首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu W  Chen C  Huang P  Li J  de Riel JK  Javitch JA  Liu-Chen LY 《Biochemistry》2000,39(45):13904-13915
Binding pockets of the opioid receptors are presumably formed among the transmembrane domains (TMDs) and are accessible from the extracellular medium. In this study, we determined the sensitivity of binding of [(3)H]diprenorphine, an antagonist, to mu, delta, and kappa opioid receptors to charged methanethiosulfonate (MTS) derivatives and identified the cysteine residues within the TMDs that conferred the sensitivity. Incubation of the mu opioid receptor expressed in HEK293 cells with MTS ethylammonium (MTSEA), MTS ethyltrimethylammonium (MTSET), or MTS ethylsulfonate (MTSES) inhibited [(3)H]diprenorphine binding with the potency order of MTSEA > MTSET > MTSES. Pretreatment of mu, delta, and kappa opioid receptors with MTSEA dose-dependently inhibited [(3)H]diprenorphine binding with MTSEA sensitivity in the order of kappa > mu > delta. The effects of MTSEA occurred rapidly, reaching the maximal inhibition in 10 min. (-)-Naloxone, but not (+)-naloxone, prevented the MTSEA effect, demonstrating that the reaction occurs within or in the vicinity of the binding pockets. Each cysteine residue in the TMDs of the three receptors was mutated singly, and the effects of MTSEA treatment were examined. The mutants had similar affinities for [(3)H]diprenorphine, and C7. 38(321)S, C7.38(303)S, and C7.38(315)S mutations rendered mu, delta, and kappa opioid receptors less sensitive to the effect of MTSEA, respectively. These results indicate that the conserved Cys7.38 is differentially accessible in the binding-site crevice of these receptors. The second extracellular loop of the kappa receptor, which contains several acidic residues, appears to play a role, albeit small, in its higher sensitivity to MTSEA, whereas the negative charge of Glu6.58(297) did not. To the best of our knowledge, this is the first report to show that a conserved residue among highly homologous G protein-coupled receptors is differentially accessible in the binding-site crevice. In addition, this represents the first successful generation of MTSEA-insensitive mutants of mu, delta, and kappa opioid receptors, which will allow determination of residues accessible in the binding-site crevices of these receptors by the substituted cysteine accessibility method.  相似文献   

2.
Xu W  Campillo M  Pardo L  Kim de Riel J  Liu-Chen LY 《Biochemistry》2005,44(49):16014-16025
We applied the substituted cysteine accessibility method (SCAM) to map the residues of the transmembrane helices (TMs) 7 of delta and kappa opioid receptors (deltaOR and kappaOR) that are on the water-accessible surface of the binding-site crevices. A total of 25 consecutive residues (except C7.38) in the TMs 7 were mutated to Cys, one at a time, and each mutant was expressed in HEK 293 cells. Most mutants displayed similar binding affinity for [(3)H]diprenorphine, an antagonist, as the wild types. Pretreatment with (2-aminoethyl)methanethiosulfonate (MTSEA) inhibited [(3)H]diprenorphine binding to eight deltaOR and eight kappaOR mutants. All mutants except deltaOR L7.52(317)C were protected by naloxone from the MTSEA effect, indicating that the side chains of V7.31(296), A7.34(299), I7.39(304), L7.41(306), G7.42(307), P7.50(315), and Y7.53(318) of deltaOR and S7.34(311), F7.37(314), I7.39(316), A7.40(317), L7.41(318), G7.42(319), Y7.43(320), and N7.49(326) of kappaOR are on the water-accessible surface of the binding pockets. Combining the SCAM data with rhodopsin-based molecular models of the receptors led to the following conclusions. (i) The residues of the extracellular portion of TM7 predicted to face TM1 are sensitive to MTSEA in kappaOR but are not in deltaOR. Thus, TM1 may be closer to TM7 in deltaOR than in kappaOR. (ii) MTSEA-sensitive mutants start at position 7.31(296) in deltaOR and at 7.34(311) in kappaOR, suggesting that TM7 in deltaOR may have an additional helical turn (from 7.30 to 7.33). (iii) There is a conserved hydrogen-bond network linking D2.50 of the NLxxxD motif in TM2 with W6.48 of the CWxP motif in TM6. (iv) The NPxxY motif in TM7 interacts with TM2, TM6, and helix 8 to maintain receptors in inactive states. To the best of our knowledge, this represents the first such comparison of the structures of two highly homologous GPCRs.  相似文献   

