首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) by lignin peroxidase H2 from Phanerochaete chrysosporium and H2O2 was strongly inhibited by sodium azide. Inhibition was competitive with respect to veratryl alcohol (Ki = 1-2 microM) and uncompetitive with respect to H2O2. In contrast, sodium azide bound to the native enzyme at pH 6.0 with an apparent dissociation constant (KD) of 126 mM. Formation of azidyl radicals was detected by ESR spin trapping techniques. The enzymes is nearly completely inactivated in four turnovers. The H2O2-activated enzyme intermediate (compound I) reacted with sodium azide to form a new species rather than be reduced to the enzyme intermediate compound II. The new species has absorption maxima at 418, 540, and 570 nm, suggesting the formation of a ferrous-lignin peroxidase-NO complex. Confirmation of this assignment was obtained by low-temperature ESR spectroscopy. An identical complex could be simulated by the addition of nitrite to the reduced enzyme. The enzyme intermediate compound II is readily reduced by sodium azide to native enzyme with essentially no loss of activity.  相似文献   

2.
The adenylate cyclase of rat adipocyte plasma membrane is stimulated by sodium azide with a half maximal activation of 100–150% occuring at 50 mM NaN3. Studies of the effects of azide and fluoride indicate different mechanisms of stimulation of the enzyme by these ions. Comparable stimulation of the activity is obtained by 100 mM NaN3 or 10 mM NaF but unlike azide, higher concentrations of fluoride cause inhibition of the enzyme. Fluoride activated adenylate cyclase is further stimulated by azide. Epinephrine stimulation of the enzyme is absent in the presence of fluoride but the hormone enhances the activity in the presence of azide. Reversal of the inhibitory action of GTP on adenylate cyclase by epinephrine is demonstrated even in the presence of azide but not in the presence of fluoride.  相似文献   

3.
The inhibition of mushroom tyrosinase by azide is examined as a function of the concentrations of l-tyrosine, l-3,4-dihydroxyphenylalanine (l-Dopa), and oxygen at pH 5.6 and 7.0. Mixed inhibition is observed with respect to l-tyrosine, l-Dopa, and oxygen. The data are interpreted in terms of azide combining with both the oxidized and reduced forms of the enzyme. A scheme is presented for the catecholase and cresolase reactions which explains the results of azide inhibition and also the effect of other inhibitors which complex with the copper of tyrosinase. Double-reciprocal plots of oxygen variation with l-tyrosine as the fixed substrate are nonlinear above about 500 μm oxygen. When l-Dopa is the fixed substrate, no curvature is observed. These results could be explained in terms of negative cooperativity or the presence of two kinetically distinct enzyme forms having different Km values for oxygen. Although the kinetic data do not permit a choice between the two possibilities, the occurrence in all tyrosinase preparations of two forms, resting, bicupric enzyme and “intrinsic oxytyrosinase,” lends support to the latter suggestion.  相似文献   

4.
Cell surface ATPases (ecto-ATPases or E-ATPases) hydrolyze extracellular ATP and other nucleotides. Regulation of extracellular nucleotide concentration is one of their major proposed functions. Based on enzymatic characterization, the E-ATPases have been divided into two subfamilies, ecto-ATPases and ecto-ATP-diphosphohydrolases (ecto-ATPDases). In the presence of either Mg2+ or Ca2+, ecto-ATPDases, including proteins closely related to CD39, hydrolyze nucleoside diphosphates in addition to nucleoside triphosphates and are inhibited by millimolar concentrations of azide, whereas ecto-ATPases appear to lack these two properties. This report presents the first systematic kinetic study of a purified ecto-ATPDase, the chicken oviduct ecto-ATPDase (Strobel, R.S., Nagy, A.K., Knowles, A.F., Buegel, J. & Rosenberg, M.O. (1996) J. Biol. Chem. 271, 16323-16331), with respect to ATP and ADP, and azide inhibition. Km values for ATP obtained at pH 6.4 and 7.4 are 10-30 times lower than for ADP and the catalytic efficiency is greater with ATP as the substrate. The enzyme also exhibits complicated behavior toward azide. Variable inhibition by azide is observed depending on nucleotide substrate, divalent ion, and pH. Nearly complete inhibition by 5 mm azide is obtained when MgADP is the substrate and when assays are conducted at pH 6-6.4. Azide inhibition diminishes when ATP is the substrate, Ca2+ as the activating ion, and at higher pH. The greater efficacy of azide in inhibiting ADP hydrolysis compared to ATP hydrolysis may be related to the different modes of inhibition with the two nucleotide substrates. While azide decreases both Vmax and Km for ADP, it does not alter the Km for ATP. These results suggest that the apparent affinity of azide for the E.ADP complex is significantly greater than that for the free enzyme or E.ATP. The response of the enzyme to three other inhibitors, fluoride, vanadate, and pyrophosphate, is also dependent on substrate and pH. Taken together, these results are indicative of a discrimination between ADP and ATP by the enzyme. A mechanism of azide inhibition is proposed.  相似文献   

