首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A cycle spray flow-through reactor was designed and used to pretreat corn stover in dilute sulfuric acid medium. The dilute sulfuric acid cycle spray flow-through (DCF) process enhanced xylose sugar yields and cellulose digestibility while increasing the removal of lignin. Within the DCF system, the xylose sugar yields of 90–93% could be achieved for corn stover pretreated with 2% (w/v) dilute sulfuric acid at 95 °C during the optimal reaction time (90 min). The remaining solid residue exhibited enzymatic digestibility of 90–95% with cellulase loading of 60 FPU/g glucan that was due to the effective lignin removal (70–75%) in this process. Compared with flow-through and compress-hot water pretreatment process, the DCF method produces a higher sugar concentration and higher xylose monomer yield. The novel DCF process provides a feasible approach for lignocellulosic material pretreatment.  相似文献   

2.
Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis.  相似文献   

3.
In order to investigate changes in substrate chemical and physical features after pretreatment, several characterizations were performed on untreated (UT) corn stover and poplar and their solids resulting pretreatments by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, flowthrough, lime, and SO2 technologies. In addition to measuring the chemical compositions including acetyl content, physical attributes determined were biomass crystallinity, cellulose degree of polymerization, cellulase adsorption capacity of pretreated solids and enzymatically extracted lignin, copper number, FT-IR responses, scanning electron microscopy (SEM) visualizations, and surface atomic composition by electron spectroscopy of chemical analysis (ESCA). Lime pretreatment removed the most acetyl groups from both corn stover and poplar, while AFEX removed the least. Low pH pretreatments depolymerized cellulose and enhanced biomass crystallinity much more than higher pH approaches. Lime pretreated corn stover solids and flowthrough pretreated poplar solids had the highest cellulase adsorption capacity, while dilute acid pretreated corn stover solids and controlled pH pretreated poplar solids had the least. Furthermore, enzymatically extracted AFEX lignin preparations for both corn stover and poplar had the lowest cellulase adsorption capacity. ESCA results showed that SO2 pretreated solids had the highest surface O/C ratio for poplar, but for corn stover, the highest value was observed for dilute acid pretreatment with a Parr reactor. Although dependent on pretreatment and substrate, FT-IR data showed that along with changes in cross linking and chemical changes, pretreatments may also decrystallize cellulose and change the ratio of crystalline cellulose polymorphs (Iα/Iβ).  相似文献   

4.
Pretreatment of corn stover in 0.5% sulfuric acid at 160 °C for 40 min realized a maximum monomeric plus oligomeric xylose yield of 93.1% compared to a maximum of only 71.5% for hydrothermal (no added mineral acid) pretreatment at 180 °C for 30 min. To explain differences in dilute acid and hydrothermal yields, a fast reacting xylan fraction (0.0889) was assumed to be able to directly form monomeric xylose while a slow reacting portion (0.9111) must first form oligomers during hydrothermal pretreatment. Two reactions to oligomers were proposed: reversible from fast reacting xylan and irreversible from slow reacting xylan. A kinetic model and its analytical solution simulated xylan removal data well for dilute acid and hydrothermal pretreatment of corn stover. These results suggested that autocatalytic reactions from xylan to furfural in hydrothermal pretreatment were controlled by oligomeric xylose decomposition, while acid-catalytic reactions in dilute acid pretreatment were controlled by monomeric xylose decomposition.  相似文献   

