首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissecting beta-ring assembly pathway of the mammalian 20S proteasome   总被引:2,自引:0,他引:2  
The 20S proteasome is the catalytic core of the 26S proteasome. It comprises four stacked rings of seven subunits each, alpha(1-7)beta(1-7)beta(1-7)alpha(1-7). Recent studies indicated that proteasome-specific chaperones and beta-subunit appendages assist in the formation of alpha-rings and dimerization of half-proteasomes, but the process involved in the assembly of beta-rings is poorly understood. Here, we clarify the mechanism of beta-ring formation on alpha-rings by characterizing assembly intermediates accumulated in cells depleted of each beta-subunit. Starting from beta2, incorporation of beta-subunits occurs in an orderly manner dependent on the propeptides of beta2 and beta5, and the C-terminal tail of beta2. Unexpectedly, hUmp1, a chaperone functioning at the final assembly step, is incorporated as early as beta2 and is required for the structural integrity of early assembly intermediates. We propose a model in which beta-ring formation is assisted by both intramolecular and extrinsic chaperones, whose roles are partially different between yeast and mammals.  相似文献   

2.
The 20S proteasome is a catalytic core of the 26S proteasome, a central enzyme in the degradation of ubiquitin-conjugated proteins. It is composed of 14 distinct gene products that form four stacked rings of seven subunits each, alpha(1-7)beta(1-7)beta(1-7)alpha(1-7). It is reported that the biogenesis of mammalian 20S proteasomes is assisted by proteasome-specific chaperones, named PAC1, PAC2, and hUmp1, but the details are still unknown. Here, we report the identification of a chaperone, designated PAC3, as a component of alpha rings. Although it can intrinsically bind directly to both alpha and beta subunits, PAC3 dissociates before the formation of half-proteasomes, a process coupled with the recruitment of beta subunits and hUmp1. Knockdown of PAC3 impaired alpha ring formation. Further, PAC1/2/3 triple knockdown resulted in the accumulation of disorganized half-proteasomes that are incompetent for dimerization. Our results describe a cooperative system of multiple chaperones involved in the correct assembly of mammalian 20S proteasomes.  相似文献   

3.
20S proteasome biogenesis   总被引:2,自引:0,他引:2  
Krüger E  Kloetzel PM  Enenkel C 《Biochimie》2001,83(3-4):289-293
26S proteasomes are multi-subunit protease complexes responsible for the turnover of short-lived proteins. Proteasomal degradation starts with the autocatalytic maturation of the 20S core particle. Here, we summarize different models of proteasome assembly. 20S proteasomes are assembled as precursor complexes containing alpha and unprocessed beta subunits. The propeptides of the beta subunits are thought to prevent premature conversion of the precursor complexes into matured particles and are needed for efficient beta subunit incorporation. The complex biogenesis is tightly regulated which requires additional components such as the maturation factor Ump1/POMP, an ubiquitous protein in eukaryotic cells. Ump1/POMP is associated with precursor intermediates and degraded upon final maturation. Mammalian proteasomes are localized all over the cell, while yeast proteasomes mainly localize to the nuclear envelope/endoplasmic reticulum (ER) membrane network. The major localization of yeast proteasomes may point to the subcellular place of proteasome biogenesis.  相似文献   

4.
Proteasomes are responsible for most intracellular protein degradation in eukaryotes. The 20S proteasome comprises a dyad-symmetric stack of four heptameric rings made from 14 distinct subunits. How it assembles is not understood. Most subunits in the central pair of beta-subunit rings are synthesized in precursor form. Normally, the beta5 (Doa3) propeptide is essential for yeast proteasome biogenesis, but overproduction of beta7 (Pre4) bypasses this requirement. Bypass depends on a unique beta7 extension, which contacts the opposing beta ring. The resulting proteasomes appear normal but assemble inefficiently, facilitating identification of assembly intermediates. Assembly occurs stepwise into precursor dimers, and intermediates contain the Ump1 assembly factor and a novel complex, Pba1-Pba2. beta7 incorporation occurs late and is closely linked to the association of two half-proteasomes. We propose that dimerization is normally driven by the beta5 propeptide, an intramolecular chaperone, but beta7 addition overcomes an Ump1-dependent assembly checkpoint and stabilizes the precursor dimer.  相似文献   

