首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We describe in this paper the development of a one-step sandwich assay for the highly sensitive and fast detection of human matrix metalloproteinase (MMP)-2 (EC 3.4.24.24), using surface plasmon resonance (SPR). For the assay, two ligands were selected: monoclonal anti-MMP-2 antibody Ab-2 and the tissue inhibitor of metalloproteinases (TIMP)-2. They were chosen on the basis of (1) their affinities to MMP-2, (2) the efficiency of immobilization to the sensor chip, (3) the efficiency of adsorption to colloidal gold, and (4) the stability of these protein-coated gold particles. The assay included mixing of MMP-2 with antibody Ab-2 adsorbed to colloidal gold with a diameter of about 20nm and injection into the flowcell of the SPR instrument containing immobilized TIMP-2. By using colloidal gold particles an amplification factor of 114 and a detection limit of 0.5pM for MMP-2 were obtained. The precision of the assay was high even at low analyte concentrations, the standard deviation being 8.3% for five determinations of 1pM MMP-2. No significant binding was observed with the structurally related MMP-9. The assay is far more sensitive and faster than commonly used methods for MMP-2 detection. As TIMP-bound MMP-2 is not detected by this method, the assay can be applied for measuring free MMP-2, reflecting the imbalance of free and inhibitor-bound enzyme in various pathological situations.  相似文献   

2.
An immunosensor based on surface plasmon resonance imaging (SPR imaging) using a specific monoclonal antibody 11E5 (MAb 11E5) was developed for the detection of the seed-borne bacterium Acidovorax avenae subsp. citrulli (Aac), which causes fruit blotch in watermelons and cantaloupes, and compared to the conventional ELISA technique. The 1:40 mixed self-assembled monolayer (mixed SAM) surface was used for the immobilized MAb 11E5 on sensor surface for the detection of Aac. Both whole cells and broken cells of Aac were tested by using direct and sandwich detection assay. The limit of detection (LOD) of Aac using the SPR imaging technique and a direct detection assay was 10(6)cfu/ml and a subsequent amplification of the SPR signal using a polyclonal antibody (PAb) lowered the LOD to 5×10(5) cfu/ml. The LOD for the ELISA technique was 5×10(4) cfu/ml for the detection of Aac, which was slightly better than that for the SPR technique. However, the sensor surface based on SPR imaging offered a major advantage in terms of surface regeneration, allowing at least five cycles with a shorter time assay, multi-channel analysis with an application on multiplex detection, and an ease of the surface usage for the detection of Aac in the naturally infected plant. The surface was tested against the naturally infected sample and showed good selectivity toward the Aac bacteria.  相似文献   

3.
A Fiber-Optic Localized Surface Plasmon Resonance (FO LSPR) sensor was fabricated using spherical gold nanoparticles (Au NPs) on a flattened end-face of the optical fiber. The Au NPs were easily synthesized by the Turkevich method and were immobilized on the end-face of the optical fiber by using a self-assembled monolayer (SAM). In order to examine the possibility of its application as a biosensor for label-free immunoassays, the fabricated FO LSPR sensor was used for the detection of the antibody-antigen reaction of interferon-gamma (IFN-γ) and the limit of detection (LOD) was approximately 2pg/ml. Herein, The antibodies and bovine serum albumins (BSAs) were immobilized on the Au NPs by physisorption. Also, the FO LSPR sensor was used for the detection of a prostate-specific antigen (PSA) and the LOD was 1pg/ml below. The fabricated FO LSPR sensor can be used for real-time label-free immunoassay having fast detection time, high resolution and sensitivity. In addition, the proposed sensor platform has the advantages of low cost, simple optical setup, remote sensing, simple fabrication, real-time detection, low sample volume, and potential application to in-vivo detection systems.  相似文献   