3.
Sun HL  Zheng JW  Wang K  Liu RK  Liang JH 《Life sciences》2003,72(11):1221-1230
Tramadol, an atypical opioid analgesic, stimulates both opiatergic and serotonergic systems. Here we have investigated the effect of tramadol in mice on 5-hydroxyptrytophan (5-HTP)-induced head twitch response (HTR), which is an animal model for the activation of the CNS 5-HT(2A) receptors in mice. Tramadol attenuated 5-HTP-induced HTR in a dose-dependent manner as morphine. Furthermore, the nonselective opioid receptor antagonists, naloxone and diprenorphine (M5050), reversed the effect of tramadol on 5-HTP-induced HTR dose-dependently. Interestingly, in contrast to the selective delta opioid receptor antagonist NTI, beta-FNA, a selective mu receptor antagonist, and nor-BNI, a selective kappa opioid receptor antagonist, antagonized the attenuation of 5-HTP-induced HTR by tramadol. In conclusion, administration of tramadol systemically inhibits 5-HTP-induced HTR in mice by activating opiatergic system in the CNS. Our findings show that mu and kappa opioid receptors, but not delta opioid receptor, play an important role in the regulation of serotonergic function in the CNS.  相似文献   

4.
Human opioid receptors of the delta, mu and kappa subtypes were successfully expressed in Escherichia coli as fusions to the C-terminus of the periplasmic maltose-binding protein, MBP. Expression levels of correctly folded receptor molecules were comparable for the three subtypes and reached an average of 30 receptors.cell-1 or 0.5 pmol.mg-1 membrane protein. Binding of [3H]diprenorphine to intact cells or membrane preparations was saturatable, with a dissociation constant, KD, of 2.5 nM, 0.66 nM and 0.75 nM for human delta, mu and kappa opioid receptors (hDOR, hMOR and hKOR, respectively). Recombinant receptors of the three subtypes retained selectivity and nanomolar affinity for their specific antagonists. Agonist affinities were decreased by one to three orders of magnitude as compared to values measured for receptors expressed in mammalian cells. The effect of sodium on agonist binding to E. coli-expressed receptors was investigated. Receptor high-affinity state for agonists was reconstituted in the presence of heterotrimeric G proteins. We also report affinity values of endomorphins 1 and 2 for mu opioid receptors expressed both in E. coli and in COS cells. Our results confirm that opioid receptors can be expressed in a functional form in bacteria and point out the advantages of E. coli as an expression system for pharmacological studies.  相似文献   

5.
The crystal structure of the mu and kappa opioid receptors has revealed dimeric structural arrangements. Mu-delta receptors heteromers also exist and we have identified discrete cytoplasmic regions in each receptor required for oligomer formation. In the carboxyl tail of the delta receptor we identified three glycine residues (-GGG), substitution of any of these residues prevented heteromer formation. In intracellular loop 3 of both mu and delta receptors we identified three residues (-SVR), substitution of any of these residues prevented heteromer formation.  相似文献   

6.
We reported recently that the ubiquitin-proteasome pathway is involved in agonist-induced down regulation of mu and delta opioid receptors [J. Biol. Chem. 276 (2001) 12345]. While evaluating the effects of various protease inhibitors on agonist-induced opioid receptor down regulation, we observed that while the peptide aldehyde, leupeptin (acetyl-L-Leucyl-L-Leucyl-L-Arginal), did not affect agonist-induced down regulation, leupeptin at submillimolar concentrations directly inhibited radioligand binding to opioid receptors. In this study, the inhibitory activity of leupeptin on radioligand binding was characterized utilizing human embryonic kidney (HEK) 293 cell lines expressing transfected mu, delta, or kappa opioid receptors. The rank order of potency for leupeptin inhibition of [3H]bremazocine binding to opioid receptors was mu > delta > kappa. In contrast to the effect of leupeptin, the peptide aldehyde proteasome inhibitor, MG 132 (carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal), had significantly less effect on bremazocine binding to mu, delta, or kappa opioid receptors. We propose that leupeptin inhibits ligand binding by reacting reversibly with essential sulfhydryl groups that are necessary for high-affinity ligand/receptor interactions.  相似文献   

