首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The int genes in mammary tumorigenesis and in normal development   总被引:15,自引:0,他引:15  
  相似文献   

2.
The Wnt connection to tumorigenesis   总被引:26,自引:0,他引:26  
Wnt signaling has been identified as one of the key signaling pathways in cancer, regulating cell growth, motility and differentiation. Because of its widespread activation in diverse human tumor diseases, the Wnt pathway has gained considerable and growing interest in tumor research over recent years. Evidence that altered Wnt signaling is important for human tumor development came from three major findings: (i) the tumor suppressor adenomatous polyposis coli (APC) binds to the Wnt pathway component beta-catenin and is involved in its degradation, (ii) mutations of APC in colon tumors lead to stabilization of the beta-catenin protein and (iii) tumor-associated mutations of beta-catenin in colorectal cancer as well as in other tumor types lead to its stabilisation, qualifying beta-catenin as a proto-oncogene. Here we will describe the biochemical interactions which shape the Wnt pathway and focus on its role in tumorigenesis.  相似文献   

3.
The DVR gene family in embryonic development.   总被引:22,自引:0,他引:22  
The DVR gene family consists of at least 15 members, including decapentaplegic from Drosophila, Xenopus Vg1 and the mammalian bone morphogenetic protein genes, encoding secreted proteins closely related to transforming growth factor beta Genetic and biochemical evidence supports the idea that DVR proteins form part of a cascade of extracellular signalling molecules mediating inductive tissue interactions during development.  相似文献   

4.
The Drosophila segment polarity gene product Porcupine (Porc) was first identified as being necessary for processing Wingless (Wg), a Drosophila Wnt (Wnt) family member. Mouse and Xenopus homologs of porc (Mporc and Xporc) were identified and found to encode endoplasmic reticulum (ER) proteins with multiple transmembrane domains. In contrast with porc, four different types of Mporc and Xporc mRNA (A-D) are generated from a single gene by alternative splicing. Mporc mRNA is differentially expressed during embryogenesis and in various adult tissues, demonstrating that the alternative splicing is regulated to synthesize the specific types of Mporc. In transfected mammalian cells, all Mporc types affect the processing of mouse Wnt 1, 3A, 4, 6, and 7B but not 5A. Furthermore, all Mporc types are co-immunoprecipitated with various Wnt proteins. These results suggest that Mporc may function as a chaperone-like molecule for Wnt. Interestingly, all Mporc types can substitute for Porc, as they are able to rescue the phenotypes of Drosophila porc embryos. Consistent with this observation, Mporc, like Porc, modifies the processing of Wg expressed in mammalian cells. These results demonstrate that the porc gene family encodes the multitransmembrane ER proteins, which are evolutionarily well conserved and involved in processing the Wnt family.  相似文献   

5.
6.
The casein kinase I family in Wnt signaling.   总被引:7,自引:0,他引:7  
The canonical Wnt-signaling pathway is critical for many aspects of development, and mutations in components of the Wnt pathway are carcinogenic. Recently, sufficiency tests identified casein kinase Iepsilon (CKIepsilon) as a positive component of the canonical Wnt/beta-catenin pathway, and necessity tests showed that CKIepsilon is required in vertebrates to transduce Wnt signals. In addition to CKIepsilon, the CKI family includes several other isoforms (alpha, beta, gamma, and delta) and their role in Wnt sufficiency tests had not yet been clarified. However, in Caenorhabditis elegans studies, loss-of-function of a CKI isoform most similar to alpha produced the mom phenotype, indicative of loss-of-Wnt signaling. In this report, we examine the ability of the various CKI isoforms to activate Wnt signaling and find that all the wild-type CKI isoforms do so. Dishevelled (Dsh), another positive component of the Wnt pathway, becomes phosphorylated in response to Wnt signals. All the CKI isoforms, with the exception of gamma, increase the phosphorylation of Dsh in vivo. In addition, CKI directly phosphorylates Dsh in vitro. Finally, we find that CKI is required in vivo for the Wnt-dependent phosphorylation of Dsh. These studies advance our understanding of the mechanism of Wnt action and suggest that more than one CKI isoform is capable of transducing Wnt signals in vivo.  相似文献   