5.
Assembly of mammalian 20 S proteasomes from individual subunits is beginning to be investigated. Proteasomes are made of four heptameric rings in the configuration alpha7beta7beta7alpha7. By using anti-proteasome and anti-subunit-specific antibodies, we characterized the processing and assembly of the beta subunit C5. The C5 precursor (25 kDa) remains as a free non-assembled polypeptide in the cell. The conversion of the C5 precursor to mature C5 (23 kDa) occurs concomitantly with its incorporation into 15 S proteasome intermediate and 20 S mature proteasome complexes. This processing is dependent on proteasome activity and takes place in the cytosol. These results are not fully compatible with the hypothesis that postulates that assembly of proteasomes takes place via a "half-proteasome" intermediate that contains one full alpha-ring and one full beta-ring of unprocessed beta subunit precursors.  相似文献   

6.
Substrate access and processing by the 20S proteasome core particle   总被引:5,自引:0,他引:5  
Intracellular proteolysis is an essential process. In eukaryotes, most proteins in the cytosol and nucleus are degraded by the ubiquitin (Ub)-proteasome pathway. A major component within this system is the 26S proteasome, a 2.5MDa molecular machine, built from more than 31 different subunits. This complex is formed by a cylinder-shaped multimeric complex referred to as the proteolytic 20S proteasome (core particle, CP) capped at each end by another multimeric component called the 19S complex (regulatory particle, RP) or PA700. Structure, assembly and enzymatic mechanism have been elucidated only for the CP, whereas the organization of the RP is less well understood. The CP is composed of 28 subunits, which are arranged as an alpha7beta7beta7alpha7-complex in four stacked rings. The interior of the free core particle, which harbors the active sites, is inaccessible for folded and unfolded substrates and represents a latent state. This inhibition is relieved upon binding of the RP to the CP by formation of the 26S proteasome holoenzyme. This review summarizes the current knowledge of the structural features of 20S proteasomes.  相似文献   

7.
The 26S proteasome mediates ubiquitin-dependent proteolysis in eukaryotic cells. A number of studies including very recent ones have revealed that assembly of its 20S catalytic core particle is an ordered process that involves several conserved proteasome assembly chaperones (PACs). Two heterodimeric chaperones, PAC1-PAC2 and PAC3-PAC4, promote the assembly of rings composed of seven alpha subunits. Subsequently, beta subunits join to form half-proteasome precursor complexes containing all but one of the 14 subunits. These complexes lack the beta7 subunit but contain UMP1, another assembly chaperone, and in yeast, at least to some degree, the activator protein Blm10. Dimerization of two such complexes is triggered by incorporation of beta7, whose C-terminal extension reaches out into the other half to stabilize the newly formed 20S particle. The process is completed by the maturation of active sites and subsequent degradation of UMP1 and PAC1-PAC2.  相似文献   

8.
The 26S proteasome is a multi‐catalytic ATP‐dependent protease complex that recognizes and cleaves damaged or misfolded proteins to maintain cellular homeostasis. The 26S subunit consists of 20S core and 19S regulatory particles. 20S core particle consists of a stack of heptameric alpha and beta subunits. To elucidate the structure‐function relationship, we have dissected protein‐protein interfaces of 20S core particle and analyzed structural and physiochemical properties of intra‐alpha, intra‐beta, inter‐beta, and alpha‐beta interfaces. Furthermore, we have studied the evolutionary conservation of 20S core particle. We find the size of intra‐alpha interfaces is significantly larger and is more hydrophobic compared with other interfaces. Inter‐beta interfaces are well packed, more polar, and have higher salt‐bridge density than other interfaces. In proteasome assembly, residues in beta subunits are better conserved than alpha subunits, while multi‐interface residues are the most conserved. Among all the residues at the interfaces of both alpha and beta subunits, Gly is highly conserved. The largest size of intra‐alpha interfaces complies with the hypothesis that large interfaces form first during the 20S assembly. The tight packing of inter‐beta interfaces makes the core particle impenetrable from outer wall of the cylinder. Comparing the three domains, eukaryotes have large and well‐packed interfaces followed by archaea and bacteria. Our findings provide a structural basis of assembly of 20S core particle in all the three domains of life.  相似文献   