4.
A single-step qualitative rapid test for the determination of prostate-specific antigen (PSA) in samples of human blood serum by immunochromatography using a complex of colloidal gold with monoclonal antibodies to PSA as the detection agent was developed. The determination limit for PSA in serum blood samples is 10 ng/ml; the analysis time, 15–25 min; the sensitivity of the method, 100%; and its specificity, 92.5%.  相似文献   

5.
A single-step qualitative rapid test for the determination of prostate-specific antigen (PSA) in samples of human blood serum by immunochromatography using a complex of colloidal gold with monoclonal antibodies to PSA as the detection agent was developed. The determination limit for PSA in serum blood samples is 10 ng/ml; the analysis time, 15-25 min; the sensitivity of the method, 100%; and its specificity, 92.5%.  相似文献   

6.
Surface plasmon resonance (SPR) biosensor formats using gold nanoparticle or protein signal amplification for the sensitive assay of small molecules were developed using progesterone as a model compound. Progesterone was immobilized to a dextran surface in the Biacore biosensor through in situ covalent immobilization using an oligoethylene glycol linker attached to the 4 position of the steroid. This surface produced stable antibody binding for in excess of 1100 assay cycles. Using this surface, assays were developed for progesterone using 10- and 20-nm gold-streptavidin labels attached to biotinylated monoclonal antibody in both label prebinding and sequential binding formats. Prelabeling formats gave no signal enhancement but produced assays with limits of detection of 143 pg/ml, compared with approximately 1 ng/ml in previous studies. Sequential binding formats gave signal enhancements of 2.2-fold over the monoclonal antibody and a limit of detection of 23.1 pg/ml. It was found that secondary antibody labeling gave 8.1-fold signal enhancements and a limit of detection of 20.1 pg/ml, whereas use of secondary antibody-25 nm gold complexes provided more signal enhancement (13-fold) and a further improvement in limit of detection of 8.6 pg/ml.  相似文献   

7.
Prostate specific antigen-alpha1-antichymotrypsin was detected by a double-enhancement strategy involving the exploitation of both colloidal gold nanoparticles (AuNPs) and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation. The AuNPs were synthesized and conjugated with horse-radish peroxidase-PSA polyclonal antibody by physisorption. Using the protein-colloid for SPR-based detection of the PSA/ACT complex showed their enhancement as being consistent with other previous studies with regard to AuNPs enhancement, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the signal. The limit of detection was found at as low as 0.027 ng/ml of the PSA/ACT complex (or 300 fM), which is much higher than that of previous reports. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.  相似文献   

8.
The orientation of antibody was controlled by using NeutrAvidin-protein A complex on the gold surface of SPR biosensor. The surface density of receptor antibody (anti-hIgG) was compared by treatment of receptor antibody to the layer of avidin, NeutrAvidin, protein A, NeutrAvidin-protein A complex and bare gold surface of SPR biosensor. The ligand antibody (hIgG) was injected to each IA layer and the binding ratio of ligand antibody per unit receptor was estimated as a parameter of orientation control. The NeutrAvidin-protein A complex on gold surface of SPR biosensor showed the highest surface density of receptor antibody as well as the binding ratio of ligand antibody per receptor antibody. The NeutrAvidin-protein A complex was also prepared on biotin-labelled SAM, and the binding ratio of ligand per receptor was found to be significantly improved in comparison to the IA layer prepared by chemical coupling of receptor antibody to the SAM layer. The NeutrAvidin-protein A complex which showed the highest efficiency for the binding of ligand antibodies, was applied for the detection of a cancer marker called CEA. By using NeutrAvidin-protein A complex and sandwich assay for signal amplification, sensitivity was improved to be 1.5-fold higher than bare gold surface and the detection of CEA with the detection limit of 30 ng/ml was achieved.  相似文献   