7.
Gray AC  Coupar IM  White PJ 《Life sciences》2006,79(7):674-685
The opioid receptors, mu, delta and kappa, conduct the major pharmacological effects of opioid drugs, and exhibit intriguing functional relationships and interactions in the CNS. Previously established hypotheses regarding the mechanisms underlying these phenomena specify theoretical patterns of relative cellular localisation for the different receptor types. In this study, we have used double-label immunohistochemistry to compare the cellular distributions of delta and kappa receptors with those of mu receptors in the rat CNS. Regions of established significance in opioid addiction were examined. Extensive mu/delta co-localisation was observed in neuron-like cells in several regions. mu and kappa receptors were also often co-localised in neuron-like cell bodies in several regions. However, intense kappa immunoreactivity (ir) also appeared in a separate, morphologically distinct population of cells that did not express mu receptors. These small, ovoid cells were often closely apposed against the larger, mu-ir cell bodies. Such cellular appositions were seen in several regions, but were particularly common in the medial thalamus, the periaqueductal grey and brainstem regions. These findings support proposals that functional similarities, synergy and cooperativity between mu and delta receptors arise from widespread co-expression by cells and intracellular molecular interactions. Although co-expression of mu and kappa receptors was also detected, the appearance of a separate population of kappa-expressing cells supports proposals that the contrasting and functionally antagonistic properties of mu and kappa receptors are due to expression in physiologically distinct cell types. Greater understanding of opioid receptor interaction mechanisms may provide possibilities for therapeutic intervention in opioid addiction and other conditions.  相似文献   

8.
Although orphanin FQ/nociceptin (OFQ/N) receptors are a member of the opioid receptor family of receptors, they bind traditional opioids with very poor affinity. We now demonstrate that mu opioid receptors can physically associate with OFQ/N receptors, resulting in a complex with a unique binding selectivity profile. Immunoprecipitation of epitope-tagged OFQ/N receptors co-precipitates mu receptors. When the two receptors were co-expressed in CHO cells, [3H]OFQ/N retained its high binding affinity for its receptor. However, co-expression of the two receptors increased by up to 250-fold the affinity of a series of opioids in [3H]OFQ/N binding assays. This enhanced affinity was limited to agonists with high affinity for mu receptors. Selective kappa(1) and delta opioids did not lower binding. Despite the dramatic increase in affinity for the opioid agonists in co-expressing cells, the opioid antagonists naloxone and diprenorphine failed to compete [3H]OFQ/N binding.  相似文献   

