首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The effect of microsolvation on zwitterionic glycine, considering both (-NH3(+)) as proton donor and (-COO(-)) as proton acceptor at correlated ab initio (MP2) level and density functional methods (B3LYP, PW91, MPW1PW91 and PBE) using 6-311++G** basis set has been reported. DFT methods have been employed so as to compare the performance/quality of different gradient-corrected correlation functionals (PW91, PBE), hybrid functionals (B3LYP, MPW1PW91) and to predict the near quantitative structural and vibrational properties, at reduced computational cost. B3LYP method outperforms among the different DFT methods for the computed hydrogen bond distances and found closer to the value obtained by correlated MP2 level, whereas MPW1PW91 and PBE methods shows very similar values but approximately 0.03 A less, compared to B3LYP method. MP2 calculation and single point CCSD(T)//MP2 calculation have been considered to decompose the interaction energy, including corrections for basis set superposition error (BSSE). Moreover, charge distribution analysis has also been carried out to understand the long raised questions, how and why the two body energies have significant contribution to the total binding energy.  相似文献   

2.
The applicability of several popular density functionals in predicting the geometrical parameters and energetics of transition metal carbonyl complexes of iron, ruthenium and osmium has been studied. The methods tested include pure GGA functionals (BLYP, BP86, OPBE, HCTH, PBE, VSXC) and hybrid GGA functionals (B3PW91, B3LYP, PBE1PBE, MPW1K, B97-2, B1B95, PBE1KCIS). The effect of changing the metal basis set from Huzinaga’s all-electron basis to SDD scECP basis was also studied. The results show, that hybrid functionals are needed in order to describe the back-bonding ability of the carbonyl ligands as well as to deal with metal-metal bonds. The best general performance, when also the computational cost was considered, was obtained with hybrid functionals B3PW91 and PBE1PBE, which therefore provide an efficient tool for solving problems involving large or medium sized transition metal carbonyl compounds. Figure Optimized structure for one of the test molecules, the Ru3(CO)12 cluster, showing the staggered conformation of the carbonyl ligands  相似文献   

3.
Because of discrepancies in the available experimental data, an extensive theoretical investigation of the formation of the Vilsmeier-Haack (VH) complex has been carried out. The barriers to complex formation calculated using eight different density functional methods (BLYP, B2-PLYP, B3LYP, B3PW91, MPW1K, M06-2X, and PBE1PBE), MP2, and extrapolation techniques (CBS-QB3, G3B3) with several basis sets (6 − 31 + G**, 6 − 311++G**, 6 − 311 + (3df,2p), aug-cc-pVDZ, and aug-cc-pVTZ) were compared with experimental data. For the overall reaction, MP2/aug-cc-pVDZ and M06-2X/6−31 + G(d,p) perform best compared to the CBS techniques. The results help clarify some open mechanistic questions.  相似文献   

4.
We have evaluated the performance of 15 density functionals of diverse complexity on the geometry optimization and energetic evaluation of model reaction steps present in the proposed reaction mechanisms of Cu(I)-catalyzed indole synthesis and click chemistry of iodoalkynes and azides. The relative effect of the Cu+ ligand on the relative strength of Cu+-alkyne interactions, and the strong preference for a π-bonding mode is captured by all functionals. The best energetic correlations with MP2 are obtained with PBE0, M06-L, and PBE1PW91, which also provide good quality geometries. Furthermore, PBE0 and PBE1PW91 afford the best agreement with the high-level CCSD(T) computations of the deprotonation energies of Cu+-coordinated eneamines, where MP2 strongly disagrees with CCSD(T) and the examined DFT functionals. PBE0 also emerged as the most suitable functional for the study of the energetics and geometries of Cu+ hydrides, while at the same time correctly capturing the influence of the Cu+ ligands on the metal reactivity.  相似文献   