9.
Murata S 《IUBMB life》2006,58(5-6):344-348
Protein degradation is essential for maintenance of cellular homeostasis. The majority of proteins are selectively degraded in eukaryotic cells by the ubiquitin-proteasome system. The 26S proteasome selects target proteins that are covalently modified with polyubiquitin chains. The 26S proteasome is a multisubunit protease responsible for regulated proteolysis in eukaryotic cells. The catalytic activities are carried out by the core 20S proteasome. The eukaryotic 20S proteasome is composed of 28 subunits arranged in a cylindrical particle as four heteroheptameric rings, alpha1-7beta1-7beta1-7alpha1-7. Recent studies have revealed the mechanism responsible for the assembly of such a complex structure. This article recounts the observations that disclosed the biogenesis of 20S proteasomes and discusses the difference in the mechanism of assembly between archael, yeast, and mammalian 20S proteasomes.  相似文献   

10.
The assembly of eukaryotic 20 S proteasomes involves the formation of half-proteasomes where precursor beta-type subunits gather in position on an alpha-subunit ring, followed by the association of two half-proteasomes and beta-subunit processing. In vertebrates three additional beta-subunits (beta1i/LMP2, beta2i/MECL1, and beta5i/LMP7) can be synthesized and substituted for constitutive homologues (beta1/delta, beta2/Z, and beta5/X) to yield immunoproteasomes, which are important for generating certain antigenic peptides. We have shown previously that when all six beta-subunits are present, cooperative assembly mechanisms limit the diversity of proteasome populations. Specifically, LMP7 is incorporated preferentially over X into preproteasomes containing LMP2 and MECL1. We show here that the LMP7 propeptide is responsible for this preferential incorporation, and it also enables LMP7 to incorporate into proteasomes containing delta and Z. In contrast, the X propeptide restricts incorporation to proteasomes with delta and Z. Furthermore, we demonstrate that the LMP7 propeptide can function in trans when expressed on LMP2, and that its NH(2)-terminal and mid-regions are particularly critical for function. In addition to identifying a novel propeptide function, our results raise the possibility that one consequence of LMP7 incorporation into both immunoproteasomes and delta/Z proteasomes may be to increase the diversity of antigenic peptides that can be generated.  相似文献   

11.
Electron microscopy and STEM mass measurements have been used to characterize late intermediates in the assembly pathway of wildtype and mutant Rhodococcus proteasomes. A proteolytically inactive and processing-incompetent mutant, betaK33A, allowed a short-lived late intermediate of the pathway to be captured, the preholoproteasome. In this fully assembled 20S complex the 14 propeptides with an aggregate mass of 100 kDa fill the whole central cavity and most of the two antechambers. It is further shown that in wildtype Rhodococcus proteasomes the propeptides are degraded in a processive manner undergoing multiple cleavages before the products are discharged and the inner cavities are cleared. It appears that the docking of two half-proteasomes, i.e., preholoproteasome formation, is sufficient to trigger autocleavage of the Gly-1/Thr1 bond necessary for active site formation and the subsequent degradation of the propeptides.  相似文献   

12.
The proteasome, a proteolytic complex present in all eukaryotic cells, is part of the ATP-dependent ubiquitin/proteasome pathway. It plays a critical role in the regulation of many physiological processes. The 20 S proteasome, the catalytic core of the 26 S proteasome, is made of four stacked rings of seven subunits each (alpha7beta7beta7alpha7). Here we studied the human 20 S proteasome using proteomics. This led to the establishment of a fine subunit reference map and to the identification of post-translational modifications. We found that the human 20 S proteasome, purified from erythrocytes, exhibited a high degree of structural heterogeneity, characterized by the presence of multiple isoforms for most of the alpha and beta subunits, including the catalytic ones, resulting in a total of at least 32 visible spots after Coomassie Blue staining. The different isoforms of a given subunit displayed shifted pI values, suggesting that they likely resulted from post-translational modifications. We then took advantage of the efficiency of complementary mass spectrometric approaches to investigate further these protein modifications at the structural level. In particular, we focused our efforts on the alpha7 subunit and characterized its N-acetylation and its phosphorylation site localized on Ser(250).  相似文献   