7.
8.
EGF-CFC genes encode extracellular proteins that play key roles in intercellular signaling pathways during vertebrate embryogenesis. Mutations in zebrafish and mouse EGF-CFC genes lead to defects in germ-layer formation, anterior-posterior axis orientation and left-right axis specification. In addition, members of the EGF-CFC family have been implicated in carcinogenesis. Although formerly regarded as signaling molecules that are distant relatives of epidermal growth factor (EGF), recent findings indicate that EGF-CFC proteins act as essential cofactors for Nodal, a member of the transforming growth factor beta (TGF-beta) family. Here, we review molecular genetic evidence from mouse and zebrafish on biological and biochemical roles of the EGF-CFC family, and discuss differing models for EGF-CFC protein function.  相似文献   

9.
Various models of normal and abnormal developmental systems were addressed to get an insight into molecular parameters of cell differentiation at the level of protein gene products. Electrophoretic analysis of heterogeneous protein mixtures permitted qualitative analysis of developing systems, particularly during organogenesis in mammals, as well as of neoplastic growth in the animal and plant kingdoms. From our earlier findings indicating that the definite protein patterns characteristic of adult organs are acquired long after the adult morphological and histological characteristics of these tissues have developed, it has been repeatedly proven that quantitative changes in whole proteins is not a dependable indicator of cell differentiation.  相似文献   

10.
The Wnt gene family encodes secreted signaling molecules that control cell fate specification, proliferation, polarity, and movements during animal development. We investigate here the evolutionary history of this large multigenic family. Wnt genes have been almost exclusively isolated from two of the three main subdivisions of bilaterian animals, the deuterostomes (which include chordates and echinoderms) and the ecdysozoans (e.g., arthropods and nematodes). However, orthology relationships between deuterostome and ecdysozoan Wnt genes, and, more generally, the phylogeny of the Wnt family, are not yet clear. We report here the isolation of several Wnt genes from two species, the annelid Platynereis dumerilii and the mollusc Patella vulgata, which both belong to the third large bilaterian clade, the lophotrochozoans (which constitute, together with ecdysozoans, the protostomes). Multiple phylogenetic analyses of these sequences with a large set of other Wnt gene sequences, in particular, the complete set of Wnt genes of human, nematode, and fly, allow us to subdivide the Wnt family into 12 subfamilies. At least nine of them were already present in the last common ancestor of all bilaterian animals, and this further highlights the genetic complexity of this ancestor. The orthology relationships we present here open new perspectives for future developmental comparisons.  相似文献   

11.
Pituitary tumor transforming gene (PTTG) is an oncogene which is found to be highly expressed in proliferating cells and in most of the tumors analyzed to date. Overexpression of PTTG induces cellular transformation and promotes tumor development in nude mice. PTTG is regulated by various growth factors including insulin and IGF-1. PTTG is a multifunctional and multidomain protein. Some of the functions of PTTG include inhibition of separation of sister chromatids, expression and secretion of angiogenic and metastatic factors. In this review we focus on expression of PTTG in normal and tumor tissues, define its biological function, its role in tumorigenesis, and its interaction with other proteins that may play important role in mediating tumorigenic function of PTTG.  相似文献   

12.
The mouse Wnt family comprises at least 10 members sharing substantial amino acid identity with the secreted glycoprotein Wnt-1/int-1. Two of these, Wnt-1 and Wnt-3, are implicated in mouse mammary tumor virus-associated adenocarcinomas, although neither member is normally expressed in the mammary gland. These results suggest the presence of active cellular pathways which mediate the action of Wnt-1 and Wnt-3 signals. An understanding of the normal role of these signalling pathways is clearly necessary to comprehend the involvement of Wnt-1 and Wnt-3 in mammary tumorigenesis. We demonstrate here that five Wnt family members are expressed and differentially regulated in the normal mouse mammary gland. In addition, some of these genes are also expressed in both Wnt-1-responsive and nonresponsive mammary epithelial cell lines. We propose that Wnt-mediated signalling is involved in normal regulation of mammary development and that inappropriate expression of Wnt-1, Wnt-3, and possibly other family members can interfere with these signalling pathways.  相似文献   

