首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An NAD+-dependent alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1 was purified to homogeneity with an overall yield of about 20% and characterized enzymologically. The enzyme has an apparent molecular weight of 160k and consists of four identical subunits with a molecular weight of 40k. The pI value of the enzyme and its optimum pH for the oxidation reaction were determined to be 6.7 and 7.0, respectively. The enzyme contains 2 gram-atoms Zn per subunit. The enzyme exclusively requires NAD+ as a coenzyme and shows the pro-R stereospecificity for hydrogen transfer at the C4 position of the nicotinamide moiety of NAD+. F. frigidimaris KUC-1 alcohol dehydrogenase shows as high thermal stability as the enzymes from thermophilic microorganisms. The enzyme is active at 0 to over 85°C and the most active at 70°C. The half-life time and k cat value at 60°C were calculated to be 50 min and 27,400 min−1, respectively. The enzyme also shows high catalytic efficiency at low temperatures (0–20°C) (k cat/K m at 10°C; 12,600 mM−1 min−1) similar to other cold-active enzymes from psychrophiles. The alcohol dehydrogenase gene is composed of 1,035 bp and codes 344 amino acid residues with an estimated molecular weight of 36,823. The sequence identities were found with the amino acid sequences of alcohol dehydrogenases from Moraxella sp. TAE123 (67%), Pseudomonas aeruginosa (65%) and Geobacillus stearothermophilus LLD-R (56%). This is the first example of a cold-active and thermostable alcohol dehydrogenase.  相似文献   

3.
Two extracellular tannin acyl hydrolases (TAH I and TAH II) produced by an Antarctic filamentous fungus Verticillium sp. P9 were purified to homogeneity (7.9- and 10.5-fold with a yield of 1.6 and 0.9%, respectively) and characterized. TAH I and TAH II are multimeric (each consisting of approximately 40 and 46 kDa sub-units) glycoproteins containing 11 and 26% carbohydrates, respectively, and their molecular mass is approximately 155 kDa. TAH I and TAH II are optimally active at pH of 5.5 and 25 and 20°C, respectively. Both the enzymes were activated by Mg2+and Br ions and 0.5–2.0 M urea and inhibited by other metal ions (Zn2+, Cu2+, K+, Cd2+, Ag+, Fe3+, Mn2+, Co2+, Hg2+, Pb2+ and Sn2+), anions, Tween 20, Tween 60, Tween 80, Triton X-100, sodium dodecyl sulphate, β-mercaptoethanol, α-glutathione and 4-chloromercuribenzoate. Both tannases more efficiently hydrolyzed tannic acid than methyl gallate. E a of these reactions and temperature dependence (at 0–30°C) of k cat, k cat/K m, ΔG*, ΔH* and ΔS* for both the enzymes and substrates were determined. The k cat and k cat/K m values (for both the substrates) were considerably higher for the combined preparation of TAH I and TAH II.  相似文献   

4.
Immobilization of Bacillus licheniformis l-arabinose isomerase (BLAI) on aminopropyl glass modified with glutaraldehyde (4 mg protein g support−1) was found to enhance the enzyme activity. The immobilization yield of BLAI was proportional to the quantity of amino groups on the surface of support. Reducing particle size increased the adsorption capacity (q m) and affinity (k a). The pH and temperature for immobilization were optimized to be pH 7.1 and 33°C using response surface methodology (RSM). The immobilized enzyme was characterized and compared to the free enzyme. There is no change in optimal pH and temperature before and after immobilization. However, the immobilized BLAI enzyme achieved 145% of the activity of the free enzyme. Correspondingly, the catalytic efficiency (k cat/K m) was improved 1.47-fold after immobilization compared to the free enzyme. The thermal stability was improved 138-fold (t 1/2 increased from 2 to 275 h) at 50°C following immobilization.  相似文献   

5.
Extracellular secretion of lignin peroxidase from Pycnoporus sanguineus MTCC-137 in the liquid culture growth medium amended with lignin containing natural sources has been shown. The maximum secretion of lignin peroxidase has been found in the presence of saw dust. The enzyme has been purified to homogeneity from the culture filtrate of the fungus using ultrafiltration and anion exchange chromatography on DEAE-cellulose. The purified lignin peroxidase gave a single protein band in sodium dodecylsulphate polyacrylamide gel electrophoresis corresponding to the molecular mass 40 kDa. The K m, k cat and k cat/K m values of the enzyme using veratryl alcohol and H2O2 as the substrate were 61 M, 2.13 s−1, 3.5 × 104 M−1s−1 and 71 M, 2.13 s−1, 3.0 × 104 M−1 s−1 respectively at the optimum pH of 2.5. The temperature optimum of the enzyme was 25°C.  相似文献   

