordered environment such as the intercylinder spaces in the HII phase. The presence of decane in the HII phase structure does not modify the order of the lipid chains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The two dominant glucolipids in Acholeplasma laidlawii, viz., 1,2-diacyl-3-O-(alpha-D-glucopyranosyl)-sn-glycerol (MGlcDG) and 1,2-diacyl-3-O-[alpha-D-glucopyranosyl-(1----2)-O-alpha-D-glucopyranosyl ]- sn-glycerol (DGlcDG), have markedly different phase behavior. MGlcDG has an ability to form nonlamellar phases, whereas DGlcDG only forms lamellar phases. For maintenance of a stable lipid bilayer, the polar headgroup composition in A. laidlawii is metabolically regulated in vivo, in response to changes in the growth conditions [Wieslander et al. (1980) Biochemistry 19, 3650; Lindblom et al. (1986) Biochemistry 25, 7502]. To investigate the mechanism behind the lipid regulation, we have here studied bilayers of mixtures of unsaturated MGlcDG and DGlcDG, containing a small fraction of biosynthetically incorporated perdeuterated palmitic acid, with 2H NMR. The order-parameter profile of the acyl chains and an apparent transverse spin relaxation rate (R2) were determined from dePaked quadrupole-echo spectra. The order of the acyl chains in DGlcDG-d31 increases upon addition of protonated MGlcDG, whereas the order of MGlcDG-d31 decreases when DGlcDG is added. The variation of order with lipid composition is rationalized from simple packing constraints. R2 increases linearly with the square of the order parameter (S2) up to S approximately 0.14; then, R2 goes through a maximum and decreases. The increase in R2 with S2, as well as the magnitude of R2, is largest for pure MGlcDG-d31, smallest for DGlcDG-d31, and similar for mixtures with the same molar ratio of MGlcDG/DGlcDG but with the deuterium label on different lipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The phase behaviour of aqueous dispersions of a series of synthetic 1,2-di-O-alkyl-3-O-(beta-D-glucosyl)-rac-glycerols with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry and low angle X-ray diffraction (XRD). Thermograms of these lipids show a single, strongly energetic phase transition, which was shown to correspond to either a lamellar gel/liquid crystalline (L(beta)/L(alpha)) phase transition (short chain compounds, n < or =14 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (longer chain compounds, n > or =15 carbon atoms) by XRD. The shorter chain compounds may exhibit additional transitions at higher temperatures, which have been identified as lamellar/nonlamellar phase transitions by XRD. The nature of these nonlamellar phases and the number of associated intermediate transitions can be seen to vary with chain length. The thermotropic phase properties of these lipids are generally similar to those reported for the corresponding 1,2-sn-diacyl alpha- and beta-D-glucosyl counterparts, as well as the recently published 1, 2-dialkyl-3-O-(beta-D-glycosyl)-sn-glycerols. However, the racemic lipids studied here show no evidence of the complex patterns of gel phase polymorphism exhibited by the above mentioned compounds. This suggests that the chirality of the glycerol molecule, by virtue of its position in the interfacial region, may significantly alter the phase properties of a lipid, perhaps by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.  相似文献   

13.
The lamellar/nonlamellar phase preferences of lipid model membranes composed of mixtures of several cationic lipids with various zwitterionic and anionic phospholipids were examined by a combination of differential scanning calorimetry and (31)P NMR spectroscopy. All of the cationic lipids utilized in this study form only lamellar phases in isolation. Mixtures of these cationic lipids with zwitterionic strongly lamellar phase-preferring lipids such as phosphatidylcholine form only the lamellar liquid-crystalline phase even at high temperatures, as expected. Moreover, mixtures of these cationic lipids with strongly nonlamellar phase-preferring zwitterionic lipids such as phosphatidylethanolamine exhibit a markedly reduced propensity to form inverted nonlamellar phases, again as expected. However, when mixed with anionic lipids such as phosphatidylserine, phosphatidylglycerol, cardiolipin, or phosphatidic acid, a marked enhancement of nonlamellar phase-forming propensity occurs, despite the fact both components of the mixture are nominally lamellar phase-preferring. An examination of the lamellar/nonlamellar phase transition temperatures and the nature of the nonlamellar phases formed, as a function of temperature and of the composition of the mixture, indicates that the propensity to form inverted nonlamellar phases is maximal in mixtures where the mean surface charge of the membrane surface approaches neutrality and decreases markedly with increases in the density of positive or negative charge at the membrane surface. Moreover, the onset temperatures of the reversed hexagonal phase rise more steeply than do those of the inverted cubic phase as the ratio of cationic and anionic lipids is varied, suggesting that the formation of inverted hexagonal phases is more sensitive to this surface charge effect. These results indicate that surface charge per se is a significant and effective modulator of the lamellar/nonlamellar phase preferences of membrane lipids and that charged group interactions at membrane surfaces may have a major role in regulating this particular membrane property.  相似文献   