9.
The goal of this work is to explore the amplification effect of aptamer–gold nanoparticles (Au NPs) conjugates for ultrasensitive detection of large biomolecules by surface plasmon resonance (SPR). A novel sandwich immunoassay is designed to demonstrate the amplification effect of aptamer–Au NPs conjugates by using human immunoglobulin E (IgE) as model analyte. Human IgE, captured by immobilized goat anti-human IgE on SPR gold film, is sensitively detected by SPR spectroscopy with a lowest detection limit of 1 ng/ml after anti-human IgE aptamer–Au NPs conjugates is used as amplification reagent. Meanwhile, the non-specific adsorption of aptamer–Au NPs conjugates on goat anti-human IgE is confirmed by SPR spectroscopy and then it is minimized by treating aptamer–Au NPs conjugates with 6-mercaptohexan-1-ol (MCH). These results confirm that aptamer–Au NPs conjugates is a powerful sandwich element and an excellent amplification reagent for SPR-based sandwich immunoassay.  相似文献   

10.
A novel sensing method based on surface plasmon resonance (SPR) was developed for the highly sensitive quantification of low molecular weight (LMW) analytes (colloidal Au replacement assay). Gold nanoparticles (diameter = 20 nm) functionalized with lactosyl-poly(ethylene glycol) (PEG) were prepared and were specifically adsorbed onto a Ricinus communis agglutinin (RCA120)-immobilized SPR sensor chip surface. Subsequent injection of free d-galactose elicited the elution of the preadsorbed lactosyl-PEGylated gold nanoparticles in a manner proportional to the galactose concentration, achieving a substantial and quantitative analysis over a wide range of galactose concentrations (0.1-50 ppm). This method of d-galactose sensing through the substituted elution of preadsorbed nanoparticles from the sensor chip surface would be applicable for the highly sensitive SPR quantification of various LMW analytes, which are known to be difficult to detect by the conventional SPR sensing regime.  相似文献   

11.
We used the immunogold-silver staining method (IGSS) for detection of lymphocyte cell surface antigens with monoclonal antibodies in light and electron microscopy and compared this procedure with the immunogold staining method. Two different sizes of colloidal gold particles (5 nm and 15 nm) were used in this study. Immunolabeling on cell surfaces was visualized as fine granules only by IGSS in light microscopy. The labeling density (silver-gold complexes/cell) and diameters of silver-enhanced gold particles on cell surfaces were examined by electron microscopy. Labeling density was influenced not by the enhancement time of the physical developer but by the size of the gold particles. However, the development of shells of silver-enhanced gold particles correlated with the enhancement time of the physical developer rather than the size of the colloidal gold particles. Five-nm gold particles enhanced with the physical developer for 3 min were considered optimal for this IGSS method because of reduced background staining and high specific staining in the cell suspensions in sheep lymph. Moreover, this method may make it possible to show the ultrastructure of identical positive cells detected in 1-micron sections counterstained with toluidine blue by electron microscopy, in addition to the percentage of positive cells by light microscopy.  相似文献   

12.

Colloidal gold nanoparticles (AuNPs) have been extensively investigated as amplification tags to improve the sensitivity of surface plasmon resonance (SPR) biosensors. When using the so-called AuNP-enhanced SPR technique for DNA detection, the density of single-stranded DNA (ssDNA) on both the AuNPs and planar gold substrates is of crucial importance. Thus, in this work, we carried out a systematical study about the influence of surface ssDNA density onto the hybridization behavior of various DNA-modified AuNPs (DNA-AuNPs) with surface-attached DNA probes by using surface plasmon resonance spectroscopy. The lateral densities of the ssDNA on both the AuNPs and planar gold substrates were controlled by using different lengths of oligo-adenine sequence (OAS) as anchoring group. Besides SPR measurements, the amount of the captured DNA-AuNPs after the hybridization was further identified via atomic force microscope (AFM). SPR and AFM results clearly indicated that a higher ssDNA density on either the AuNPs or the gold substrates would give rise to better hybridization efficiency. Moreover, SPR data showed that the captured DNA-AuNPs could not be removed from SPR sensor surfaces using various dehybridization solutions regardless of surface ssDNA density. Consequently, it is apparent that the hybridization behavior of DNA-AuNPs was different from that of solution-phase ssDNA. Based on these data, we hypothesized that both multiple recognitions and limited accessibility might account for the hybridization of DNA-AuNPs with surface-attached ssDNA probes.