6.
An extracellular serine alkaline protease of Bacillus clausii GMBAE 42 was produced in protein-rich medium in shake-flask cultures for 3 days at pH 10.5 and 37°C. Highest alkaline protease activity was observed in the late stationary phase of cell cultivation. The enzyme was purified 16-fold from culture filtrate by DEAE-cellulose chromatography followed by (NH4)2SO4 precipitation, with a yield of 58%. SDS-PAGE analysis revealed the molecular weight of the enzyme to be 26.50 kDa. The optimum temperature for enzyme activity was 60°C; however, it is shifted to 70°C after addition of 5 mM Ca2+ ions. The enzyme was stable between 30 and 40°C for 2 h at pH 10.5; only 14% activity loss was observed at 50°C. The optimal pH of the enzyme was 11.3. The enzyme was also stable in the pH 9.0–12.2 range for 24 h at 30°C; however, activity losses of 38% and 76% were observed at pH values of 12.7 and 13.0, respectively. The activation energy of Hammarsten casein hydrolysis by the purified enzyme was 10.59 kcal mol−1 (44.30 kJ mol−1). The enzyme was stable in the presence of the 1% (w/v) Tween-20, Tween-40,Tween-60, Tween-80, and 0.2% (w/v) SDS for 1 h at 30°C and pH 10.5. Only 10% activity loss was observed with 1% sodium perborate under the same conditions. The enzyme was not inhibited by iodoacetate, ethylacetimidate, phenylglyoxal, iodoacetimidate, n-ethylmaleimidate, n-bromosuccinimide, diethylpyrocarbonate or n-ethyl-5-phenyl-iso-xazolium-3′-sulfonate. Its complete inhibition by phenylmethanesulfonylfluoride and relatively high k cat value for N-Suc-Ala-Ala-Pro-Phe-pNA hydrolysis indicates that the enzyme is a chymotrypsin-like serine protease. K m and k cat values were estimated at 0.655 μM N-Suc-Ala-Ala-Pro-Phe-pNA and 4.21×103 min−1, respectively.  相似文献   

7.
D-Lactate dehydrogenase (D-LDH) from Pediococcus pentosaceus ATCC 25745 was found to produce D-3-phenyllactic acid from phenylpyruvate. The optimum pH and temperature for enzyme activity were pH 5.5 and 45 °C. The Michaelis-Menten constant (K m), turnover number (k cat), and catalytic efficiency (k cat?K m) values for the substrate phenylpyruvate were estimated to be 1.73 mmol/L, 173 s?1, and 100 (mmol/L)?1 s?1 respectively.  相似文献   

8.
The discovery of stable and active polyphosphate glucokinase (PPGK, EC 2.7.1.63) would be vital to cascade enzyme biocatalysis that does not require a costly ATP input. An open reading frame Tfu_1811 from Thermobifida fusca YX encoding a putative PPGK was cloned and the recombinant protein fused with a family 3 cellulose-binding module (CBM-PPGK) was overexpressed in Escherichia coli. Mg2+ was an indispensible activator. This enzyme exhibited the highest activity in the presence of 4 mM Mg2+ at 55°C and pH 9.0. Under its suboptimal conditions (pH 7.5), the k cat and K m values of CBM-PPGK on glucose were 96.9 and 39.7 s−1 as well as 0.77 and 0.45 mM at 37°C and 50°C respectively. The thermoinactivation of CBM-PPGK was independent of its mass concentration. Through one-step enzyme purification and immobilization on a high-capacity regenerated amorphous cellulose, immobilized CBM-PPGK had an approximately eightfold half lifetime enhancement (i.e., t 1/2 = 120 min) as compared to free enzyme at 50°C. To our limited knowledge, this enzyme was the first thermostable PPGK reported. Free PPGK and immobilized CBM-PPGK had total turnover number values of 126,000 and 961,000 mol product per mol enzyme, respectively, suggesting their great potential in glucose-6-phosphate generation based on low-cost polyphosphate.  相似文献   

