共查询到20条相似文献,搜索用时 0 毫秒
1.
Russell E. Isaacks Alexander S. Bender Jayne S. Reuben Chang Y. Kim You F. Shi Michael D. Norenberg 《Journal of neurochemistry》1999,73(1):105-111
Dibutyryl cyclic AMP (dBcAMP) is known to induce maturation and differentiation in astrocytes. As myo-inositol is an important osmoregulator in astrocytes, we examined the effects of maturation and biochemical differentiation on the kinetic properties of myo-inositol transport. Treatment of astrocytes with dBcAMP significantly decreased the Vmax of myo-inositol uptake, but the effect on Km was not significant. The myo-inositol content of astrocytes was significantly decreased in cells treated for 5 days with dBcAMP as compared with untreated controls. Maximum suppression of myo-inositol uptake occurred 7 days after exposure of astrocytes to dBcAMP; this was gradually reversible when dBcAMP was removed from the medium. After exposure to hypertonic medium for 6 h, mRNA expression of the myo-inositol co-transporter was diminished by approximately 36% in astrocytes treated with dBcAMP as compared with untreated cells. It appears that myo-inositol transporters in astrocytes treated with dBcAMP are either decreased in number or inactivated during maturation and differentiation, suggesting that the stage of differentiation and biochemical maturation of astrocytes is an important factor in osmoregulation. 相似文献
2.
Growth Control and Cyclic Alterations of Cyclic AMP in the Cell Cycle 总被引:44,自引:0,他引:44
MAX M. BURGER BERND M. BOMBIK BRUCE McL. BRECKENRIDGE J. R. SHEPPARD 《Nature: New biology》1972,239(93):161-163
Growth stimulated by protease treatment of untransformed cells is correlated with a decrease in cell cAMP levels and can be prevented by dibutyryl cAMP. The changed growth characteristics of transformed cells are discussed with regard to cAMP levels. 相似文献
3.
†Masahito Kurino Kohji Fukunaga †Yukitaka Ushio Eishichi Miyamoto 《Journal of neurochemistry》1996,67(6):2246-2255
Abstract: The cyclic AMP (cAMP)-induced inhibitory effect on cell proliferation was examined through inhibition of mitogen-activated protein kinase (MAP kinase) activation in cultured rat cortical astrocytes. Basic fibroblast growth factor (bFGF) at 10 ng/ml maximally stimulated MAP kinase activity, which peaks during 10 min and prolonged for 24 h. Likewise, DNA synthesis was maximally potentiated with 10 ng/ml bFGF and correlated with MAP kinase activity in a dose-dependent manner. Dibutyryl cAMP (dbcAMP) at 1 m M and isoproterenol at 10 µ M inhibited MAP kinase activation and DNA synthesis potentiation with bFGF and platelet-derived growth factor to the control level in cultured astrocytes and C6 glioma cells. The stimulation with bFGF caused a prominent translocation of MAP kinase from the cytosol to the nucleus after 1 h in astrocytes. Treatment of the cells with dbcAMP and isoproterenol completely prevented the translocation of MAP kinase. In experiments with 32 P-labeled cultured astrocytes, phosphorylation of Raf-1 was apparently stimulated with bFGF. Treatment with dbcAMP or isoproterenol had a greatly inhibitory effect on the stimulation of Raf-1 phosphorylation with bFGF. Consistent with the effect on Raf-1 phosphorylation, dbcAMP and isoproterenol completely prevented bFGF-induced phosphorylation of MAP kinase kinases, target proteins of Raf-1. Our observations suggest that cAMP-induced suppression of cell growth in astrocytes is due to the inhibitory effect on activation of MAP kinase and its translocation to the nucleus and that the site of the cAMP action is located at Raf-1 or the upstream site of Raf-1. 相似文献
4.