  相似文献   

13.
The localization of thrombin receptors on mouse embryo (ME) cells was examined using electron microscope (EM) immunocytological techniques. ME cells were fixed with formaldehyde, prior to thrombin binding, and thrombin visualized on cell surfaces using affinity-purified antithrombin rabbit antibody and colloidal gold labeled anti-rabbit IgG. Colloidal gold particles were found in clusters on the surface of cells incubated with thrombin. There were approximately seven particles per cluster observed in thin sections with cluster diameters ranging from 70 to 200 nm. These clusters were not observed on cells incubated without thrombin. The total number of particles present on cells incubated with and without thrombin indicate that the colloidal gold labeling is approximately 98% specific for thrombin. Only four colloidal gold particles out of approximately 1,200 were associated with coated pits. Thus the thrombin receptor clusters do not appear to associate with coated membrane regions. To determine whether receptor-bound thrombin was internalized by receptor-mediated endocytosis, ME cells were incubated with 125I-thrombin and examined using EM autoradiography and the trypsin sensitivity of 125I-thrombin which was associated with the cells. In two types of experiments, where thrombin was incubated with cells at 4 degrees C and the temperature increased to 37 degrees C and where initial incubation was at 37 degrees C, the receptor-directed specific internalization proceeded at approximately the same rate as nonspecific internalization. These studies indicate that thrombin that binds to its receptors on ME cells is not rapidly internalized by receptor-mediated endocytosis.  相似文献   

14.
A microfluidic electrochemical immunoassay system for multiplexed detection of protein cancer biomarkers was fabricated using a molded polydimethylsiloxane channel and routine machined parts interfaced with a pump and sample injector. Using off-line capture of analytes by heavily-enzyme-labeled 1 μm superparamagnetic particle (MP)-antibody bioconjugates and capture antibodies attached to an 8-electrode measuring chip, simultaneous detection of cancer biomarker proteins prostate specific antigen (PSA) and interleukin-6 (IL-6) in serum was achieved at sub-pg mL?1 levels. MPs were conjugated with ~90,000 antibodies and ~200,000 horseradish peroxidase (HRP) labels to provide efficient off-line capture and high sensitivity. Measuring electrodes feature a layer of 5 nm glutathione-decorated gold nanoparticles to attach antibodies that capture MP-analyte bioconjugates. Detection limits of 0.23 pg mL?1 for PSA and 0.30 pg mL?1 for IL-6 were obtained in diluted serum mixtures. PSA and IL-6 biomarkers were measured in serum of prostate cancer patients in total assay time 1.15 h and sensor array results gave excellent correlation with standard enzyme-linked immunosorbent assays (ELISA). These microfluidic immunosensors employing nanostructured surfaces and off-line analyte capture with heavily labeled paramagnetic particles hold great promise for accurate, sensitive multiplexed detection of diagnostic cancer biomarkers.  相似文献   

15.
We enhanced the sensitivity of surface plasmon resonance biosensor by the conversion of the real-time direct binding immunoassay into the sandwich immunoassay, in which colloidal gold particles coated with anti-mouse IgG was used. By the immobilization of anti-mouse IgG onto the carboxymethyl dextran surface of thin gold film, the direct binding of analyte (mouse IgG) onto the sensor chip, and the injection of colloidal gold particles coated with antimouse IgG, about 100 times of sensitivity enhancement was obtained. This result suggests that nanoparticles, which has a high refractive index, homogeneous ultrafine structure and capability of size control, would be applicable for the detection of very small quantity of biomaterial.  相似文献   