5.
Performance of 18 DFT functionals (B1B95, B3LYP, B3PW91, B97D, BHandHLYP, BMK, CAM-B3LYP, HSEh1PBE, M06-L, mPW1PW91, O3LYP, OLYP, OPBE, PBE1PBE, tHCTHhyb, TPSSh, wB97xD, VSXC) in combinations with six basis sets (cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, aug-cc-pVTZ, IGLO-II, and IGLO-III) and three methods for calculating magnetic shieldings (GIAO, CSGT, IGAIM) was tested for predicting 1H and 13C chemical shifts for 25 organic compounds, for altogether 86 H and 88 C atoms. Proton shifts varied between 1.03 ppm to 12.00 ppm and carbon shifts between 7.87 ppm to 209.28 ppm. It was found that the best method for calculating 13C shifts is PBE1PBE/aug-cc-pVDZ with CSGT or IGAIM approaches (mae?=?1.66 ppm), for 1H the best results were obtained with HSEh1PBE, mPW1PW91, PBE1PBE, CAM-B3LYP, and B3PW91 functionals with cc-pVTZ basis set and with CSGT or IGAIM approaches (mae?=?0.28 ppm). We found that often larger basis sets do not give better results for chemical shifts. The best basis sets for calculating 1H and 13C chemical shifts were cc-pVTZ and aug-cc-pVDZ, respectively. CSGT and IGAIM NMR approaches can perform really well and are in most cases better than popular GIAO approach.
Graphical Abstract Mean absolute errors for 1H and 13C chemical shifts and computational times of neutral toluene molecule with aug-cc-pVDZ basis set and CSGT approach
  相似文献   

6.
The equilibrium geometries and electron affinities of the R-SS/R-SS-(R=CH3, C2H5, n-C3H7, i-C3H7, n-C4H9, t-C4H9, n-C5H11) species have been studied using the higher level of the Gaussian-3(G3) theory and 21 carefully calibrated pure and hybrid density functionals (five generalized gradient approximation (GGA) methods, seven hybrid GGAs, three meta GGA methods, and six hybrid meta GGAs) in conjunction with diffuse function augmented double-ζ plus polarization (DZP++) basis sets. The geometries are fully optimized with each method and discussed. The reliable adiabatic electron affinity has been presented by means of the high level of G3 technique. With the DZP++ DFT method, three measures of neutral/anion energy differences reported in this work are the adiabatic electron affinity, the vertical electron affinity, and the vertical detachment energy. The adiabatic electron affinities, obtained at the BP86, M05-2X, B3LYP, M06, B98, M06-2X, mPW1PW91, HCTH, B97-1, M05, PBE1PBE, and VSXC methods, are in agreement with the G3 results. These methods perform better for EA prediction and are considered to be reliable.  相似文献   

7.
《Chirality》2017,29(10):634-647
Computing the optical rotation of organic molecules can be a real challenge, and various theoretical approaches have been developed in this regard. A benchmark study of optical rotation of various classes of compounds was carried out by Density Functional Theory (DFT) methods. The aim of the present research study was to find out the best‐suited functional and basis set to estimate the optical rotations of selected compounds with respect to experimental literature values. Six DFT functional LSDA, BVP86, CAM‐B3LYP, B3PW91, and PBE were applied on 22 different compounds. Furthermore, six different basis sets, i.e., 3‐21G, 6‐31G, aug‐cc‐pVDZ, aug‐cc‐pVTZ, DGDZVP, and DGDZVP2 were also applied with the best‐suited functional B3LYP. After rigorous effort, it can be safely said that the best combination of functional and basis set is B3LYP/aug‐cc‐pVTZ for the estimation of optical rotation for selected compounds.  相似文献   