14.
SYNOPSIS. Current theories assert that organisms finely adjustthe order, or fluidity, of their cellular membranes in responseto changes in their physiochemical environment (e.g., pressure,temperature, salinity, etc.). However, membrane order may notbe the only property that is conserved. The most commonly observedalterations in cell membrane composition under conditions ofaltered physiochemical environment, namely changes in the phosphatidylethanolamine/phosphatidylcholine(PE/PC) ratio and the content of highly unsaturated acyl chains,are difficult to fully reconcile with the conservation of membraneorder alone. This report reviews the literature concerning twoproperties of membranes that may play vital roles in the adaptationof cellular membranes to changing environments: a) the tendencyof membranes to relax into the reversed hexagonal phase andb) the occurrence and structure of lipid-driven domains withinthe membrane. The tendency of a membrane to form the reversedhexagonal phase is a property central to a variety of importantcellular events. This tendency is tightly regulated by variationof the ratio of hexagonal phase-forming lipids to lamellar phase-forminglipids in the membrane. In most animal cells, this correspondsto the PE/PC ratio. Highly unsaturated acyl chains, in conjunctionwith cholesterol, modulate the occurrence and structure of lipid-drivenmembrane domains. These membrane domains are also criticallyinvolved in a number of key cellular processes. The changesin membrane lipid composition that occur during adaptation tothe environment may be required for the preservation of thetendency to form nonlamellar phases and of the occurrence andspecific structure of domains within the membrane, in additionto overall membrane order.  相似文献   

15.
The polymorphic phase behavior of aqueous dispersions of a homologous series of 1,2-di-O-acyl-3-O-(alpha-D-glucopyranosyl)-sn-glycerols was studied by differential scanning calorimetry. At fast heating rates unannealed samples of these lipids exhibit a strongly energetic transition, which has been identified as a lamellar gel/liquid crystalline (L beta/L alpha) phase transition (short- and medium-chain compounds) or a lamellar gel to inverted hexagonal (L beta/HII) phase transition (long-chain compounds) by X-ray diffraction studies (Sen et al., 1990). At still higher temperatures, some of the lipids that form lamellar liquid-crystalline phases exhibit an additional transition, which has been identified as a transition to an inverted nonbilayer phase by X-ray diffraction studies. The lamellar gel phase formed on initial cooling of these lipids is a metastable structure, which, when annealed under appropriate conditions, transforms to a more stable lamellar gel phase, which has been identified as a poorly hydrated crystal-like phase with tilted acyl chains by X-ray diffraction measurements (Sen et al., 1990). With the exception of the di-19:0 homologue, the crystalline phases of these lipids are stable to temperatures higher than those at which their L beta phases melt and, as a result, they convert directly to L alpha or HII phases on heating. Our results indicate that the length of the acyl chain affects both the kinetic and thermodynamic properties of the crystalline phases of these lipids as well as the type of nonbilayer phase that they form. Moreover, when compared with the beta-anomers, these alpha-D-glucosyl diacylglycerols are more prone to form ordered crystalline gel phases at low temperatures and are somewhat less prone to form nonbilayer phases at elevated temperatures. Thus the physical properties of glucolipids (and possibly all glycolipids) are very sensitive to the nature of the anomeric linkage between the sugar headgroup and the glycerol backbone of the lipid molecule. We suggest that this is, in part, due to a change in orientation of the glucopyranosyl ring relative to the bilayer surface, which in turn affects the way(s) in which the sugar headgroups interact with each other and with water.  相似文献   

16.
R N Lewis  R N McElhaney 《Biochemistry》1990,29(34):7946-7953
The subgel phases of a homologous series of saturated straight-chain diacylphosphatidylcholines with hydrocarbon chains consisting of 10-18 carbon atoms were studied by Fourier-transform infrared spectroscopy. All of these lipids initially form a subgel phase which is spectroscopically similar to that obtained when fully hydrated multilamellar dispersions of dipalmitoylphosphatidylcholine are incubated at 0-4 degrees C for 2-4 days. However, further low-temperature incubation of those phosphatidylcholines with acyl chains of 16 or fewer carbon atoms results in the sequential formation of 1 or more additional, spectroscopically distinct subgel phases, with the number of such phases increasing as hydrocarbon chain length decreases. Our data indicate that the formation of all of these subgel phases involves both reorientation of the acyl chains and major changes in hydration and/or hydrogen-bonding interactions at the polar/apolar interfacial region of the lipid bilayer. We suggest that the driving force behind the formation of these Lc phases is the formation of an extended hydrogen-bonding network in the interfacial region of the bilayer and that the optimization of this network probably requires some distortion of the optimal packing of the acyl chains. As a result, an increase in acyl chain length makes the formation of these Lc phases less favorable and eventually prevents optimization of the hydrogen-bonding network at the bilayer polar/apolar interface.  相似文献   