Mei Lin Wu Wei-Hao Chen‡ I.-Hsiu Liu Chuen-Den Tseng‡ & Seu-Mei Wang† 《Journal of neurochemistry》1999,73(3):1318-1328
One of the most important intracellular Ca2+ regulatory mechanisms in nonexcitable cells, "capacitative Ca2+ entry" (CCE), has not been adequately studied in astrocytes. We therefore investigated whether CCE exists in cultured rat cerebellar astrocytes and studied the roles of cyclic AMP (cAMP) and protein kinase C (PKC) in CCE. We found that (1) at least two different intracellular Ca2+ stores, the endoplasmic reticulum and mitochondria, are present in cerebellar astrocytes; (2) CCE does exist in these cells and can be inhibited by Ni2+, miconazole, and SKF 96365; (3) CCE can be directly enhanced by an increase in intracellular cAMP, as 8-bromoadenosine 3',5'-cyclic monophosphate (8-brcAMP), forskolin, and isobutylmethylxanthine have stimulatory effects on CCE; and (4) neither of the two potent protein kinase A (PKA) inhibitors, H8 and H89, nor a specific PKA agonist, Sp-adenosine 3',5'-cyclic monophosphothioate, had a significant effect on cAMP-enhanced Ca2+ entry. The [Ca2+]i increase was not due to a release from calcium stores, hyperpolarization of the membrane potential, inhibition of calcium extrusion, or a change in pHi, suggesting that cAMP itself probably acts as a novel messenger to modulate CCE. We also conclude that activation of PKC results in an increase in CCE. cAMP and PKC seem to modulate CCE by different pathways. 相似文献
5.
A Cyclic AMP Analogue Induces Synthesis of a Myelin-Specific Glycoprotein by Cultured Schwann Cells 总被引:1,自引:2,他引:1
Neonatal rat Schwann cells, cultured with agents which increase intracellular cyclic AMP, were prompted to resume synthesis of a 170,000 Mr glycoprotein which is specific to peripheral nervous system myelin and is herein referred to as P170K. We have shown previously that similar treatment induces the synthesis by Schwann cells of the myelin lipid, galactocerebroside. In contrast to P170K and galactocerebroside, syntheses of P0 and myelin basic protein were not induced. Intracellular cyclic AMP is thus likely to be a participant in the complex system regulating myelination. 相似文献
6.
7.
The Calcitonin Gene-Related Peptide-Induced Acetylcholinesterase Synthesis in Cultured Chick Myotubes Is Mediated by Cyclic AMP 总被引:1,自引:1,他引:1
Roy C. Y. Choi Lisa Y. Yung Tina T. X. Dong David C. C. Wan Yung H. Wong Karl W. K. Tsim 《Journal of neurochemistry》1998,71(1):152-160
Abstract: In vertebrate neuromuscular junctions, post-synaptic specialization includes aggregation of acetylcholine receptors (AChRs) and acetylcholinesterase (AChE). The motor nerve provides soluble factors and electrical activity to achieve this striking localization of AChRs/AChE. Calcitonin gene-related peptide (CGRP), a neuropeptide synthesized by motor neurons, is able to stimulate the expression of AChR in cultured myotubes. Similar to AChR regulation, synthesis of AChE in cultured chick myotubes is also stimulated by CGRP. Application of CGRP onto cultured myotubes stimulated the accumulation of intracellular cyclic AMP (cAMP) as well as the expression of AChE mRNA and protein. However, the enzymatic activity of AChE remained unchanged. In cultured myotubes, various drugs affecting the intracellular level of cAMP, such as N 6 , O 2' -dibutyryladenosine 3',5'-cyclic monophosphate, cholera toxin, and forskolin, could mimic the effect of CGRP in stimulating the expression of AChE. When myotubes were transfected with cDNA encoding constitutively active mutant Gαs , the intracellular cAMP synthesis was increased. The increase in cAMP level was in parallel with an increase in the expression of AChE, whereas transfection of active mutant Gαi cDNA decreased the cAMP level as well as the AChE expression. In addition, expression of collagen-tailed AChE was up-regulated by the cAMP pathway. These findings indicated that CGRP-induced AChE regulation is mediated by the cAMP pathway and represented the first evidence to suggest that the regulation of mRNA synthesis of AChR and AChE can be mediated by the same neuron-derived factor. 相似文献
8.
Abstract: We have examined the effect of elevating cyclic AMP levels on cytokine-mediated enhancement of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) gene expression by astrocytes. Treatment of astrocytes with the cyclic AMP mimetic dibutyryl-cyclic AMP, or the agonists norepinephrine, forskolin, prostaglandin E2 , and cholera toxin alone had no effect on ICAM-1 or VCAM-1 mRNA gene expression. However, elevating cyclic AMP levels within the cells by these agents suppressed interleukin-1β- and tumor necrosis factor-α-induced adhesion molecule expression at both the mRNA and protein levels. The phosphodiesterase type IV inhibitor, rolipram, was able to potentiate the inhibitory effect of forskolin on ICAM-1 and VCAM-1 gene expression. Inhibition of tumor necrosis factor-α-induced VCAM-1 mRNA levels by forskolin was partially due to enhanced degradation of VCAM-1 message, whereas the decay rates of tumor necrosis factor-α-induced ICAM-1 message and interleukin-1β-induced ICAM-1/VCAM-1 message were not affected by forskolin treatment. These results demonstrate that the pathways used by interleukin-1β and tumor necrosis factor-α to induce adhesion molecule expression are antagonized by cyclic AMP-dependent protein kinase-mediated signaling pathways. 相似文献
9.