8.
The electronic structures and spectroscopic properties of two complexes [M(pic)3] (M = Ir, Rh) containing picolinate as bidentate ligands have been calculated by means density functional theory (DFT) and time-dependent DFT/TD-DFT using three hybrid functionals B3LYP, PBE0 and mPW1PW91. The PBE0 and mPW1PW91 functionals, which have the same HF exchange fraction (25%), give similar results and do not differ drastically from B3LYP results. Calculated geometric parameters of the complexes are in good agreement with the available experimental data. The UV absorptions observed in acetonitrile were assigned on the basis of singlet state transitions. The most intense band observed in the UV-C region corresponds to ligand-to-ligand charge transfer states (LLCT) in both complexes. The theoretical spectrum of the rhodium complex is characterized by a large degree of mixing between metal-to-ligand-charge-transfer (MLCT), LLCT and metal centered (MC) states in the UV-A region. The presence of low-lying excited states with MC character affects the absorption spectrum under spin-orbit coupling (SOC) effects and play important roles in the photochemical properties.
Graphical abstract Frontier molecular orbital diagram of mer-M(pic)3 (M=Ir, Rh).
  相似文献   

9.
Diazanaphthalenes (DAPs) are a broad class of N-heteroaromatic compounds with several technological and biological applications. Some of these applications are attributed to the ability of DAP molecules to form associated dimers through non-covalent interactions. A study of the types and strength of the interactions involved is crucial for understanding the preferred geometries and energetics of the dimers. In this study, the dimers of five DAPs are investigated by means of Møller–Plesset second order perturbation theory, hybrid meta-GGA [density functional theory methods (DFT): DFT/MPWB1K, DFT/M05-2X and DFT/M06-2X] and DFT dispersion-corrected (DFT-D/ωB97XD) methods to elucidate their dimers' preferred geometries, relative energies and nature of the interactions between monomer units. The results indicate that the monomer units of the dimers are held by either intermolecular hydrogen bonds or π…π stacking interactions, and that the preferred dimers are those in which the monomer units interact through π…π stacking interactions. A comparison across structures suggests that the position of the N atom in the ring has significant role in determining the relative energy and binding strength of the dimers. A comparison among the different methods utilised for the study indicates that DFT/M06-2X method provides binding energies that are close to those of DFT-CCSD(T) correction scheme and could therefore be considered as the best method for describing the binding properties of DAP dimers.  相似文献   

10.
Two brominated sesquiterpenes, majapolene B (1) and acetylmajapolene B (2), isolated from the red algal genus Laurencia were investigated using vibrational circular dichroism (VCD). The ab initio theoretical VCD and IR calculations of 1 and 2 were performed by density functional theory (DFT) using the B3PW91/6-31G(d,p) basis set. The experimental VCD spectra and corresponding population-weighted theoretical VCD spectra were found to be in excellent agreement in CCl(4) solution in the 1800-850 cm(-1) region, which allowed unambiguous determination of the absolute configurations of (-)-1 and (-)-2 as 7S,10S and 7S,10S, respectively.  相似文献   

11.
Exploring non-covalent interactions, such as C-H···π stacking and classical hydrogen bonding (H-bonding), between carbohydrates and carbohydrate-binding modules (CBMs) is an important task in glycobiology. The present study focuses on intermolecular interactions, such as C-H?π (sugar-aromatic stacking) and H-bonds, between methyl β-d-glucopyranoside and l-tyrosine—a proxy model system for a cellulose-CBM complex. This work has made use of various types of quantum mechanics (QM) and molecular mechanics (MM) methods to determine which is the most accurate and computationally efficient. The calculated interaction potential energies ranged between −24 and −38 kJ/mol. The larger interaction energy is due to H-bonding between the phenyl hydroxyl of tyrosine and the O4 of the sugar. Density functional theory (DFT) methods, such as BHandHLYP and B3LYP, exaggerate the H-bond. Although one of the MM methods (viz. MM+) considered in this study does maintain the C-H?π stacking configuration, it underestimates the interaction energy due to the loss of the H-bond. When the O-H bond vector is in the vicinity of O4 (O-H?O4 ≈ 2 Å, e.g., in the case of MP2/6-31G(d)), the torsional energy drops to a minimum. For this configuration, natural bond orbital (NBO) analysis also supports the presence of this H-bond which arises due to orbital interaction between one lone pair of the sugar O4 and the σ∗(O-H) orbital of the phenyl group of tyrosine. The stabilization energy due to orbital delocalization of the H-bonded system is ∼13 kJ/mol. This H-bond interaction plays an important role in controlling the CH/π interaction geometry. Therefore, the C-H?π dispersive interaction is the secondary force, which supports the stabilization of the complex. The meta-hybrid DFT method, M05-2X, with the 6-311++G(d,p) basis set agrees well with the MP2 results and is less computationally expensive. However, the M05-2X method is strongly basis set dependent in describing this CH/π interaction. Computed IR spectra with the MP2/6-31G(d) method show blue shifts for C1-H, C3-H, and C5-H stretching frequencies due to the C-H?π interaction. However, the M05-2X/6-311++G(d,p) method shows a small red shift for the C1-H stretching region and blue shifts for the C2-H and C3-H stretches. For the aromatic tyrosine Cδ1-Cε1 and Cδ2-Cε2 bonds in the complex, the calculated IR spectra show red shifts of 12 cm−1 (MP2/6-31G(d)) and 5 cm−1 (M05-2X/6-311++G(d,p)). This study also reports the upfield shifts of computed 1H NMR chemical shifts due to the C-H?π interaction.  相似文献   

