首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lipofuscin, an autofluorescent age pigment, occurs in enteric neurons. Due to its broad excitation and emission spectra, it overlaps with commonly used fluorophores in immunohistochemistry. We investigated the pattern of lipofuscin pigmentation in neurofilament (NF)-reactive nitrergic and non-nitrergic human myenteric neuron types. Subsequently, we tested two methods for reduction of lipofuscin-like autofluorescence. Myenteric plexus/longitudinal muscle wholemounts of small intestines of five patients undergoing surgery for carcinoma (aged between 18 and 69 years) were double stained for NF and neuronal nitric oxide synthase (nNOS). Lipofuscin pigmentation patterns were semiquantitatively evaluated by using confocal laser scanning microscopy with three different excitation wave lengths (one for undisturbed lipofuscin autofluorescence and two for specific labellings). Two pigmentation patterns could be detected in the five NF-reactive neuron types investigated. In nitrergic/spiny as well as in non-nitrergic/stubby neurons, coarse, intensely autofluorescent pigment granules were prominent. In non-nitrergic type II, III and V neurons, a fine granular, diffusely distributed and less intensely autofluorescent pigment was obvious. After incubation of wholemounts in either CuSO4 or Sudan black B solutions, unspecific autofluorescence could be substantially reduced whereas specific NF and nNOS fluorescence remained largely unaffected. We conclude that NF immunohistochemistry is useful for morphological representation of subpopulations of human myenteric neurons. The lipofuscin pigmentation in human myenteric neurons reveals at least two different patterns which can be related to distinct neuron types. Incubations of multiply stained whole mounts in both CuSO4 or Sudan black B are suitable methods for reducing autofluorescence thus facilitating discrimination between specific (immunohistochemical) and non-specific (lipofuscin) fluorescence.  相似文献   

2.
Ceroid and lipofuscin are autofluorescent granules thought to be generated as a consequence of chronic oxidative stress. Because ceroid and lipofuscin are persistent in tissue, their measurement can provide a lifetime history of exposure to chronic oxidative stress. Although ceroid and lipofuscin can be measured by quantification of autofluorescent granules, current methods rely on subjective assessment. Furthermore, there has not been any evaluation of variables affecting quantitative measurements. The article describes a simple statistical approach that can be readily applied to quantitate ceroid and lipofuscin. Furthermore, it is shown that several factors, including magnification tissue thickness and tissue level, can affect precision and sensitivity. After optimizing for these factors, the authors show that ceroid and lipofuscin can be measured reproducibly in the skeletal muscle of dystrophic mice (ceroid) and aged mice (lipofuscin).  相似文献   

3.
In cultures of human fibroblasts the percentage of bright autofluorescent (AF) cells increases with increasing passage number. These autofluorescent cells were isolated using a FACS II cell sorter and compared with sorted non-fluorescent (NF) cells. The AF cells showed an increase in population doubling time (2.3-fold), cell protein (1.9-fold), and in specific activities of the lysosomal enzymes: β-hexosaminidase (4.2-fold), β-galactosidase (3.8-fold) and acid phosphatase (2.5-fold). The specific activities of two non-lysosomal enzymes glucose-6-phosphate dehydrogenase and lactate dehydrogenase had increased only slightly (1.1-fold) respectively (1.5-fold).The autofluorescence in the AF cells was restricted to small round organelles. The distribution and size of these autofluorescence granules were similar to the acid phosphatase-containing granules in the cytochemically stained cells. Electronmicroscopical examination showed that these AF cells contained a large amount of small electron-dense granules containing amorphosmophilic material. These granules which were positive for the acid phosphatase reaction, were classified as secondary lysosomes. The low percentage of the sorted AF cells which incorporate [3H]thymidine during a 24 h test period (19%) as compared with the labelling percentage of sorted NF cells (73%) from the same culture, indicate that the autofluorescent cells in a ‘young’ culture have a very limited remaining proliferative capacity. The results imply, that by flow sorting it is possible to isolate ‘aged’ cells with characteristics of ‘phase III’ cells out of non-aged fibroblast cultures.  相似文献   