9.
We previously reported that the novel dynorphin A (Dyn A, Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln) analog arodyn (Ac[Phe(1,2,3),Arg(4),d-Ala(8)]Dyn A-(1-11)NH(2), Bennett, M.A., Murray, T.F. & Aldrich, J.V. (2002) J. Med. Chem. vol. 45, pp. 5617-5619) is a kappa opioid receptor-selective peptide [K(i)(kappa) = 10 nm, K(i) ratio (kappa/mu/delta) = 1/174/583] which exhibits antagonist activity at kappa opioid receptors. In this study, a series of arodyn analogs was prepared and evaluated to explore the structure-activity relationships (SAR) of this peptide; this included an alanine scan of the entire arodyn sequence, sequential isomeric d-amino acid substitution in the N-terminal 'message' sequence, NMePhe substitution individually in positions 1-3, and modifications in position 1. The results for the Ala-substituted derivatives indicated that Arg(6) and Arg(7) are the most important residues for arodyn's nanomolar binding affinity for kappa opioid receptors. Ala substitution of the other basic residues (Arg(4), Arg(9) and Lys(11)) resulted in lower decreases in affinity for kappa opioid receptors (three- to fivefold compared with arodyn). Of particular interest, while [Ala(10)]arodyn exhibits similar kappa opioid receptor binding as arodyn, it displays higher kappa vs. mu opioid receptor selectivity [K(i) ratio (kappa/mu) = 1/350] than arodyn because of a twofold loss in affinity at mu opioid receptors. Surprisingly, the Tyr(1) analog exhibits a sevenfold decrease in kappa opioid receptor affinity, indicating that arodyn displays significantly different SAR than Dyn A; [Tyr(1)]arodyn also unexpectedly exhibits inverse agonist activity in the adenylyl cyclase assay using Chinese hamster ovary cells stably expressing kappa opioid receptors. Substitution of NMePhe in position 1 gave [NMePhe(1)]arodyn which exhibits high affinity [K(i)(kappa) = 4.56 nm] and exceptional selectivity for kappa opioid receptors [K(i) ratio (kappa/mu/delta) = 1/1100/>2170]. This peptide exhibits antagonistic activity in the adenylyl cyclase assay, reversing the agonism of 10 nm Dyn A-(1-13)NH(2). Thus [NMePhe(1)]arodyn is a highly kappa opioid receptor-selective antagonist that could be a useful pharmacological tool to study kappa opioid receptor-mediated activities.  相似文献   

10.
Both [D-Ala2,Glu4]Deltorphin and [D-Ala2,4'-I-Phe3,Glu4]Deltorphin are highly selective ligands for delta, relative to mu, opioid receptors. Radiolabeled [D-Ala2, 4'-125I-Phe3,Glu4]Deltorphin ([125I]Deltorphin) was prepared with a specific activity of 2200 Ci/mmol from [D-Ala2, 4'-NH2-Phe3, Glu4]Deltorphin through a diazonium salt intermediate. The inhibition of [125I]Deltorphin binding to rat brain membranes by ligands selective for mu, delta, and kappa opioid receptors is consistent with binding by the radioligand to a single site having the properties of a delta opioid receptor. The results of these studies are in good agreement with those obtained by structurally different delta opioid receptor ligands. The similarity between the delta receptor site labeled by [125I]Deltorphin and those labeled by other delta receptor agonists, in contrast to differences seen by in vivo studies of their analgesic effects, is discussed.  相似文献   

11.
A series of neuroblastoma cell lines were screened for the presence of opioid receptor sites with the tracers [3H]diprenorphine (mu, delta, kappa ligand) and [3H]naloxone (mu-selective ligand). One human neuroblastoma cell line, SK-N-SH, displayed avid binding for both tracers. Binding experiments with multiple tracers revealed the presence of both mu and delta sites. These sites were stereospecific, saturable, and proteinaceous in character. Saturation binding experiments provided an estimate of 50,000 mu and 10,000 delta sites/cell. NaCl (100 mM) and guanine nucleotide, guanylyl imidodiphosphate (50 microM), reduced opioid agonist but not antagonist binding to these sites. Etorphine at 1 nM inhibited prostaglandin E1-stimulated cyclic AMP production by approximately 20%, which was reversible by naloxone. The opioid-binding sites on SK-N-SH cells closely resemble the previously reported mu and delta sites in human and rodent brain. Therefore, the SK-N-SH neuroblastoma cell line represents a useful tool to study the molecular functions of opioid receptors.  相似文献   