9.
In order to increase the thermal stability and the catalytic properties of pyranose oxidase (P2Ox) from Trametes multicolor toward its poor substrate D-galactose and the alternative electron acceptor 1,4-benzoquinone (1,4-BQ), we designed the triple-mutant T169G/E542K/V546C. Whereas the wild-type enzyme clearly favors D-glucose as its substrate over D-galactose [substrate selectivity (kcat/KM)Glc/(kcat/KM)Gal = 172], the variant oxidizes both sugars equally well [(kcat/KM)Glc/(kcat/KM)Gal = 0.69], which is of interest for food biotechnology. Furthermore, the variant showed lower KM values and approximately ten-fold higher kcat values for 1,4-BQ when D-galactose was used as the saturating sugar substrate, which makes this enzyme particularly attractive for use in biofuel cells and enzyme-based biosensors. In addition to the altered substrate specificity and reactivity, this mutant also shows significantly improved thermal stability. The half life time at 60°C was approximately 10 h, compared to 7.6 min for the wild-type enzyme. We performed successfully small-scale bioreactor pilot conversion experiments of D -glucose/D -galactose mixtures at both 30 and 50°C, showing the usefulness of this P2Ox variant in biocatalysis as well as the enhanced thermal stability of the enzyme. Moreover, we determined the crystal structure of the mutant in its unligated form at 1.55 Å resolution. Modeling D-galactose in position for oxidation at C2 into the mutant active site shows that substituting Thr for Gly at position 169 favorably accommodates the axial C4 hydroxyl group that would otherwise clash with Thr169 in the wild-type.  相似文献   

10.
11.
The α-carbonic anhydrase gene from Helicobacter pylori strain 26695 has been cloned and sequenced. The full-length protein appears to be toxic to Escherichia coli, so we prepared a modified form of the gene lacking a part that presumably encodes a cleavable signal peptide. This truncated gene could be expressed in E. coli yielding an active enzyme comprising 229 amino acid residues. The amino acid sequence shows 36% identity with that of the enzyme from Neisseria gonorrhoeae and 28% with that of human carbonic anhydrase II. The H. pylori enzyme was purified by sulfonamide affinity chromatography and its circular dichroism spectrum and denaturation profile in guanidine hydrochloride have been measured. Kinetic parameters for CO2 hydration catalyzed by the H. pylori enzyme at pH 8.9 and 25°C are kcat=2.4×105 s−1, KM=17 mM and kcat/KM=1.4×107 M−1 s−1. The pH dependence of kcat/KM fits with a simple titration curve with pKa=7.5. Thiocyanate yields an uncompetitive inhibition pattern at pH 9 indicating that the maximal rate of CO2 hydration is limited by proton transfer between a zinc-bound water molecule and the reaction medium in analogy to other forms of the enzyme. The 4-nitrophenyl acetate hydrolase activity of the H. pylori enzyme is quite low with an apparent catalytic second-order rate constant, kenz, of 24 M−1 s−1 at pH 8.8 and 25°C. However, with 2-nitrophenyl acetate as substrate a kenz value of 665 M−1 s−1 was obtained under similar conditions.  相似文献   

12.
Zeng J  Zhan J 《Biotechnology letters》2011,33(8):1607-1613
Tryptophan (Trp) halogenases are found in various bacteria and play an important role in natural product biosynthesis. Analysis of the genome of Streptomyces toxytricini NRRL 15443 revealed an ORF, stth, encoding a putative Trp halogenase within a non-ribosomal peptide synthetase gene cluster. This gene was cloned into pET28a and functionally overexpressed in Escherichia coli. The enzyme halogenated both l- and d-Trp to yield the corresponding 6-chlorinated derivatives. The optimum activity was at 40°C and pH 6 giving k cat /K M value of STTH of 72,000 min−1 M−1. The enzyme also used bromide to yield 6-bromo-Trp.  相似文献   

13.
Glucose-6-phosphate dehydrogenases (G6PDs) are important enzymes widely used in bioassay and biocatalysis. In this study, we reported the cloning, expression, and enzymatic characterization of G6PDs from the thermophilic bacterium Thermoanaerobacter tengcongensis MB4 (TtG6PD). SDS-PAGE showed that purified recombinant enzyme had an apparent subunit molecular weight of 60 kDa. Kinetics assay indicated that TtG6PD preferred NADP+ (k cat/K m = 2618 mM?1 s?1, k cat = 249 s?1, K m = 0.10 ± 0.01 mM) as cofactor, although NAD+ (k cat/K m = 138 mM?1 s?1, k cat = 604 s?1, K m = 4.37 ± 0.56 mM) could also be accepted. The K m values of glucose-6-phosphate were 0.27 ± 0.07 mM and 5.08 ± 0.68 mM with NADP+ and NAD+ as cofactors, respectively. The enzyme displayed its optimum activity at pH 6.8–9.0 for NADP+ and at pH 7.0–8.6 for NAD+ while the optimal temperature was 80 °C for NADP+ and 70 °C for NAD+. This was the first observation that the NADP+-linked optimal temperature of a dual coenzyme-specific G6PD was higher than the NAD+-linked and growth (75 °C) optimal temperature, which suggested G6PD might contribute to the thermal resistance of a bacterium. The potential of TtG6PD to measure the activity of another thermophilic enzyme was demonstrated by the coupled assays for a thermophilic glucokinase.  相似文献   