12.
Accurate quantum-chemical calculations based on the second-order M?ller-Plesset perturbation method (MP2) and density functional theory (DFT) were performed for the first time to investigate the electronic structures of trans-resveratrol and trans-piceatannol, as well as to study the stacking interaction between trans-resveratrol molecules. Ab initio MP2 calculations performed with using standard split-valence Pople basis sets led us to conclude that these compounds have structures that deviate strongly from planarity, whereas the DFT computations for the same basis sets revealed that the equilibrium geometries of these bioactive polyphenols are planar. Furthermore, the results obtained at the MP2(full)/aug-cc-pVTZ and B3LYP/aug-cc-pVTZ levels indicated that the geometries of trans-resveratrol and trans-piceatannol are practically planar at their absolute energy minima. The relative energies of the equilibrium geometries of trans-resveratrol on its potential energy surface were computed at the MP2(full)/aug-cc-pVTZ level. According to the results obtained, a T-shaped (edge-to-phase) conformer of trans-resveratrol dimer is the most stable in vacuum. This T-shaped conformer is mainly stabilized by strong hydrogen bonding and weak C-H...π interactions. Stacked structures with parallel-displaced trans-stilbene skeletons were also found to be energetically stable. The vertical separation and twist angle dependencies of the stacking energy were investigated at the MP2(full)/aug-cc-pVTZ, B3LYP/aug-cc-pVTZ, and HF/aug-cc-pVTZ levels. The standard B3LYP functional and the Hartree-Fock method neglect long-range attractive dispersion interactions. The MP2 computations revealed that the London dispersion energy cannot be neglected at long or short distances. The stacked model considered here may be useful for predicting the quantum nature of the interactions in π-stacked systems of other naturally occurring stilbenoids, and can help to enhance our understanding of the antioxidant and anticancer activities of trans-resveratrol.  相似文献   

13.
The harmonic and anharmonic frequencies of fundamental vibrations in formaldehyde and water were successfully estimated using the B3LYP Kohn-Sham limit. The results obtained with polarization- and correlation-consistent basis sets were fitted with a two-parameter formula. Anharmonic corrections were obtained by a second order perturbation treatment (PT2). We compared the performance of the PT2 scheme on the two title molecules using SCF, MP2 and DFT (BLYP, B3LYP, PBE and B3PW91 functionals) methods combined with polarization consistent pc-n (n = 0, 1, 2, 3, 4) basis sets, Dunning’s basis sets (aug)-cc-pVXZ where X = D, T, Q, 5, 6 and Pople’s basis sets up to 6-311++G(3df,2pd). The influence of SCF convergence level and density grid size on the root mean square of harmonic and anharmonic frequency deviations from experimental values was tested. The wavenumber of formaldehyde CH2 anharmonic asymmetric stretching mode is very sensitive to grid size for large basis sets; this effect is not observed for harmonic modes. BLYP-calculated anharmonic frequencies consistently underestimate observed wavenumbers. On the basis of formaldehyde anharmonic frequencies, we show that increasing the Pople basis set size does not always lead to improved agreement between anharmonic frequencies and experimental values.  相似文献   