17.
The hydration properties and the phase structure of 1,2-di-O-tetradecyl-3-O(3-O-methyl-beta-D-glucopyranosyl)-sn-glycerol (3-O-Me-beta-D-GlcDAIG) in water have been studied via differential scanning calorimetry, 1H-NMR and 2H-NMR spectroscopy, and x-ray diffraction. Results indicate that this lipid forms a crystalline (Lc) phase up to temperatures of 60-70 degrees C, where a transition through a metastable reversed hexagonal (Hll) phase to a reversed micellar solution (L2) phase occurs. Experiments were carried out at water concentrations in a range from 0 to 35 wt%, which indicate that all phases are poorly hydrated, taking up < 5 mol water/mol lipid. The absence of a lamellar liquid crystalline (L alpha) phase and the low levels of hydration measured in the discernible phases suggest that the methylation of the saccharide moiety alters the hydrogen bonding properties of the headgroup in such a way that the 3-O-Me-beta-D-GlcDAIG headgroup cannot achieve the same level of hydration as the unmethylated form. Thus, in spite of the small increase in steric bulk resulting from methylation, there is an increase in the tendency of 3-O-Me-beta-D-GlcDAIG to form nonlamellar structures. A similar phase behavior has previously been observed for the Acholeplasma laidlawii A membrane lipid 1,2-diacyl-3-O-(6-O-acyl-alpha-D-glucopyranosyl)-sn-glycerol in water (Lindblom et al. 1993. J. Biol. Chem. 268:16198-16207). The phase behavior of the two lipids suggests that hydrophobic substitution of a hydroxyl group in the sugar ring of the glucopyranosylglycerols has a very strong effect on their physicochemical properties, i.e., headgroup hydration and the formation of different lipid aggregate structures.  相似文献   

18.
Previously it was shown that gramicidin can induce HII phase formation in diacylphosphatidylcholine model membranes only when the lipid acyl chain length exceeds 16 carbon atoms (Van Echteld, C.J.A., De Kruijff, B., Verkleij, A.J., Leunissen-Bijvelt, J. and De Gier, J. (1982) Biochim. Biophys. Acta 692, 126-138). Using 31P-NMR and small angle X-ray diffraction we now demonstrate that upon increasing the length of gramicidin, the peptide loses its ability to induce HII phase formation in di-C18:1c-PC but not in the longer chained di-C22:1c-PC. It is concluded that a mismatch in length between gramicidin and the lipid acyl chains, when the latter would provide excess bilayer thickness, is a prerequisite for HII phase formation in phosphatidylcholine model membranes.  相似文献   

19.
Correlation between lipid plane curvature and lipid chain order.   总被引:1,自引:1,他引:0       下载免费PDF全文
The 1-palmitoyl-2-oleoyl-phosphatidylethanolamine: 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE:POPC) system has been investigated by measuring, in the inverted hexagonal (HII) phase, the intercylinder spacings (using x-ray diffraction) and orientational order of the acyl chains (using 2H nuclear magnetic resonance). The presence of 20 wt% dodecane leads to the formation of a HII phase for the composition range from 0 to 39 mol% of POPC in POPE, as ascertained by x-ray diffraction and 2H nuclear magnetic resonance. The addition of the alkane induces a small decrease in chain order, consistent with less stretched chains. An increase in temperature or in POPE proportion leads to a reduction in the intercylinder spacing, primarily due to a decrease in the water core radius. A temperature increase also leads to a reduction in the orientational order of the lipid acyl chains, whereas the POPE proportion has little effect on chain order. A correlation is proposed to relate the radius of curvature of the cylinders in the inverted hexagonal phase to the chain order of the lipids adopting the HII phase. A simple geometrical model is proposed, taking into account the area occupied by the polar headgroup at the interface and the orientational order of the acyl chains reflecting the contribution of the apolar core. From these parameters, intercylinder spacings are calculated that agree well with the values determined experimentally by x-ray diffraction, for the variations of both temperature and POPE:POPC proportion. This model suggests that temperature increases the curvature of lipid layers, mainly by increasing the area subtended by the hydrophobic core through chain conformation disorder, whereas POPC content affects primarily the headgroup interface contribution. The frustration of lipid layer curvature is also shown to be reflected in the acyl chain order measured in the L alpha phase, in the absence of dodecane; for a given temperature, increased order is observed when the curling tendencies of the lipid plane are more pronounced.  相似文献   

20.
Sphingomyelin (SM) is a main component of lipid rafts and characteristic of abundance of long and saturated acyl chains. Recently, we reported that fluorescence-labeled lipids including C16:0 and C18:0SMs retained membrane behaviors of inherent lipids. Here, we newly prepared fluorescent SMs with longer acyl chains, C22:0 and C24:1, for observing their partition and diffusion in SM/cholesterol (chol)/dioleoylphosphatidylcholine (DOPC) bilayers. Although fluorescent C24:1SM underwent a uniform distribution between ordered (Lo) and disordered (Ld) phases, other fluorescent SMs with saturated acyl chains were preferentially distributed in the Lo phase. Interestingly, when the acyl chains of fluorescent and membrane SMs are different, distribution of fluorescent SM to the Lo phase was reduced compared to when the acyl chains are the same. This tendency was also observed for C16:0SM/C22:0SM/chol/DOPC quaternary bilayers, where the minor SM was more excluded out of the Lo phase than the major SM. We also found that the coexistence of SMs induces SM efflux out of the Lo phase and simultaneous DOPC influx to the Lo phase, consequently reducing the difference in fluidity between the two phases. These results suggest that physicochemical properties of lipid rafts are regulated by the acyl chain heterogeneity of SMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号