13.
Proteins targeted for degradation by the ubiquitin-proteasome system are degraded by the 26S proteasome. The core of this large protease is the 20S proteasome, a barrel-shaped structure made of a stack of four heptameric rings. Of the 14 different subunits that make up the yeast 20S proteasome, three have proteolytic active sites: Doa3/beta5, Pup1/beta2 and Pre3/beta1. Each of these subunits is synthesized with an N-terminal propeptide that is autocatalytically cleaved during particle assembly. We show here that the propeptides have both common and distinct functions in proteasome biogenesis. Unlike the Doa3 propeptide, which is crucial for proteasome assembly, the Pre3 and Pup1 propeptides are dispensable for cell viability and proteasome formation. However, mutants lacking these propeptide-encoding elements are defective for specific peptidase activities, are more sensitive to environmental stresses and have subtle defects in proteasome assembly. Unexpectedly, a critical function of the propeptide is the protection of the N-terminal catalytic threonine residue against Nalpha-acetylation. For all three propeptide-deleted subunits, activity of the affected catalytic center is fully restored when the Nat1-Ard1 Nalpha-acetyltransferase is mutated. In addition to delineating a novel function for proteasome propeptides, these data provide the first biochemical evidence for the postulated participation of the alpha-amino group in the proteasome catalytic mechanism.  相似文献   

14.
Oguchi S  Sassa H  Hirano H 《Gene》2001,272(1-2):19-23
The 20S proteasome is the proteolytic complex that is involved in removing abnormal proteins and other diverse biological functions. The 20S proteasome is constituted of 28 subunits arranged in four rings of seven subunits, and exists as a hollow cylinder. The two outer rings and the two inner rings are composed of seven different alpha and beta type subunits, respectively, giving an alpha 7 beta 7 beta 7 alpha 7 structure. We previously reported the primary structures of the 14 proteasomal subunit subfamilies in rice (Oryza sativa), representing the first set for all the subfamilies from monocot. In this study, a distinct cDNA sequence encoding the alpha1 subunit, OsPAA2, was identified. The amino acid sequence similarity between the two rice alpha1 subunits was as low as 59.6%, contrasting with those between paralogs of Arabidopsis proteasome subunit genes. The expression pattern of the OsPAA2 gene was different from that of another alpha1 gene, OsPAA1. These data suggest that OsPAA2 might play a distinct role from that of OsPAA1 in the 20S proteasome complex.  相似文献   

15.
The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.  相似文献   

16.
Proteasome-dependent proteolysis is essential for a number of key cellular processes and requires a sophisticated biogenesis pathway to function. Here, we have arrested the assembly process in its dynamic progression at the short-lived 16S state. Structural analysis of the 16S proteasome precursor intermediates by electron microscopy, and single particle analysis reveals major conformational changes in the structure of the beta-ring in comparison with one-half of the 20S proteasome. The individual beta-subunits in the 16S precursor complex rotate with respect to their positions in the x-ray crystallographic structure of the fully assembled 20S. This rearrangement results in a movement of the catalytic residue threonine-1 from the protected location in 16S precursor complexes to a more exposed position in the 20S structure. Thereby, our findings provide a molecular explanation for the structural rearrangements necessary for the dimerization of two 16S precursor complexes and the subsequent final maturation to active 20S proteasomes.  相似文献   

17.
Biogenesis of mammalian 20 S proteasomes occurs via precursor complexes containing alpha and unprocessed beta subunits. A human homologue of the yeast proteasome maturation factor Ump1 was identified in 2D gels of 16 S precursor preparations and designated as POMP (proteasome maturation protein). We show that POMP is detected only in precursor fractions and not in fractions containing mature 20 S proteasome. Northern blot experiments revealed that expression of POMP is induced after treatment with interferon gamma. To analyse the role of the beta 5 propeptide for proper maturation and incorporation of the beta 5 subunit into the complex, human T2 cells, which highly express derivatives of the beta 5i subunit (LMP7), were studied. In contrast to yeast, the presence of the beta 5 propeptide is not essential for incorporation of LMP7 into the proteasome complex. Mutated LMP7 subunits either carrying the prosequence of beta 2i (LMP2) or containing a mutation in the active threonine site are incorporated like wild-type LMP7, while a LMP7 derivative lacking the prosequence completely is incorporated to a lesser extent. Although the absence of the prosequence does not affect incorporation of LMP7, its deletion leads to delayed proteasome maturation and thereby to an accumulation of precursor complexes. As a result of the precursor accumulation, an increased amount of the POMP protein can be detected in these cells.  相似文献   