Abstract: We previously reported that the cytoskeleton of rat astrocytes in primary culture contains vimentin, glial fibrillary acidic protein (GFAP), and actin. These proteins were found in a fraction insoluble in Triton X-100 and thought to be assembled in filamentous structures. We now used primary astrocyte cultures to study the kinetics of synthesis and turnover of these cytoskeletal proteins. The intermediate filament proteins were among the most actively synthesized by astrocytes. High levels of synthesis were detectable by the third day of culture in the early log phase of growth, and the pattern of labeling at day 3 was similar to that at 14 days when the cultures had reached confluency. In short-term incorporation experiments vimentin, GFAP, and actin in the Triton-insoluble fraction were labeled within 5 min after exposure of the cultures to radioactive leucine. We did not detect any saturation of labeling for up to 6 h of incubation. The turnover of filament proteins studied by following the decay of radioactivity from prelabeled vimentin, GFAP, and cytoskeletal actin displayed biphasic decay kinetics for all three proteins. In the initial phase a fast-decaying pool with a half-life of 12–18 h contributed about 40% of the total activity in each protein. A major portion, about 60%, of each protein, however, decayed much more slowly, exhibiting a half-life of about 8 days. 相似文献
10.
Effects of Dibutyryl Cyclic AMP and Retinoic Acid on the Differentiation of Dopamine Neurons: Prevention of Cell Death by Dibutyryl Cyclic AMP 总被引:2,自引:0,他引:2
Maria Angeles Mena Maria José Casarejos Ana Bonin Jose Antonio Ramos †Justo García de Yébenes 《Journal of neurochemistry》1995,65(6):2612-2620
Abstract: Immature neurons, including fetal and tumoral cells, are used for investigating neuronal differentiation in vitro. The human neuroblastoma cell line NB69 could be induced to differentiate to dopamine or acetylcholine neurons by different compounds, including neurotrophins and activators of the protein kinases. In these NB69 cells dibutyryl cyclic AMP (dbcAMP) at 2 m M reduced the division rate and increased the levels of catecholamines, tyrosine hydroxylase (TH) activity, and monoamine oxidase activity. The dbcAMP also increased cell size, dendritic arborization, density of the sites for high-affinity dopamine uptake, and activity of choline acetyltransferase. In fetal rat midbrain neurons treatment with dbcAMP increased the levels of dopamine and the number of TH-immunoreactive neurons in the culture. When embryonic day 14 fetal midbrain neurons, previously exposed to 1 µ M retinoic acid (a compound that severely reduces the number of fetal midbrain dopamine neurons), were treated with dbcAMP, the levels of dopamine and the number of TH-immunoreactive cells returned to normal levels. This suggests that dbcAMP induces the differentiation to dopamine neurons of quiescent progenitor or facilitates expression of the dopamine phenotype in immature neurons. Therefore, dbcAMP not only differentiates uncommitted immature dopamine neurons, but also reverses the antidopaminergic effects of retinoic acid. These properties of dbcAMP could be of therapeutic value in Parkinson's disease. 相似文献
11.
Abstract: The Xenopus retinal photoreceptor layer contains a circadian oscillator that regulates melatonin synthesis in vitro. The phase of this oscillator can be reset by light or dopamine. The phase-response curves for light and dopamine are similar, with transitions from phase delays to phase advances in the mid-subjective night. Light and dopamine each can inhibit adenylate cyclase in retinal photoreceptors, suggesting cyclic AMP as a candidate second messenger for entrainment of the circadian oscillator. We report here that treatments that increase intracellular cyclic AMP reset the phase of the photoreceptor circadian oscillator, and that the phase-response curves for these treatments are 180° out of phase with the phase-response curves for light and dopamine. Activation of adenylate cyclase by forskolin during the late subjective day or early subjective night caused phase advances. The same treatment during the late subjective night or early subjective day caused phase delays. Similar phase shifts were induced by 3-isobutyl-1-methyl-xanthine (a phosphodiesterase inhibitor) or 8-(4-chlorophenylthio)cyclic AMP. All of these treatments also acutely increased melatonin release. Forskolin and 3-isobutyl-1-methylxanthine increased the accumulation of intracellular cyclic AMP, but not cyclic GMP, in photoreceptor layers. The results indicate that cyclic AMP-dependent pathways regulate the photoreceptor circadian oscillator and suggest that a decrease in cyclic AMP may be involved in circadian entrainment by light and/or dopamine. 相似文献
12.