14.
Nicotinamidase is involved in the maintenance of NAD+ homeostasis and in the NAD+ salvage pathway of most prokaryotes, and it is considered as a possible drug target. The gene (ASAC_0847) encoding a hypothetical nicotinamidase has been found in the genome of the thermophilic archaeon Acidilobus saccharovorans. The product of this gene, NA_As0847, has been expressed in Escherichia coli, isolated, and characterized as a Fe2+-containing nicotinamidase (k cat/K m = 427 mM?1·sec?1)/pyrazinamidase (k cat/K m = 331 mM?1·sec?1). NA_As0847 is a homodimer with molecular mass 46.4 kDa. The enzyme has high thermostability (T1/2 (60°C) = 180 min, T1/2 (80°C) = 35 min) and thermophilicity (Topt = 90°C, Ea = 30.2 ± 1.0 kJ/mol) and broad pH interval of activity, with the optimum at pH 7.5. Special features of NA_As084 are the presence of Fe2+ instead of Zn2+ in the active site of the enzyme and inhibition of the enzyme activity by Zn2+ at micromolar concentrations. Analysis of the amino acid sequence revealed a new motif of the metal-binding site (DXHXXXDXXEXXXWXXH) for homological archaeal nicotinamidases.  相似文献   

15.
In this study, we enhanced the catalytic efficiency and thermostability of keratinase KerSMD by replacing its N/C‐terminal domains with those from a homologous protease, KerSMF, to degrade feather waste. Replacement of the N‐terminal domain generated a mutant protein with more than twofold increased catalytic activity towards casein. Replacement of the C‐terminal domain obviously improved keratinolytic activity and increased the kcat/Km value on a synthetic peptide, succinyl‐Ala‐Ala‐Pro‐Phe‐p‐nitroanilide, by 54.5%. Replacement of both the N‐ and C‐terminal domains generated a more stable mutant protein, with a Tm value of 64.60 ± 0.65°C and a half‐life of 244.6 ± 2 min at 60°C, while deletion of the C‐terminal domain from KerSMD or KerSMF resulted in mutant proteins exhibiting high activity under mesophilic conditions. These findings indicate that the pre‐peptidase C‐terminal domain and N‐propeptide are not only important for substrate specificity, correct folding and thermostability but also support the ability of the enzyme to convert feather waste into feed additives.  相似文献   

16.
A psychrotrophic bacterium, strain Mct-9, which produced an N-acetylglucosamine-6-phosphate deacetylase, was isolated from a deep-seawater sample in the Mariana Trough. The Mct-9 strain was identified as Alteromonas sp. The native enzyme had a molecular mass of 164,000 Da, and was predicted to be composed of four identical subunits with molecular masses of 41,000 Da. The purified enzyme hydrolyzed N-acetylglucosamine (GlcNAc), GlcNAc-6-phosphate, and GlcNAc-6-sulfate. Considering the low K m and high k cat /K m for GlcNAc-6-phosphate, it probably acts as a GlcNAc-6-phosphate deacetylase in vivo. The enzyme was functional in the temperature range of 5° to 70°C and displayed optimal activity at 55°C. The optimal temperature was higher than that of the deacetylase from the mesophilic bacterium Vibrio cholerae non-O1. The characteristics of the GlcNAc-6-phosphate deacetylase from Alteromonas sp. are unique among psychrotrophs and psychrophiles, whose intracellular enzymes are mostly thermolabile. Received May 6, 1999; accepted August 16, 1999.  相似文献   

17.
An alkaline serine-proteinase from Bacillus sp. PN51 isolated from bat feces collected in Phang Nga, Thailand, was purified and characterized. The molecular mass was estimated to be 35.0 kDa. The N-terminal 25 amino acid sequence was about 70% identical with that of Natrialba magadii halolysin-like extracellular serine protease. The enzyme showed the highest proteinase activity at 60 °C at pH 10.0. The activity was strongly inhibited by PMSF and chymostatin. The proteinase activity was not affected by the presence of 2% urea, 2% H2O2, 12% SDS, 15% triton X-100, or 15% tween 80. The proteinase preferred Met, Leu, Phe, and Tyr residues at the P1 position, in descending order. The k cat, K m and k cat/K m values for Z-Val-Lys-Met-MCA were 16.8±0.14 min?1, 5.1±0.28 μM, and 3.3±0.28 μM?1 min?1 respectively. This is the first report of an alkaline serine-proteinase with extremely high stability against detergents such as SDS.  相似文献   