12.
Xu W  Sanz A  Pardo L  Liu-Chen LY 《Biochemistry》2008,47(40):10576-10586
We previously demonstrated that D3.49(164)Y or T6.34(279)K mutation in the rat mu opioid receptor (MOPR) resulted in agonist-independent activation. Here, we identified the cysteine(s) within the transmembrane domains (TMs) of the D3.49(164)Y mutant that became accessible in the binding-site crevice by use of methanethiosulfonate ethylammonium (MTSEA) and inferred conformational changes associated with receptor activation. While the C7.38(321)S mutant was insensitive to MTSEA, the D3.49(164)Y/C7.38(321)S mutant showed similar sensitivity as the D3.49(164)Y, suggesting that, in the D3.49(164)Y mutant, C7.38(321) becomes inaccessible while other cysteines are accessible in the binding-site crevice. Each of the other seven cysteines in the TMs was mutated to serine on the background of D3.49(164)Y/C7.38(321)S, and the resulting triple mutants were evaluated for [3H]diprenorphine and [d-Ala2,NMe-Phe4,Gly5-ol]-enkephalin (DAMGO) binding and effect of MTSEA on [3H]diprenorphine binding. The D3.49(164)Y/C7.38(321)S mutant and the triple mutants, except the C6.47(292)S triple mutant, retained similar affinities for [3H]diprenorphine and DAMGO as the D3.49(164)Y mutant. The second-order rate constants for MTSEA reactions showed that C3.44(159)S, C4.48(190)S, C5.41(235)S, and C7.47(330)S significantly reduced sensitivity to MTSEA, compared with the D3.49(164)Y/C7.38(321)S. These results suggest that the four cysteines may be rotated and/or tilted to become accessible. While the D3.49(164)Y/C7.38(321)S was similarly sensitive to MTSEA as the D3.49(164)Y mutant, the T6.34(279)K/C7.38(321)S was much less sensitive to MTSEA than the T6.34(279)K mutant, suggesting that the two constitutively active mutants assume different conformations and/or possess different dynamic properties. Molecular models of the MOPR monomer and homodimer, using the crystal structures of rhodopsin, the beta2-adrenergic receptor, and the ligand-free opsin, which contains several features characteristic of the active state, were employed to analyze these experimental results in a structural context.  相似文献   

13.
Identification of the molecular determinants of recognition common to all three opioid receptors embedded in a single three-dimensional (3D) non-specific recognition pharmacophore has been carried out. The working hypothesis that underlies the computational study reported here is that ligands that bind with significant affinity to all three cloned opioid receptors, delta, mu, and kappa, but with different combinations of activation and inhibition properties at these receptors, could be promising behaviorally selective analgesics with diminished side effects. The study presented here represents the first step towards the rational design of such therapeutic agents. The common 3D pharmacophore developed for recognition of delta, mu, and kappa opioid receptors was based on the receptor affinities determined for 23 different opioid ligands that display no specificity for any of the receptor subtypes. The pharmacophore centers identified are a protonated amine, two hydrophobic groups, and the centroid of an aromatic group in a geometric arrangement common to all 23, non-specific, opioid ligands studied. Using this three-dimensional pharmacophore as a query for searching 3D structural databases, novel compounds potentially involved in non-specific recognition of delta, mu, and kappa opioid receptors were retrieved. These compounds can be valuable candidates for novel behaviorally selective analgesics with diminished or no side effects, and thus with potential therapeutic usefulness.  相似文献   

14.
A ligand containing an SNpys group, i.e. 3-nitro-2-pyridinesulfenyl linked to a mercapto (or thiol) group, can bind covalently to a free mercapto group to form a disulfide bond via the thiol-disulfide exchange reaction. This SNpys chemistry has been successfully applied to the discriminative affinity labeling of mu and delta opioid receptors with SNpys-containing enkephalins [Yasunaga, T. et al. (1996) J. Biochem. 120, 459-465]. In order to explore the mercapto groups conserved at or near the ligand binding sites of three opioid receptor subtypes, we synthesized two Cys(Npys)-containing analogs of dynorphin A, namely, [D-Ala2, Cys(Npys)8]dynorphin A-(1-9) amide (1) and [D-Ala2, Cys(Npys)12]dynorphin A-(1-13) amide (2). When rat (mu and delta) or guinea pig (kappa) brain membranes were incubated with these Cys(Npys)-containing dynorphin A analogs and then assayed for inhibition of the binding of DAGO (mu), deltorphin II (delta), and U-69593 (kappa), the number of receptors decreased sharply, depending upon the concentrations of these Cys(Npys)-containing dynorphin A analogs. It was found that dynorphin A analogs 1 and 2 effectively label mu receptors (EC50 = 27-33 nM), but also label delta receptors fairly well (160-180 nM). However, for kappa receptors they showed drastically different potencies as to affinity labeling; i.e., EC50 = 210 nM for analog 1, but 10,000 nM for analog 2. Analog 2 labeled kappa receptors about 50 times more weakly than analog 1. These results suggested that dynorphin A analog 1 labels the Cys residues conserved in mu, delta, and kappa receptors, whereas analog 2 only labels the Cys residues conserved in mu and delta receptors.  相似文献   