14.
We describe an improved force field parameter set for the generalized AMBER force field (GAFF) for urea. Quantum chemical computations were used to obtain geometrical and energetic parameters of urea dimers and larger oligomers using AM1 semiempirical MO theory, density functional theory at the B3LYP/6-31G(d,p) level, MP2 and CCSD ab initio calculations with the 6-311++G(d,p), aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis sets, and with the CBS-QB3 and CBS-APNO complete basis set methods. Seven different urea dimer structures were optimized at the MP2/aug-cc-pVDZ level to obtain accurate interaction energies. Atomic partial charges were calculated at the MP2/aug-cc-pVDZ level with the restrained electrostatic potential (RESP) fitting approach. The interaction energies computed with these new RESP charges in the force field are consistent with those obtained from CCSD and MP2 calculations. The linear dimer structure calculated using the force field with modified geometrical parameters and the new RESP charge set agrees well with available experimental data.  相似文献   

15.
We report the results of a theoretical ab initio study of methylation in Watson-Crick A:T base pairs. Equilibrium geometries were obtained without symmetry restrictions by the gradient procedure at DFT level of theory with the standard 6-31G(d) basis set. Each local minima was verified by energy second derivative calculations. Single-point calculations for the DFT geometries have been performed at the MP2/6-31G(d,p), MP2/6-31++G(d,p), and MP2/6-311++G(2d,2p) levels of theory. The geometrical parameters, relative stabilities and counterpoise corrected interaction energies are reported. In addition, using a variation-perturbation energy decomposition scheme, we have found the important contributions to the total interaction energy.  相似文献   

16.
We examined the conformational preferences of the 2-O-sulfated-3,6-α-D-anhydrogalactose (compound I) and two 1,3 linked disaccharides constituting-κ or ι-carrageenans using density functional and ab initio methods in gas phase and aqueous solution. Systematic modifications of two torsion angles leading to 324 and 144 starting geometries for the compound I and each disaccharide were used to generate adiabatic maps using B3LYP/6-31G(d). The lower energy conformers were then fully optimized using B3LYP, B3PW91 and MP2 with several basis sets. Overall, we discuss the impact of full relaxation on the energy and structure of the dominant conformations, present the performance comparison with previous molecular mechanics calculations if available, and determine whether our results are impacted, when polarization and diffuse functions are added to the 6-31G(d) basis set, or when the MP2 level of theory is used.  相似文献   

17.
The present work assessed several exchange-correlation functionals (including GGA, meta-GGA and hybrid functionals), in combination with a variety of basis sets and effective core potentials (ECP) for their ability to predict the ground spin state of Mn(III) meso-tetraphenylporphyrin chloride complex, labeled Mn(III)TPPCl, for which experimental data support the quintet high spin state. Geometry optimization of Mn(III)TPPCl was performed for three possible spin states (singlet state, LS; triplet state, IS; and quintet state, HS) at the TPSSh level using the LANL2DZ ECP for Mn and the 6-311G(d) basis set for C, N, Cl and H. Afterwards, single-point energy calculations were conducted by applying 18 exchange-correlation functionals (BLYP, B3LYP, PW91, BPW91, BP86, OLYP, OPBE, OPW91, O3LYP, PBE0, PBEh1PBE, HSEH1PBE, TPSS, TPSSh, M06 L, M06, M062X and M06HF). The influence of the basis set for the metal center was assessed using a smaller group of functionals and varying between the Pople basis set 6-31G(d), its newer formulation m6-31G(d) and the larger Def2-QZVP basis set. All functionals in combination with Pople basis sets predict the quintet state as the ground spin state. In addition, the BLYP, BP86, BPW91, PW91, PBEh1PBE, TPSS and TPSSh functionals predicted the IS lying at most ~60 kJ mol?1 above the HS, which agrees with the reference data. Results including Def2-QZVP basis set were inconsistent, since only BLYP and B3LYP predict HS as the ground spin state. The recommended methodology for the treatment of such systems seems to be exchange-correlations functionals with few or none Hartree-Fock exchange and modest size basis sets.
Graphical Abstract MnTPPCl molecule and the energy ordering of its spin states assessed by 18 functionals
  相似文献   