5.
Iron-containing Superoxide dismutases are more sensitive to inhibition by azide than are the corresponding manganese containing enzymes, while the copper-zinc Superoxide dismutases are least sensitive. Thus, at pH 7.8, 10 mm azide inhibited Cu-Zn, Mn, and Fe enzymes by ~10%, ~30% and ~73%, respectively. Stated differently, the concentrations of N3? required to cause 50% inhibition of the Cu-Zn, Mn, and Fe enzymes was ~32 mm, ~20 mm and ~4 mm, respectively. These inhibitions by azide, which were imposed and reversed rapidly, appear to provide a useful criterion for distinguishing among the classes of these enzymes. Sensitivity towards inhibition by N3?can be applied to the Superoxide dismutases in crude extracts, for the purpose of deciding to which class they belong.  相似文献   

6.
Sodium azide, reported to be a strong mutagen in barley, revealed a very weak mutagenic activity inArabidopsis.  相似文献   

7.
8.
Inactivation of lignin peroxidase by phenylhydrazine and sodium azide   总被引:2,自引:0,他引:2  
Lignin peroxidase (LiP) is rapidly inactivated in a concentration-dependent manner by H2O2 and either phenylhydrazine or sodium azide. Full inactivation of isozyme 2b (H8) requires approximately 50 eq of phenylhydrazine or 80 eq of sodium azide. Anaerobic incubation of isozyme 2b with [14C]phenylhydrazine and H2O2 results in 77% loss of catalytic activity and covalent binding of 0.45 mol radiolabel/mol of enzyme. Comparable but not identical results are obtained with an isozyme mixture. A lag period is observed before the peroxidative activity can be measured when an aliquot of an incubation with sodium azide is diluted into the mixture used to assay residual catalytic activity. This lag is associated with reversible accumulation of a catalytically inert species with a Compound III-like spectrum. No meso-phenyl, iron-phenyl, or N-phenyl adducts are formed with phenylhydrazine but a low yield of what appears to be delta-meso-azidoheme is obtained with sodium azide. LiP is thus less susceptible to meso heme additions and more susceptible to oxidative heme degradation than horseradish peroxidase. The data suggest that the active of LiP resembles the closed structure of horseradish peroxidase more than it does the open structure of the globins, catalase, chloroperoxidase, or cytochrome P450.  相似文献   

9.
Treatment with ethylene accelerated the abscission of branches of Azolla filiculoides plants. An Azolla plantlet treated with ethylene at 10 microl liter(-1) divided into 4-5 fragments after a lag period of 6-8 h. Ethylene-induced abscission was effectively inhibited by cycloheximide and was associated with an increase in the activities of cellulase and polygalacturonase. At the fracture surface abscised after treatment with ethylene, dissolution of the primary walls of the abscission zone cells was apparent. However, the middle lamella between abscission zone cells was still present. Immunoelectron microscopy using anti-unesterified pectin (JIM5) and anti-methylesterified pectin (JIM7) monoclonal antibodies revealed the presence of both JIM5 and JIM7 epitopes in the wall between abscission zone cells of branches before abscission occurred. In the middle lamella remaining after ethylene-induced abscission, only JIM7 epitopes were observed. The features of ethylene-induced abscission described herein were different from those of the rapid abscission induced by sodium azide, which implies that they are mediated by different mechanisms. The possible mechanisms are discussed.  相似文献   