16.
In this paper, a new simple approach for sensitivity optimization in surface plasmon resonance (SPR) chemosensors based on colorimetric ligands is presented. A new design of SPR sensor with tunable analytical wavelength (lambda(SPR)) was constructed for this purpose, to perform studies on the ligand absorbance spectra related sensitivity enhancement. Unlike commercial SPR sensors which operate at one lambda(SPR), the new device can be used for sensitivity analysis at selected lambda(SPR) in the range 550-750 nm, offering the possibility to identify the highest sensitivity lambda(SPR) in regard to the spectral changes of the selected ligand. Measurements can be easily done in ligand bulk solutions without immobilization steps. Sensitivity enhancement analysis and optimization of lambda(SPR) on chromogenic reagents with hypsochromic shift in their absorption spectra are demonstrated in this contribution. Optimal selection of analytical wavelength, set at the absorbance peak of chromogenic reagent Eriochrome Black T (EBT) was observed to result in up to two times increased SPR sensitivity to Cd(2+) compared to wavelengths selected in other parts of the ligand absorbance spectra, with a limit of detection (LOD) 0.2 ppm. The sensitivity enhancement at optimal lambda(SPR) was observed to be related to increased refractive index (n), drop in extinction coefficient (alpha) and simultaneous hypsochromic shift of the EBT absorbance spectra causing the lambda(SPR) to match the absorbance peak shoulder.  相似文献   

17.
Correlative video-enhanced light microscopy, high-voltage transmission electron microscopy, and low-voltage high resolution scanning electron microscopy were used to examine the binding of colloidal gold-labeled fibrinogen to platelet surfaces. Optimal conditions for the detection of large (18 nm) and small (3 nm) gold particles are described.  相似文献   

18.
报道了用胶体金免疫电镜技术检测戊型肝炎病毒(HEV)的方法。实验采用10nm胶体金标记纯化兔抗鼠IgG制备了免疫胶体金探针试剂。用本法从戊型肝炎患者粪便提取物中检出HEV呈球形,直径32±5nm。此方法具有快速、灵敏、直观等特点,在HEV生物学性质研究中,有一定的应用价值。  相似文献   

19.
Carbon nanotube-assisted enhancement of surface plasmon resonance signal   总被引:1,自引:0,他引:1  
We describe a method of amplifying the biosensing signal in surface plasmon resonance (SPR)-based immunoassays using an antibody–carbon nanotube (CNT) conjugate. As a model system, human erythropoietin (EPO) and human granulocyte macrophage colony-stimulating factor (GM–CSF) were detected by sandwich-type immunoassays using an SPR biosensor. For the amplification of the SPR signal, the CNT was conjugated with a polyclonal antibody, and then the conjugates were reacted with antibodies coupled with the target proteins. This amplification strategy increases the dynamic range of the immunoassays and enhances the detection sensitivity. The SPR immunoassays, combined with the CNT-assisted signal amplification method, provided a wide dynamic range over four orders of magnitude for both EPO and GM–CSF (0.1–1000 ng/ml). The CNT amplification method is expected to realize the detection of picogram levels and a wide dynamic detection range of multiple proteins, enabling it to offer a robust analysis tool for the development of biopharmaceutical production.  相似文献   

20.
Carcinoembryonic antigen (CEA) was used as a separator to prevent the Rhodamine 6G (R6G)-induced aggregation of colloidal gold nanoparticles. The destroyed aggregation has been monitored by measuring the absorption and resonance light scattering peaks corresponding to the longitudinal surface plasmon resonance (SPR) of the chain-like aggregated gold nanoparticles (AuNPs). It was found that the pre-adding of CEA with different concentrations to the gold colloids before mixing them with R6G could lead to the longitudinal SPR peak decrease and blue shift. By analysing the intensity changing and wavelength shifting of the absorption spectra, CEA could be detected in a linear range from 0.2 to 4 ng/mL, and the limit of detection reaches to 0.1 ng/mL. The sensitivity of the CEA concentration dependent shifting and quenching of the plasmonic absorption and scattering corresponding to the AuNPs aggregation presents a well potential application of biologic spectral sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号