18.
The Pt(II) and Pt(IV) complexes with histamine were calculated by using more than 20 DFT functionals and various basis sets. Based on the comparison between the X-ray and theoretical geometrical parameters of the Pt(II)(Hist)Cl2 complex the MPW1PW91, OPW91 and SVWN5 functionals combined with the 6-311G∗∗ basis set for non-metallic and SDD (ECP) basis set for platinum were found to yield the most satisfactory agreement. The structure of the Pt(II) complex with iodohistamine important for pharmacy, so far isolated only in minute amounts, was predicted by using the MPW1PW91 functional. Comparison of the theoretical NMR chemical shifts of the Pt(II)(Hist)Cl2 complex with those found experimentally have shown that the theoretical 1H and 13C NMR chemical shifts are in plausible agreement with the experimental ones, whereas the theoretical 195Pt chemical shifts fit the experimental values only when the relativistic approach is applied within the ZORA formalism. We confirmed suitability of the three selected functionals for reproduction of the experimental structure of Pt complexes at fourth oxidation state by using the cis- and ions as models. Finally, with the selected theoretical methods, the structures and stabilities of four Pt(IV)(Hist)2Cl2 complex isomers were predicted.  相似文献   

19.
Accurate potential energy surfaces for the OH + CH2F2 --> H2O + CHF2 reaction are constructed using hybrid and hybrid meta density functional theory methods (mPW1PW91, B1B95, and mPW1B95) with specific reaction parameters in conjunction with the 6-31 + G(d,p) basis set. The accuracy of a surface is examined by comparing the calculated rate constants with the experimental ones. The rate constants are calculated over the temperature range 200-1,500 K using variational transition state theory with multidimensional tunneling contributions. The hybrid density functional theory methods with specific-reaction-parameter Hartree-Fock exchange contributions (39.2-41.0% for mPW1PW91, 41.0-42.2% for B1B95, and 44.9-46.3% for mPW1B95, respectively) provide accurate rate constants over an extended temperature range. The classical barrier height for the hydrogen abstraction reaction on these potential energy surfaces is determined to be 5.0-5.3 kcal mol(-1), and the best estimate value is 5.14 kcal mol(-1).  相似文献   

20.
The density functional theory (DFT) was employed to calculate the energetic properties of several aminopolynitroazoles. The calculations were performed to study the effect of amino and nitro substituents on the heats of formation, densities, detonation performances, thermal stabilities, and sensitivity characteristics of azoles. DFT-B3LYP, DFT-B3PW91, and MP2 methods utilizing the basis sets 6-31 G* and 6-311 G (2df, 3p) were adopted to predict HOFs via designed isodesmic reactions. All of the designed aminopolynitroazoles had heats of formation of >220 kJ mol(-1). The crystal densities of the aminopolynitroazoles were predicted with the cvff force field. All of the energetic azoles had densities of >1.83 g/cm(3). The detonation velocities and pressures were evaluated using the Kamlet-Jacobs equations, utilizing the predicted densities and heats of formation. It was found that aminopolynitroazoles have a detonation velocity of about 9.1 km/s and detonation pressure of 36 GPa. The bond dissociation energies for the C-NO(2) and N-NO(2) bonds were analyzed to investigate the stabilities of the designed molecules. The charge on the nitro group was used to assess impact sensitivity in the present study. The results obtained imply that the designed molecules are stable and are expected to be candidates for high-energy materials (HEMs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号