10.
A reproducible and sensitive method is presented for quantitating sodium azide (NaN3) that exploits the fact that NaN3 inhibits Escherichia coli RNA synthesis. A linear correlation is observed between incorporation of [3H]uridine into a trichloroacetic acid-precipitable form and NaN3 concentration over a 31- to 2000-μg range of azide. This technique was used to determine the azide content of a complex enzyme solution where established colorimetric azide determinations proved to be unworkable. This technique when properly controlled should be applicable to a variety of similar solutions.  相似文献   

11.
12.
Native soluble and particulate guanylate cyclase from several rat tissues preferred Mn2+ to Mg2+ as the sole cation cofactor. Wtih 4mM cation, activities with Mg2+ were less than 25% of the activities with Mn2+. The 1 mM NaN3 markedly increased the activity of soluble and particulate preparations from rat liver. Wtih NaN3 activation guanylate cyclase activities wite similar with Mn2+ and Mg2+. Co2+ was partially effective as a cofactor in the presence of NaN3, while Ca2+ was a poor cation with or without NaN3. Activities with Ba, Cu2+, or Zn2+ were not detectable without or with 1 mM NaN3. With soluble liver enzyme both manganese and magnesium activities were dependent upon excess Mn2+ or Mg2+ at a fixed MnGTP or MgGTP concentration of 0.4 mm; apparent Km values for excess Mn2+ and Mg2+ were 0.3 and 0.24 mM, respectively. After NaN3 activation, the activity was less dependent upon free Mn2+ and retained its dependence for free Mg2+, at 0.4 mM MgGTP the apparent Km for excess Mg2+ was 0.3 mM. The activity of soluble liver guanylate cyclase assayed with Mn2+ or Mg2+ was increased with Ca2+. After NaN3 activiation, Ca2+ had no effect or was somewhat inhibitory with either Mn2+. After NaN activation, Ca2+ had no effect or was somewhat inhibitory with either Mn2+ or Mg2+. The stimulatory effect of NaN2 on Mn2+-and Mg2+-dependent guanylate cyclase activity from liver or cerebral cortex supernatant fractions required the presence of the sodium azide-activator factor. With partially purified soluble liver guanylate cyclase and azide-activator factor, the concentration (1 mjM) of NaN3 that gave half-maximal activation with Mn2+ or Mg2+ was imilar. Thus, under some conditions guanylate cyclase can effectively use Mg2+ as a sole cation cofactor.  相似文献   

13.
14.
Concentrated dialysate of the extract prepared from barley seeds treated with sodium azide increased up to 100--200 times the frequency of forward mutations to cycloheximide resistance in the excision-deficient UV-sensitive heploid strain rad2-5 of Saccharomyces cerevisiae, when applied to growing cells in complete medium at pH 4.2. Only a slight increase of mutation frequency (less than 4 times) was found in the haploid RAD+ strain treated in the same way as well as in haploid RAD+ and rad2-5 strains treated directly by sodium azide. In contrast with the barley-activated sodium azide, UV irradiation was more effective in the induction of cycloheximide resistance in the RAD+ strain than in the RAD2-5 mutant. The dialysate from azide-treated barley seeds, applied at both pH 4.2 and pH 9, also significantly increased the frequency of locus-specific suppressor mutations to isoleucine independence and -- to a lesser extent -- reversions and/or gene conversions in the trp5 locus in growing cells of the diploid strain D7. The dialysate was also mutagenic in resting cells of strains D7 and rad2-5 but with lower effectiveness.  相似文献   