4.
In crustaceans, the lack of reliable methods often prevents the determination of individual age. The quantification of the autofluorescent age pigment, lipofuscin, has revealed promising results in boreal and tropical species. We studied the presence of morphological lipofuscin and its possible application as an age marker in five Arctic and five Antarctic species, comprising decapods, amphipods and a euphausiid. Lipofuscin granules were located in the brain, using confocal fluorescence microscopy, and quantified from digital images. The pigment was found in 94 of 100 individuals and in all 10 species, and granules occurred in easily detectable amounts in 5 species. Two scavenging amphipod species, the Antarctic Waldeckia obesa and the Arctic Eurythenes gryllus, revealed the most conspicuous and numerous granules. There was a broad, though weak, correlation of lipofuscin concentration with individual body size within a species, but not with absolute body size of one species compared to another. In larvae of the decapod Chorismus antarcticus, lipofuscin accumulation was quantified over the 1st 4 months after larval release. Morphological lipofuscin is a potential index of age in those investigated species with a sufficient accumulation rate of the pigment.  相似文献   

5.
Autofluorescent granules of various sizes were observed in primary human liver endothelial cells (LSECs) upon laser irradiation using a wide range of wavelengths. Autofluorescence was detected in LAMP-1 positive vesicles, suggesting lysosomal location. Confocal imaging of freshly prepared cultures and imaging flow cytometry of non-cultured cells revealed fluorescence in all channels used. Treatment with a lipofuscin autofluorescence quencher reduced autofluorescence, most efficiently in the near UV-area. These results, combined with the knowledge of the very active blood clearance function of LSECs support the notion that lysosomally located autofluorescent material reflected accumulation of lipofuscin in the intact liver. These results illustrate the importance of careful selection of exogenous fluorophores, especially when labelling of live cells where the quencher is not compatible.Key words: Autofluorescence, endogenous fluorophores, liver, endothelial cells, lipofuscin  相似文献   

6.
The spectral curves of emission of paraform-induced fluorophores in small, intensely fluorescent (SIF) cells in lumbar ganglia of the sympathetic trunk and in the major pelvic ganglion were compared with the fluorescence spectra of lipofuscin granules in the perikaryons of the neurons of the vagus inferior ganglion. As a rule, the fluorescence spectra of SIF cells correlate with the content in them of catecholamines. The spectral characteristics of fluorophores of so-called "yellow" SIF cells have much in common with the fluorescence spectra of lipofuscin granules. Apparently, in some of cases small cells containing lipofuscin may be identified as "yellow" SIF cells.  相似文献   

7.
The fluorescent molecules of cellular age pigment granules (lipofuscin) are commonly thought to be end products of membrane lipid autoxidation. Lipofuscin fluorophores of the retinal pigment epithelium (RPE) appear to be derived from photoreceptor outer segment membranes. Experiments were therefore conducted to determine whether the in vitro oxidation of retinal homogenates would generate fluorophores similar to the naturally occurring lipofuscin fluorophores of the RPE. Neural retina and RPE-choroid homogenates from young (2-3 month old) albino rats were subjected to an iron-ascorbate-air pro-oxidant reaction medium, and compared to unoxidized control samples from young age-matched animals as well as senescent (24 month old) rats. In addition, neural retina and RPE-choroid homogenates from 3 month old albino rats were subjected to a 100% oxygen atmosphere to test whether the fluorescent products of autoxidation differ substantially from those generated in the pro-oxidant medium. The chloroform-soluble fluorophores of chloroform-methanol sample extracts were analyzed by corrected fluorescence spectroscopy and thin-layer chromatography (TLC). In vitro pro-oxidation of both the neural retina and the RPE from young rats produced blue-emitting fluorophores which differed from the orange- and yellow-emitting fluorophores extracted from the RPE of senescent rats. Corrected fluorescence spectroscopy of aged tissue extracts revealed vitamin A-related fluorescence (330 nm excitation maximum; 515 nm emission maximum) and a spectrally resolvable age-related fluorescence (420 nm excitation maximum; 600 nm emission maximum). Only the vitamin A-related fluorescence could be measured in the control of young samples.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In cryogenic correlated light and electron microscopy (cryo-CLEM), frozen targets of interest are identified and located on EM grids by fluorescence microscopy and then imaged at higher resolution by cryo-EM. Whilst working with these methods, we discovered that a variety of mammalian cells exhibit strong punctate autofluorescence when imaged under cryogenic conditions (80?K). Autofluorescence originated from multilamellar bodies (MLBs) and secretory granules. Here we describe a method to distinguish fluorescent protein tags from these autofluorescent sources based on the narrower emission spectrum of the former. The method is first tested on mitochondria and then applied to examine the ultrastructural variability of secretory granules within insulin-secreting pancreatic beta-cell-derived INS-1E cells.  相似文献   