13.
María-Dolores Miñana Elena Kosenko Goizane Marcaida Carlos Hermenegildo Carmina Montoliu Santiago Grisolía Vicente Felipo 《Cellular and molecular neurobiology》1997,17(4):433-445
1. Previous results suggest that glutamine synthesis in brain could be modulated by nitrix oxide. The aim of this work was to assess this possibility.2. As glutamine synthetase in brain is located mainly in astrocytes, we used primary cultures of astrocytes to assess the effects of increasing or decreasing nitrix oxide levels on glutamine synthesis in intact astrocytes.3. Nitric oxide levels were decreased by adding nitroarginine, an inhibitor of nitric oxide synthase. To increase nitric oxide we used S-nitroso-N-acetylpenicillamine, a nitric oxide generating agent.4. It is shown that S-nitroso-N-acetylpenicillamine decreases glutamine synthesis in intact astrocytes by 40–50%. Nitroarginine increases glutamine synthesis slightly in intact astrocytes.5. These results indicate that brain glutamine synthesis may be modulated in vivo by nitric oxide. 相似文献
14.
Glutamate-Stimulated, Guanine Nucleotide-Mediated Phosphoinositide Turnover in Astrocytes Is Inhibited by Cyclic AMP 总被引:3,自引:3,他引:0
Patricia L. Robertson George R. Bruno Subhash C. Datta 《Journal of neurochemistry》1990,55(5):1727-1733
The potential for cross-talk between the adenyl cyclase and phosphoinositide (PPI) lipid second messenger system was investigated in astrocytes cultured from neonatal rat brain. Glutamate-stimulated PPI turnover, measured by the formation of total inositol phosphates from myo-[3H]inositol-labeled lipids, was inhibited in a concentration-dependent manner by the elevation of intracellular cyclic AMP levels produced either by stimulation of the isoproterenol receptor linked to adenyl cyclase or by its direct activation by forskolin. N6,2'-O-Dibutyryl cyclic AMP, an analogue that can also activate cyclic AMP-dependent kinase, inhibited glutamate-stimulated PPI turnover in a concentration-dependent manner as well, a result suggesting that cyclic AMP-dependent kinase is involved in mediating the inhibition. Inclusion of an inhibitor of cyclic AMP-dependent kinase, 1-(5-isoquinolinesulfonyl)-2 methylpiperazine dihydrochloride or N-(2-guanidinoethyl)-5-isoquinolinesulfonamide hydrochloride, blocked the cyclic AMP-mediated inhibition in a concentration-dependent manner, a finding further supporting this hypothesis. The site of inhibition of the phosphoinositol lipid pathway by cyclic AMP was probed using a digitonin-permeabilized cell system. Guanosine 5'-O-(3-thiotriphosphate), a nonhydrolyzable analogue of GTP, stimulated PPI turnover and potentiated glutamate-stimulated PPI turnover, and guanosine 5'-O-(3-thiodiphosphate) inhibited glutamate-stimulated PPI turnover in these cells, results providing evidence that glutamate receptors are coupled to phospholipase C by a guanine nucleotide binding protein in astrocytes.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
Increase of Intracellular Cyclic AMP by PDE4 Inhibitors Affects HepG2 Cell Cycle Progression and Survival 下载免费PDF全文
Mara Massimi Silvia Cardarelli Francesca Galli Maria Federica Giardi Federica Ragusa Nadia Panera Benedetta Cinque Maria Grazia Cifone Stefano Biagioni Mauro Giorgi 《Journal of cellular biochemistry》2017,118(6):1401-1411
16.