15.
16.
Changes in catalase activity during the development of the Rhizobium-legume symbiosis as well as its response in salinized plants of Phaseolus vulgaris and Medicago sativa, was studied. Besides, it was examined the behavior of the enzyme, isolated from leaves and root nodules, during in vitro incubation with NaCl doses. Nodule catalase activities of both legumes were assayed with several enzyme inhibitors and also purified. Leaf catalase activity of Phaseolus vulgaris and Medicago sativa decreased and increased respectively throughout the ontogeny, but root nodule catalase kept a high and stable value. This last result suggests that both legumes require the maintenance of high nodule catalase in nitrogen-fixing nodules. Under salt stress conditions leaf and nodule catalase activity decreased in both, grain and pasture legumes. Because catalase from leaf of Medicago sativa and nodules of Phaseolus vulgaris were relatively sensitive to NaCl during in vitro experiments, the detoxifying role of this enzyme for H(2)O(2) should be limited in such conditions. Both catalases, from determinate and indeterminate nodules, were affected neither by oxygen nor superoxide radicals but showed a strong (Phaseolus vulgaris) or partial (Medicago sativa) inhibition with dithiothreitol, dithionite and beta-mercaptoethanol. Besides, cyanide was the most potent inhibitor of nodule catalases. Finally, catalases partially purified by immobilized metal ion affinity chromatography migrated at 42 (Phaseolus vulgaris) and 46kDa (Medicago sativa) on SDS-PAGE, whereas native forms on sephacryl S-300 columns exhibited a molecular mass of 59 and 48kDa (Phaseolus vulgaris) and 88 and 53kDa (Medicago sativa).  相似文献   

17.
The metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) cleaves both insulin-like growth factor (IGF)-binding protein 4 (IGFBP-4) and -5 at a single site in their central domain causing the release of bioactive IGF. Inhibition of IGF signaling is relevant in human disease, and several drugs in development target the IGF receptor. However, inhibition of PAPP-A activity may be a valuable alternative. We have generated monoclonal phage-derived single chain fragment variable (scFv) antibodies which selectively inhibit the cleavage of IGFBP-4 by PAPP-A, relevant under conditions where cleavage of IGFBP-4 represents the final step in the delivery of IGF to the IGF receptor. None of the antibodies inhibited the homologous proteinase PAPP-A2, which allowed mapping of antibody binding by means of chimeras between PAPP-A and PAPP-A2 to the C-terminal Lin12-Notch repeat module, separated from the proteolytic domain by almost 1000 amino acids. Hence, the antibodies define a substrate binding exosite that can be targeted for the selective inhibition of PAPP-A proteolytic activity against IGFBP-4. In addition, we show that the Lin12-Notch repeat module reversibly binds a calcium ion and that bound calcium is required for antibody binding, providing a strategy for the further development of selective inhibitory compounds. To our knowledge these data represent the first example of differential inhibition of cleavage of natural proteinase substrates by exosite targeting. Generally, exosite inhibitors are less likely to affect the activity of related proteolytic enzymes with similar active site environments. In the case of PAPP-A, selective inhibition of IGFBP-4 cleavage by interference with exosite binding is a further advantage, as the activity against other known or unknown PAPP-A substrates, whose cleavage may not depend on binding to the same exosite, is not targeted.  相似文献   

18.
Polyamines (spermidine, spermine and putrescine) inhibited the adenylate cyclase activity in a concentration dependent manner in human erythrocyte plasma membranes. Spermidine (Spd) exhibited more inhibitory effect than spermine (Spm) and putrescine (Put). On the contrary, the addition of amino acids (arginine, glutamine and lysine) did not influence the basal enzyme activity. Other cations (polylysine, polyarginine and polyglutamine) also did not affect the enzyme activity. Addition of all the three polyamines (Spd, Spm and Put) in the reaction mixture exhibited moderate inhibitory effect on the adenylate cyclase activity whether it was basal or activated with sodium fluoride or with forskolin. Since the three polyamines exhibited maximum inhibitory effect at 10 microM concentration which is within physiological limit for mammalian tissues, we suggest that there may be a regulatory function of these molecules on adenylate cyclase activity in human erythrocytes.  相似文献   

19.
Forti G  Gerola P 《Plant physiology》1977,59(5):859-862
Cyanide and azide inhibit photosynthesis and catalase activity of isolated, intact spinach (Spinacia oleracea) chloroplasts. When chloroplasts are illuminated in the presence of CN or N3, accumulation of H2O2 is observed, parallel to inhibition of photosynthesis. Photosynthetic O2 evolution is inhibited to the same extent, under saturating light, whether CO2 or phosphoglycerate is present as electron acceptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号