13.
Wnt signaling mediated by β-catenin has been implicated in early endocardial cushion development, but its roles in later stages of heart valve maturation and homeostasis have not been identified. Multiple Wnt ligands and pathway genes are differentially expressed during heart valve development. At E12.5, Wnt2 is expressed in cushion mesenchyme, whereas Wnt4 and Wnt9b are predominant in overlying endothelial cells. At E17.5, both Wnt3a and Wnt7b are expressed in the remodeling atrioventricular (AV) and semilunar valves. In addition, the TOPGAL Wnt reporter transgene is active throughout the developing AV and semilunar valves at E16.5, with more localized expression in the stratified valve leaflets after birth. In chicken embryo aortic valves, genes characteristic of osteogenic cell lineages including periostin, osteonectin, and Id2 are expressed specifically in the collagen-rich fibrosa layer at E14. Treatment of E14 aortic valve interstitial cells (VICs) in culture with osteogenic media results in increased expression of multiple genes associated with bone formation. Treatment of VIC with Wnt3a leads to nuclear localization of β-catenin and induction of periostin and matrix gla protein but does not induce genes associated with later stages of osteogenesis. Together, these studies provide evidence for Wnt signaling as a regulator of endocardial cushion maturation as well as valve leaflet stratification, homeostasis, and pathogenesis.  相似文献   

14.
Over the past decade, many potential candidates for molecules involved in pattern formation in the vertebrate embryo have been identified. Manipulation of the expression of some of these factors has generated fascinating results that have allowed investigators to address their roles in embryogenesis. One such family consists of a group of putative cell signaling molecules related to the proto-oncogene Wnt-1. An accumulating body of evidence suggests that the Wnt-family plays a major role in several aspects of vertebrate development.  相似文献   

15.
The yin-yang of PR-domain family genes in tumorigenesis   总被引:11,自引:0,他引:11  
Cancer is essentially caused by alterations in normal cellular genes. Multiple gene changes involving at least two types of cancer genes, protooncogenes and tumor suppressor genes, are required for the clonal expansion of a malignant cell. This discussion focuses on the recently recognized role of a small but expanding family of PR-domain genes in tumorigenesis. The protein products of these genes are involved in human cancers in an unusual yin-yang fashion. Two products are normally produced from a PR-domain family member which differ by the presence or absence of the PR domain; the PR-plus product is disrupted or underexpressed whereas the PR-minus product is present or overexpressed in cancer cells. This imbalance in the amount of the two products, a result of either genetic or epigenetic events, appears to be an important cause of malignancy.  相似文献   

16.
17.
18.
19.
20.
The role of Bcl-2 family members in tumorigenesis   总被引:38,自引:0,他引:38  
The Bcl-2 family consists of about 20 homologues of important pro- and anti-apoptotic regulators of programmed cell death. The established mode of function of the individual members is to either preserve or disturb mitochondrial integrity, thereby inducing or preventing release of apoptogenic factors like Cytochrome c (Cyt c) from mitochondria. Recent findings also indicate further Bcl-2-controlled mitochondria-independent apoptosis pathways. Bcl-2 represents the founding member of the new and growing class of cell death inhibiting oncoproteins. In this review, we try to briefly summarize current models of Bcl-2 family function and to outline the work demonstrating the influence of deregulated Bcl-2 family member expression on tumorigenesis and cancer therapy. Since several Bcl-2 homologues, in addition to influencing apoptotic behaviour, also impinge on cell cycle progression, we discuss possible implications of this additional role for the expression of Bcl-2 family members in tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号