9.
Two studied commercial human serum albumin solutions had developed yellow colors during storage. These yellow materials were isolated and shown to be soluble lipofuscin. Aqueous solutions of this lipofuscin exhibited fluorescence spectra with 355 nm excitation and 432 nm emission maxima. After acid hydrolysis of this lipofuscin a nonhydrolysable lipid-melanin fraction was obtained. Ethanol-ether extraction yielded a lipid-containing solution. When evaporated and mixed with water, a solution-suspension was obtained that produced very similar fluorescence spectra to those described above, with 368 nm excitation and 432 nm emission maxima. The separated melanin component was not fluorescent. The isolated lipofuscin exhibited a weak electron paramagnetic resonance spectrum and its g-value has been found to be 2.0069 and its line width 9.8 G. The albumin solution contained approximately 0.23 g of melanin precipitate per 9.31 g of soluble lipofuscin isolated from 25 g of albumin. The deleterious cardiac, pulmonary, renal and clotting changes associated with the use of albumin solution might be due to this lipofuscin.  相似文献   

10.
1. The ultrastructure of the retinal pigment epithelium (RPE) of adult Syrian golden hamsters and cattle was examined with respect to pigment granules and phagosomes involved in degradation of disk membranes from rod outer segments. 2. In the RPE of cattle, phagosomes were found that contained an electron-dense melanin-like material that was not autofluorescent and therefore not lipofuscin. 3. Disk membranes of rods are about 4 nm thick and become enlarged (7-20 nm) and electron-dense during degradation in the RPE. 4. Additionally electron-dense vesiculo-globular bodies (10-100 nm) were found in phagosomes during disk membrane degradation and in mature melanin granules. 5. In the RPE of adult hamsters that had been exposed to intense light, premelanosomes containing unmelanised filaments with a striated periodicity were found in the cytoplasm or in association with mature melanin granules. Early and late stage melanosomes were also present. Phagosomes in the RPE contained degraded disk membranes, melanin-like material and melanofilaments. 6. Dopa oxidase was detected ultrastructurally within shed disk membranes that were in close contact with the microvilli of the RPE. 7. The possibility of melanogenesis within phagosomes during disk membrane degradation is discussed.  相似文献   

11.
Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells.   总被引:4,自引:0,他引:4  
Lipofuscin accumulates with age in a variety of highly metabolically active cells, including the retinal pigment epithelium (RPE) of the eye, where its photoreactivity has the potential for cellular damage. The aim of this study was to assess the phototoxic potential of lipofuscin in the retina. RPE cell cultures were fed isolated lipofuscin granules and maintained in basal medium for 7 d. Control cells lacking granules were cultured in an identical manner. Cultures were either maintained in the dark or exposed to visible light (2.8 mWcm2) at 37 degrees C for up to 48 h. Cells were subsequently assessed for alterations in cell morphology, cell viability, lysosomal stability, lipid peroxidation, and protein oxidation. Exposure of lipofuscin-fed cells to short wavelength visible light (390-550 nm) caused lipid peroxidation (increased levels of malondialdehyde and 4-hydroxy-nonenal), protein oxidation (protein carbonyl formation), loss of lysosomal integrity, cytoplasmic vacuolation, and membrane blebbing culminating in cell death. This effect was wavelength-dependent because light exposure at 550 to 800 nm had no adverse effect on lipofuscin-loaded cells. These results confirm the photoxicity of lipofuscin in a cellular system and implicate it in cell dysfunction such as occurs in ageing and retinal diseases.  相似文献   