18.
The structure of the mammalian 20S proteasome at 2.75 A resolution   总被引:12,自引:0,他引:12  
The 20S proteasome is the catalytic portion of the 26S proteasome. Constitutively expressed mammalian 20S proteasomes have three active subunits, beta 1, beta 2, and beta 5, which are replaced in the immunoproteasome by interferon-gamma-inducible subunits beta 1i, beta 2i, and beta 5i, respectively. Here we determined the crystal structure of the bovine 20S proteasome at 2.75 A resolution. The structures of alpha 2, beta 1, beta 5, beta 6, and beta 7 subunits of the bovine enzyme were different from the yeast enzyme but enabled the bovine proteasome to accommodate either the constitutive or the inducible subunits. A novel N-terminal nucleophile hydrolase activity was proposed for the beta 7 subunit. We also determined the site of the nuclear localization signals in the molecule. A model of the immunoproteasome was predicted from this constitutive structure.  相似文献   

19.
The assembly of individual proteasome subunits into catalytically active mammalian 20S proteasomes is not well understood. Using subunit-specific antibodies, we characterized both precursor and mature proteasome complexes. Antibodies to PSMA4 (C9) immunoprecipitated complexes composed of alpha, precursor beta and processed beta subunits. However, antibodies to PSMA3 (C8) and PSMB9 (LMP2) immunoprecipitated complexes made up of alpha and precursor beta but no processed beta subunits. These complexes possess short half-lives, are enzymatically inactive and their molecular weight is approximately 300 kDa. Radioactivity chases from these complexes into mature, long-lived approximately 700 kDa proteasomes. Therefore, these structures represent precursor proteasomes and are probably made up of two rings: one containing alpha subunits and the other, precursor beta subunits. The assembly of precursor proteasomes occurs in at least two stages, with precursor beta subunits PSMB2 (C7-I), PSMB3 (C10-II), PSMB7 (Z), PSMB9 (LMP2) and PSMB10 (LMP10) being incorporated before others [PSMB1 (C5), PSMB6 (delta), and PSMB8 (LMP7)]. Proteasome maturation (processing of the beta subunits and juxtaposition of the two beta rings) is accompanied by conformational changes in the (outer) alpha rings, and may be inefficient. Finally, interferon-gamma had no significant effect on the half-lives or total amounts of precursor or mature proteasomes.  相似文献   

20.
The 26 S proteasome comprises two multisubunit subcomplexes as follows: 20 S proteasome and PA700/19 S regulatory particle. The cellular mechanisms by which these subcomplexes assemble into 26 S proteasome and the molecular determinants that govern the assembly process are poorly defined. Here, we demonstrate the nonequivalent roles of the C termini of six AAA subunits (Rpt1-Rpt6) of PA700 in 26 S proteasome assembly in mammalian cells. The C-terminal HbYX motif (where Hb is a hydrophobic residue, Y is tyrosine, and X is any amino acid) of each of two subunits, Rpt3 and Rpt5, but not that of a third subunit Rpt2, was essential for assembly of 26 S proteasome. The C termini of none of the three non-HbYX motif Rpt subunits were essential for cellular 26 S proteasome assembly, although deletion of the last three residues of Rpt6 destabilized the 20 S-PA700 interaction. Rpt subunits defective for assembly into 26 S proteasome due to C-terminal truncations were incorporated into intact PA700. Moreover, intact PA700 accumulated as an isolated subcomplex when cellular 20 S proteasome content was reduced by RNAi. These results indicate that 20 S proteasome is not an obligatory template for assembly of PA700. Collectively, these results identify specific structural elements of two Rpt subunits required for 26 S proteasome assembly, demonstrate that PA700 can be assembled independently of the 20 S proteasome, and suggest that intact PA700 is a direct intermediate in the cellular pathway of 26 S proteasome assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号