18.
Acinetobacter sp. XMZ-26 (ACCC 05422) was isolated from soil samples obtained from glaciers in Xinjiang Province, China. The partial nucleotide sequence of a lipase gene was obtained by touchdown PCR using degenerate primers designed based on the conserved domains of cold-adapted lipases. Subsequently, a complete gene sequence encoding a 317 amino acid polypeptide was identified. Our novel lipase gene, lipA, was overexpressed in Escherichia coli. The recombinant protein (LipA) was purified by Ni-affinity chromatography, and then deeply characterised. The LipA resulted to hydrolyse pNP esters of fatty acids with acyl chain length from C2 to C16, and the preferred substrate was pNP octanoate showing a k cat = 560.52 ± 28.32 s−1, K m = 0.075 ± 0.008 mM, and a k cat/K m = 7,377.29 ± 118.88 s−1 mM−1. Maximal LipA activity was observed at a temperature of 15°C and pH 10.0 using pNP decanoate as substrate. That LipA peaked at such a low temperature and remained most activity between 5°C and 35°C indicated that it was a cold-adapted enzyme. Remarkably, this lipase retained much of its activity in the presence of commercial detergents and organic solvents, including Ninol, Triton X-100, methanol, PEG-600, and DMSO. This cold-adapted lipase may find applications in the detergent industry and organic synthesis.  相似文献   

19.
The thermal and alkaline pH stability of Streptomyces lividans xylanase B was improved greatly by random mutagenesis using DNA shuffling. Positive clones with improved thermal stability in an alkaline buffer were screened on a solid agar plate containing RBB-xylan (blue). Three rounds of directed evolution resulted in the best mutant enzyme 3SlxB6 with a significantly improved stability. The recombinant enzyme exhibited significant thermostability at 70°C for 360 min, while the wild-type lost 50% of its activity after only 3 min. In addition, mutant enzyme 3SlxB6 shows increased stability to treatment with pH 9.0 alkaline buffer. The K m value of 3SlxB6 was estimated to be similar to that of wild-type enzyme; however k cat was slightly decreased, leading to a slightly reduced value of k cat/K m, compared with wild-type enzyme. DNA sequence analysis revealed that eight amino acid residues were changed in 3SlxB6 and substitutions included V3A, T6S, S23A, Q24P, M31L, S33P, G65A, and N93S. The stabilizing effects of each amino acid residue were investigated by incorporating mutations individually into wild-type enzyme. Our results suggest that DNA shuffling is an effective approach for simultaneous improvement of thermal and alkaline pH stability of Streptomyces lividans xylanase B even without structural information.  相似文献   

20.
Chitinase from the thermophilic mould Myceliopthora thermophila BJA (MtChit) is an acid tolerant, thermostable and organic solvent stable biocatalyst which does not require any metal ions for its activity. To produce high enzyme titres, reduce fermentation time and overcome the need for induction, this enzyme has been heterologously expressed under GAP promoter in the GRAS yeast, Pichia pastoris. The production medium supplemented with the permeabilizing agent Tween‐20 supported two‐fold higher rMtChit production (5.5 × 103 U L?1). The consensus sequences S(132)xG(133)G(134) and D(168)xxD(171)xD(173)xE(175) in the enzyme have been found to represent the substrate binding and catalytic sites, respectively. The rMtChit, purified to homogeneity by a two‐step purification strategy, is a monomeric glycoprotein of ~48 kDa, which is optimally active at 55°C and pH 5.0. The enzyme is thermostable with t1/2 values of 113 and 48 min at 65 and 75°C, respectively. Kinetic parameters Km, Vmax, kcat, and kcat/Km of the enzyme are 4.655 mg mL?1, 34.246 nmol mg?1 s?1, 3.425 × 106 min?1, and 1.36 × 10?6 mg mL?1 min?1, respectively. rMtChit is an unique exochitinase, since its action on chitin liberates N‐acetylglucosamine NAG. The enzyme inhibits the growth of phytopathogenic fungi like Fusarium oxysporum and Curvularia lunata, therefore, this finds application as biofungicide at high temperatures during summer in tropics. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:70–80, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号