12.
《The Journal of cell biology》1988,107(6):2703-2716
The paired helical filaments (PHFs) of Alzheimer's disease were purified by a strategy in which the neurons and amyloid plaque cores of protein (APCP) were initially isolated. This was achieved by several steps of isocratic sucrose centrifugations of increasing molarity and a discontinuous isotonic Percoll density gradient. After collagenase elimination of contaminating blood vessels, lysis of neurons was produced by SDS treatment. The released PHF cytoskeletons were separated from contaminating APCP and lipofuscin by sucrose density gradient. A final step consisted in the chemical purification of highly enriched PHFs and APCP components via a formic acid to guanidine hydrochloride transition. PHFs and APCPs were fractionated by size exclusion HPLC and further characterized and quantitated by automatic amino acid analysis. We also present some of the morphological and immunochemical characteristics of PHF polypeptides and APCP. Our studies indicate that apart from differences in localization and morphology, PHF and APCP significantly differ in (a) chemical structure (peptide and amino acid composition); (b) epitope specificity (antiubiquitin, antitau, antineurofilament); (c) physicochemical properties (structural conformation in guanidine hydrochloride); and (d) thioflavine T fluorescence emission. These parameters strongly suggest important differences in the composition and, probably, in the etiopathology of PHF and APCP of Alzheimer's disease.  相似文献   

13.
Following staining with hematoxylin and eosin Y, paraffin sections of mouse pancreas were examined by transmitted light, epifluorescence and confocal laser scanning microscopy. Light microscopy revealed that the nuclei of pancreatic acinar cells were located basally, while the apices of the cells appeared eosinophilic, although the secretory granules were difficult to visualize. Under violet-blue light excitation, the zymogen granules at the apices of the acinar cells showed strong yellowish fluorescence; the other part of the cytoplasm was only faintly fluorescent and the nuclei and the supporting tissues were nonfluorescent. Confocal laser scanning microscopy resulted in clear pictures of the zymogen granules and their distribution within the cell. The fluorescent emission of zymogen granules was certainly the result of eosin Y staining, because hematoxylin is not a fluorochrome and the zymogen granules are not autofluorescent. Staining with eosin Y alone, however, did not result in clear fluorescent images of zymogen granules or any other cellular structures. Our observation shows that the fluorescence emission of eosin Y allows easy and precise recognition of zymogen granules of pancreatic cells.  相似文献   

14.
《Biotechnic & histochemistry》2013,88(5-6):291-293
Following staining with hematoxylin and eosin Y, paraffin sections of mouse pancreas were examined by transmitted light, epifluorescence and confocal laser scanning microscopy. Light microscopy revealed that the nuclei of pancreatic acinar cells were located basally, while the apices of the cells appeared eosinophilic, although the secretory granules were difficult to visualize. Under violet-blue light excitation, the zymogen granules at the apices of the acinar cells showed strong yellowish fluorescence; the other part of the cytoplasm was only faintly fluorescent and the nuclei and the supporting tissues were nonfluorescent. Confocal laser scanning microscopy resulted in clear pictures of the zymogen granules and their distribution within the cell. The fluorescent emission of zymogen granules was certainly the result of eosin Y staining, because hematoxylin is not a fluorochrome and the zymogen granules are not autofluorescent. Staining with eosin Y alone, however, did not result in clear fluorescent images of zymogen granules or any other cellular structures. Our observation shows that the fluorescence emission of eosin Y allows easy and precise recognition of zymogen granules of pancreatic cells.  相似文献   