JÖRG THOMAS EPPLEN BRIGITTE KUNZ GERD WIECZOREK-ENGELKEN WOLFGANG ENGEL JÖRG SCHMIDTKE 《Differentiation; research in biological diversity》1981,20(1-3):124-130
Enzymatic digestion of the interstitial tissue of early juvenile and adult rat testes resulted in an enrichment of the Leydig cell population. The cells of the intertubular preparation from adult testes were separated by centrifugal elutriation, according to differences in sedimentation velocity, a counter-flow centrifugation technique leading to 70% Leydig cell purity. Using this approach, it was possible to demonstrate that Leydig cells from adult testes contain only low affinity isoenzymes of cyclic AMP phosphodiesterase (PDE; E.C.: 3.1.4.17), an intracellular regulator of cAMP. Starch gel electrophoresis showed that the isozyme of cAMP PDE of Leydig cells is masked in crude testis homogenates due to the relatively low level of these cells in the total population. In Leydig cells, there are two different electrophoretic forms expressed which resemble two of eleven different molecular forms of cAMP PDE demonstrated for comparison in 21 different organs of the adult rat.
An interstitial cell preparation from early juvenile testes, with a Leydig cell content of up to 20%, was also investigated electrophoretically with regard to molecular forms of cAMP PDE, the properties of which were characterized by kinetic analysis of cAMP hydrolysis. The results presented are discussed in relation to the onset of testosterone synthesis in Leydig cells of prepubertal rats leading to the initiation of male puberty. 相似文献
An interstitial cell preparation from early juvenile testes, with a Leydig cell content of up to 20%, was also investigated electrophoretically with regard to molecular forms of cAMP PDE, the properties of which were characterized by kinetic analysis of cAMP hydrolysis. The results presented are discussed in relation to the onset of testosterone synthesis in Leydig cells of prepubertal rats leading to the initiation of male puberty. 相似文献
17.
Methamphetamine (MA) is a potent psychostimulant with a high addictive capacity, which induces many deleterious effects on the brain. Chronic MA abuse leads to cognitive dysfunction and motor impairment. MA affects many cells in the brain, but the effects on astrocytes of repeated MA exposure is not well understood. In this report, we used Gene chip array to analyze the changes in the gene expression profile of primary human astrocytes treated with MA for 3 days. Range of genes were found to be differentially regulated, with a large number of genes significantly downregulated, including NEK2, TTK, TOP2A, and CCNE2. Gene ontology and pathway analysis showed a highly significant clustering of genes involved in cell cycle progression and DNA replication. Further pathway analysis showed that the genes downregulated by multiple MA treatment were critical for G2/M phase progression and G1/S transition. Cell cycle analysis of SVG astrocytes showed a significant reduction in the percentage of cell in the G2/M phase with a concomitant increase in G1 percentage. This was consistent with the gene array and validation data, which showed that repeated MA treatment downregulated the genes associated with cell cycle regulation. This is a novel finding, which explains the effect of MA treatment on astrocytes and has clear implication in neuroinflammation among the drug abusers. 相似文献
18.
《Nucleosides, nucleotides & nucleic acids》2013,32(8-9):1181-1183
We have measured hypoxanthine effect on cAMP levels in PBL in basal conditions (no agonist), and with the addition of 2‐(p‐ [2‐carboxyethyl] phenylethylamino)‐5′‐N‐ethylcarboxamidoadenosine (CGS‐21680, a specific A2 receptor agonist). We have found that hypoxanthine, at 25 µM and 50 µM concentrations, increases cAMP levels in PBL in basal and A2 agonist stimulated conditions. 相似文献
19.
V. T. F. Yeung S. K. S. Ho C. S. Cockram C. M. Lee M. G. Nicholls† 《Journal of neurochemistry》1992,59(2):762-764
The effect of C-type natriuretic peptide (CNP), a novel member of the natriuretic peptide family, on cyclic GMP (cGMP) generation was studied in primary cultures of mouse astrocytes. CNP stimulated cGMP production by mouse astrocytes in a dose-dependent fashion, with an EC50 of 32 nM and a maximal stimulatory concentration of greater than 1 microM, which induced a rise of cGMP level from a baseline of 1.0 +/- 0.1 pmol/mg of protein to 196.2 +/- 22.0 pmol/mg of protein. Compared with our previously reported atrial and brain natriuretic peptide-induced cGMP responses, CNP had a lower EC50 and was 10-20 times more efficacious in its maximal effect on cGMP stimulation. These data lend support to the concept of a significant role of CNP in neuromodulation/neurotransmission. 相似文献