15.
Prejunctional effects of opioids were examined in the perfused mesentery of two species: the rat and rabbit. Use of agonists selective for subtypes of mu, delta, and kappa opioid receptors produced no effect on contractile responses to adrenergic nerve stimulation in the rat perfused mesentery, except for small effects of the kappa agonist EKC, which may be non specific. In contrast, mu, delta and kappa receptors appear to be present in the rabbit. The mu selective agonist, DAMGO, kappa agonist, ethylketocyclazocine, and delta agonists, DPDPE and [Leu5]-enkephalin, all produced significant inhibition of contractile responses to transmural nerve stimulation. The inhibitory effect was greatest for ethylketocyclazocine. To test the possibility that prejunctional activation of alpha 2 adrenoceptors with endogenous norepinephrine might decrease the activity of prejunctional opioid receptors in the rabbit, inhibitory effects of delta and kappa selective agonists were tested in the presence of 10(-7) M yohimbine. Inhibitory responses of the kappa selective agonist ethylketocyclazocine were enhanced, while that of delta selective agonists [Leu5]-enkephalin and DPDPE remained unchanged when yohimbine was present. Thus, the effects of opioids vary and depend on the tissue and receptor subtypes they act upon. Furthermore, the enhanced inhibitory effect of opioid receptor activation in the presence of yohimbine is not found for all opioid receptors.  相似文献   

16.
The first example of the use of a reporter affinity label (NNA) that contains a fluorogenic naphthalene dialdehyde moiety to identify neighboring lysine and cysteine residues at a recognition site is described. The opioid receptors have served as the proof-of-concept because they contain multiple lysine and cysteine residues. The kinetics of isoindole formation resulting from covalent binding of NNA to wild-type and mutant opioid receptors were followed in cultured cells using flow cytometry. The finding that NNA bound to mutant mu opioid receptors (K233R and C235S) without producing specific fluorescence enhancement suggested that covalent bonding occurred at these positions to produce an isoindole fluorophore in the wild-type mu receptor. The similar kinetics of fluorophore formation for wild-type mu, delta, and kappa opioid receptors suggest that these conserved residues are the cross-linking sites in all three types of opioid receptors. The combined utilization of a reporter affinity label and site-directed mutagenesis offers a more expeditious method of identifying cross-linking at a recognition site when compared to classical procedures.  相似文献   

17.
Opiate-sensitive feeding behavior has now been demonstrated in a number of species. We sought information on which opioid receptors might be involved in the observed feeding behaviors. Guinea pigs are known to have higher concentrations of the opioid kappa receptor than any other laboratory animal, so we compared the feeding suppressive potency of the general opiate antagonist, diprenorphine to that of the relatively more mu-specific antagonist, naloxone in that species. We found that diprenorphine was over twenty times more effective than naloxone in suppressing feeding in guinea pigs, suggesting the importance of receptors other than mu in feeding initiation in the guinea pig. Confirmatory evidence for the role of kappa receptors was sought, but not found, in comparisons of the effectiveness of different types of opiate agonists in promoting feeding in these animals. These agonists suppressed, rather than stimulated feeding. We conclude that no feeding stimulatory effects of opiates can be demonstrated in guinea pigs. This observation may indicate that opioids play little role in the natural regulation of feeding in this species or that opioids result in prolonged sedation during which the animals fail to eat. The greater feeding suppressive potency of diprenorphine, a general opiate antagonist, versus naloxone, a mu-preferential antagonist, indicates that to whatever extent opiates are involved in guinea pig feeding, the opiate effect is probably not a mu receptor effect.  相似文献   