15.
Following staining with hematoxylin and eosin Y, paraffin sections of mouse pancreas were examined by transmitted light, epifluorescence and confocal laser scanning microscopy. Light microscopy revealed that the nuclei of pancreatic acinar cells were located basally, while the apices of the cells appeared eosinophilic, although the secretory granules were difficult to visualize. Under violet-blue light excitation, the zymogen granules at the apices of the acinar cells showed strong yellowish fluorescence; the other part of the cytoplasm was only faintly fluorescent and the nuclei and the supporting tissues were nonfluorescent. Confocal laser scanning microscopy resulted in clear pictures of the zymogen granules and their distribution within the cell. The fluorescent emission of zymogen granules was certainly the result of eosin Y staining, because hematoxylin is not a fluorochrome and the zymogen granules are not autofluorescent. Staining with eosin Y alone, however, did not result in clear fluorescent images of zymogen granules or any other cellular structures. Our observation shows that the fluorescence emission of eosin Y allows easy and precise recognition of zymogen granules of pancreatic cells.  相似文献   

16.
D Halachmi  Y Eilam 《FEBS letters》1989,256(1-2):55-61
Cells of Saccharomyces cerevisiae were loaded with indo-1, by incubation in a medium of pH 4.5, which contained penta-potassium indo-1. Cells were then washed and resuspended in a buffer of pH 4.0. The emission fluorescence spectra were recorded between 390 and 500 nm (excitation at 355 nm) and the autofluorescent spectra of the matched controls were subtracted. A 19-fold cellular accumulation of indo-1 was achieved. By permeabilization of plasma membranes, leaving the vacuolar membrane intact, it was proved that indo-1 was accumulated in the cytosol. It was also shown that intracellular indo-1 did not leak out of the cells and was not modified by cellular metabolism. Using the emission fluorescence ratio at 410/480 nm, the concentration of a free cytosolic Ca2+ was found to be 346 nM. Vacuolar Ca2+ concentration, calculated from indo-1 fluorescence after lysis of vacuolar and cellular membranes, was found to be 1.3 mM.  相似文献   

17.
目的评价体外合成的A2E对猪视网膜色素上皮(RPE)细胞的细胞活力和生物学特性影响,为进一步研究A2E在RPE细胞相关疾病中的作用提供细胞模型。方法利用全反式视黄醛和乙醇胺体外合成脂褐质荧光基团A2E。不同浓度的A2E(0,50,75,100μmol/L)作用第3代体外培养的猪RPE细胞30,45,60,90min,换10%FBS DMEM-F12培养液孵育24h后,倒置荧光显微镜观察荧光强度,IPP6.0软件灰度扫描定量荧光强度。采用MTT法检测A2E作用细胞各个时间段的吸光度值,应用SPSS11.0软件包对数据进行统计学分析,评价A2E的细胞毒性及RPE细胞活性。结果A2E被RPE细胞摄取后主要分布于细胞核周围,具有自发荧光。MTT实验及荧光灰度扫描结果显示,不同浓度的A2E被细胞摄取后细胞活力和荧光灰度扫描结果不同,以50μmol/L浓度A2E作用RPE细胞60min时,细胞内荧光强度高同时细胞活力强。结论体外培养的猪RPE细胞摄取体外合成的50μmol/L A2E 60min后细胞对A2E的摄取较多,A2E对细胞的毒性相对较低,该条件下进行A2E对离体猪RPE细胞的研究较好。  相似文献   

18.
The effect of superoxide radicals on melanin destruction and degradation of melanosomes isolated from cells of retinal pigment epithelium (RPE) of the human eye was studied. We found that potassium superoxide causes destruction of melanin in melanosomes of human and bovine RPE, as well as destruction of melanin from the ink bag of squid, with the formation of fluorescent decay products having an emission maximum at 520-525 nm. The initial kinetics of the accumulation of the fluorescent decay products is linear. Superoxide radicals lead simultaneously to a decrease in the number of melanosomes and to a decrease in concentration of paramagnetic centers in them. Complete degradation of melanosomes leads to the formation of a transparent solution containing dissolved proteins and melanin degradation products that do not exhibit paramagnetic properties. To completely degrade one melanosome of human RPE, 650 ± 100 fmol of superoxide are sufficient. The concentration of paramagnetic centers in a melanolipofuscin granule of human RPE is on average 32.5 ± 10.4% (p < 0.05, 150 eyes) lower than in a melanosome, which indicates melanin undergoing a destruction process in these granules. RPE cells also contain intermediate granules that have an EPR signal with a lower intensity than that of melanolipofuscin granules, but higher than that of lipofuscin granules. This signal is due to the presence of residual melanin in these granules. Irradiation of a mixture of melanosomes with lipofuscin granules with blue light (450 nm), in contrast to irradiation of only melanosomes, results in the appearance of fluorescent melanin degradation products. We suggest that one of the main mechanisms of age-related decrease in melanin concentration in human RPE cells is its destruction in melanolipofuscin granules under the action of superoxide radicals formed during photoinduced oxygen reduction by lipofuscin fluorophores.  相似文献   

19.
Lipofuscin, the so-called ageing pigment, is formed by the oxidative degradation of cellular macromolecules by oxygen-derived free radicals and redox-active metal ions. Usually it accumulates in post-mitotic, long-lived cells such as neurons and cardiac muscle cells. In contrast, it is rarely seen in either normal or diseased skeletal muscle fibres. In this paper, we report that lipofuscin accumulates at an early age in both human and murine dystrophic muscles. Autofluorescent lipofuscin granules were localized, using confocal laser scanning microscopy and electron microscopy, in dystrophin-deficient skeletal muscles of X chromosome-linked young Duchenne muscular dystrophy (DMD) patients and of mdx mice at various ages after birth. Age-matched normal controls were studied similarly. Autofluorescent lipofuscin granules were observed in dystrophic biceps brachii muscles of 2-7-year-old DMD patients where degeneration and regeneration of myofibres are active, but they were rarely seen in age-matched normal controls. In normal mice, lipofuscin first appears in diaphragm muscles nearly 20 weeks after birth but in mdx muscles it occurs much earlier, 4 weeks after birth, when the primary degeneration of dystrophin-deficient myofibres is at a peak. Lipofuscin accumulation increases with age in both mdx and normal controls and is always higher in dystrophic muscles than in age-matched normal controls. At the electron microscopical level, it was confirmed that the localisation of autofluorescent granules observed by light microscopy in dystrophin-deficient skeletal muscles coincided with lipofuscin granules in myofibres and myosatellite cells, and in macrophages accumulating around myofibres and in interstitial connective tissue. Our results agree with previous biochemical and histochemical data implying increased oxidative damages in DMD and mdx muscles. They indicate that dystrophin-deficient myofibres are either more susceptible to oxidative stress, or are subjected to higher intra- or extracellular oxidative stress than normal controls, or both.  相似文献   

20.
The accumulation of an autofluorescent pigment called lipofuscin in neurons is an invariable hallmark of brain aging. So far, this material has been considered to be waste material without particular relevance for cellular pathology. However, two lines of evidence argue that lipofuscin may play a yet unidentified role for pathological cellular functions: (i) Genetic forms of premature accumulation of similar autofluorescent material in neuronal ceroid lipofuscinosis indicate a direct disease-associated link to lipofuscin; (ii) Retinal pigment epithelium cell lipofuscin is mechanistically linked to age-associated macular degeneration. Here, we purified autofluorescent material from the temporal and hippocampal cortices of three different human individuals by a two-step ultracentrifugation on sucrose gradients. For human brain lipofuscin, we could identify a common set of 49 (among > 200 total) proteins that are mainly derived from mitochondria, cytoskeleton, and cell membrane. This brain lipofuscin proteome was validated in an interspecies comparison with whole brain rat lipofuscin (total > 300 proteins), purified by the same procedure, yielding an overlap of 32 proteins (64%) between lipofuscins of both species. Our study is the first to characterize human and rat brain lipofuscin and identifies high homology, pointing to common cellular pathomechanisms of age-associated lipofuscin accumulation despite the huge (40-fold) difference in the lifespan of these species. Our identification of these distinct proteins will now allow research in disturbed molecular pathways during age-associated dysfunctional lysosomal degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号