18.
Stevens CW  Newman LC 《Life sciences》1999,64(10):PL125-PL130
In mammals, opioids act by interactions with three distinct types of receptors: mu, delta, or kappa opioid receptors. Using a novel assay of antinociception in the Northern grass frog, Rana pipiens, previous work demonstrated that selective mu, delta, or kappa opioids produced a potent antinociception when administered by the spinal route. The relative potency of this effect was highly correlated to that found in mammals. Present studies employing selective opioid antagonists, beta-FNA, NTI, or nor-BNI demonstrated that, in general, these antagonists were not selective in the amphibian model. These data have implications for the functional evolution of opioid receptors in vertebrates and suggest that the tested mu, delta, and kappa opioids mediate antinociception via a single type of opioid receptor in amphibians, termed the unireceptor.  相似文献   

19.
The ability of neuropeptide Y to potently stimulate food intake is dependent in part upon the functioning of mu and kappa opioid receptors. The combined use of selective opioid antagonists directed against mu, delta or kappa receptors and antisense probes directed against specific exons of the MOR-1, DOR-1, KOR-1 and KOR-3/ORL-1 opioid receptor genes has been successful in characterizing the precise receptor subpopulations mediating feeding elicited by opioid peptides and agonists as well as homeostatic challenges. The present study examined the dose-dependent (5-80 nmol) cerebroventricular actions of general and selective mu, delta, and kappa1 opioid receptor antagonists together with antisense probes directed against each of the four exons of the MOR-1 opioid receptor gene and each of the three exons of the DOR-1, KOR-1, and KOR-3/ORL-1 opioid receptor genes upon feeding elicited by cerebroventricular NPY (0.47 nmol, 2 ug). NPY-induced feeding was dose-dependently decreased and sometimes eliminated following pretreatment with general, mu, delta, and kappa1 opioid receptor antagonists. Moreover, NPY-induced feeding was significantly and markedly reduced by antisense probes directed against exons 1, 2, and 3 of the MOR-1 gene, exons 1 and 2 of the DOR-1 gene, exons 1, 2, and 3 of the KOR-1 gene, and exon 3 of the KOR-3/ORL-1 gene. Thus, whereas the opioid peptides, beta-endorphin and dynorphin A(1-17) elicit feeding responses that are respectively more dependent upon mu and kappa opioid receptors and their genes, the opioid mediation of NPY-induced feeding appears to involve all three major opioid receptor subtypes in a manner similar to that observed for feeding responses following glucoprivation or lipoprivation.  相似文献   

20.
Three-dimensional structures of the transmembrane, seven alpha-helical domains and extracellular loops of delta, mu, and kappa opioid receptors, were calculated using the distance geometry algorithm, with hydrogen bonding constraints based on the previously developed general model of the transmembrane alpha-bundle for rhodopsin-like G-protein coupled receptors (Biophys. J. 1997. 70:1963). Each calculated opioid receptor structure has an extensive network of interhelical hydrogen bonds and a ligand-binding crevice that is partially covered by a beta-hairpin formed by the second extracellular loop. The binding cavities consist of an inner "conserved region" composed of 18 residues that are identical in delta, mu, and kappa opioid receptors, and a peripheral "variable region," composed of 19 residues that are different in delta, mu, and kappa subtypes and are responsible for the subtype specificity of various ligands. Sixteen delta-, mu-, or kappa-selective, conformationally constrained peptide and nonpeptide opioid agonists and antagonists and affinity labels were fit into the binding pockets of the opioid receptors. All ligands considered have a similar spatial arrangement in the receptors, with the tyramine moiety of alkaloids or Tyr1 of opioid peptides interacting with conserved residues in the bottom of the pocket and the tyramine N+ and OH groups forming ionic interactions or H-bonds with a conserved aspartate from helix III and a conserved histidine from helix VI, respectively. The central, conformationally constrained fragments of the opioids (the disulfide-bridged cycles of the peptides and various ring structures in the nonpeptide ligands) are oriented approximately perpendicular to the tyramine and directed toward the extracellular surface. The results obtained are qualitatively consistent with ligand affinities, cross-linking studies, and mutagenesis data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号