5.
Corn stover is a potential substrate for fermentation processes. Previous work with corn stover demonstrated that lime pretreatment rendered it digestible by cellulase; however, high sugar yields required very high enzyme loadings. Because cellulase is a significant cost in biomass conversion processes, the present study focused on improving the enzyme efficiency using Tween 20 and Tween 80; Tween 20 is slightly more effective than Tween 80. The recommended pretreatment conditions for the biomass remained unchanged regardless of whether Tween was added during the hydrolysis. The recommended Tween loading was 0.15 g Tween/g dry biomass. (The critical relationship was the Tween loading on the biomass, not the Tween concentration in solution.) The 72-h enzymic conversion of pretreated corn stover using 5 FPU cellulase/g dry biomass at 50 degrees C with Tween 20 as part of the medium was 0.85 g/g for cellulose, 0.66 g/g for xylan, and 0.75 for total polysaccharide; addition of Tween improved the cellulose, xylan, and total polysaccharide conversions by 42, 40, and 42%, respectively. Kinetic analyses showed that Tween improved the enzymic absorption constants, which increased the effective hydrolysis rate compared to hydrolysis without Tween. Furthermore, Tween prevented thermal deactivation of the enzymes, which allows for the kinetic advantage of higher temperature hydrolysis. Ultimate digestion studies showed higher conversions for samples containing Tween, indicating a substrate effect. It appears that Tween improves corn stover hydrolysis through three effects: enzyme stabilizer, lignocellulose disrupter, and enzyme effector. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

6.
Biomimetic catalysis for hemicellulose hydrolysis in corn stover   总被引:2,自引:0,他引:2  
Efficient and economical hydrolysis of plant cell wall polysaccharides into monomeric sugars is a significant technical hurdle in biomass processing for renewable fuels and chemicals. One possible approach to overcoming this hurdle is a biomimetic approach with dicarboxylic acid catalyst mimicking the catalytic core microenvironment in natural enzymes. This paper reports developments in the use of a dicarboxylic acid catalyst, maleic acid, for hemicellulose hydrolysis in corn stover. Hemicellulose hydrolysis and xylose degradation kinetics in the presence of maleic acid was compared to sulfuric acid. At optimized reaction conditions for each acid, maleic acid hydrolysis results in minimal xylose degradation, whereas sulfuric acid causes 3-10 times more xylose degradation. These results formed the basis for optimizing the hydrolysis of hemicellulose from corn stover using maleic acid. At 40 g/L dry corn stover solid-loading, both acid catalysts can achieve near-quantitative monomeric xylose yield. At higher solids loadings (150-200 g dry stover per liter), sulfuric acid catalyzed hydrolysis results in more than 30% degradation of the xylose, even under the previously reported optimal condition. However, as a result of minimized xylose degradation, optimized biomimetic hydrolysis of hemicellulose by maleic acid can reach approximately 95% monomeric xylose yields with trace amounts of furfural. Fermentation of the resulting unconditioned hydrolysate by recombinant S. cerevisiae results in 87% of theoretical ethanol yield. Enzyme digestibility experiments on the residual corn stover solids show that >90% yields of glucose can be produced in 160 h from the remaining cellulose with cellulases (15 FPU/g-glucan).  相似文献   

7.
In process integration studies of the biomass-to-ethanol conversion process, it is necessary to understand how cellulose conversion yields vary as a function of solids and enzyme loading and other key operating variables. The impact of solids loading on enzymatic cellulose hydrolysis of dilute acid pretreated corn stover slurry was determined using an experimental response surface design methodology. From the experimental work, an empirical correlation was obtained that expresses monomeric glucose yield from enzymatic cellulose hydrolysis as a function of solids loading, enzyme loading, and temperature. This correlation was used in a technoeconomic model to study the impact of solids loading on ethanol production economics. The empirical correlation was used to provide a more realistic assessment of process cost by accounting for changes in cellulose conversion yields at different solids and enzyme loadings as well as enzyme cost. As long as enzymatic cellulose conversion drops off at higher total solids loading (due to end-product inhibition or other factors), there is an optimum value for the total solids loading that minimizes the ethanol production cost. The optimum total solids loading shifts to higher values as enzyme cost decreases.  相似文献   

8.
Hemicellulose liquid hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol using Pichia stipitis CBS 6054. The fermentation rate increased with aeration but the pH also increased due to consumption of acetic acid by Pichia stipitis. Hemicellulose hydrolyzate containing 34 g/L xylose, 8 g/L glucose, 8 g/L Acetic acid, 0.73 g/L furfural, and 1 g/L hydroxymethyl furfural was fermented to 15 g/L ethanol in 72 h. The yield in all the hemicellulose hydrolyzates was 0.37–0.44 g ethanol/g (glucose + xylose). Nondetoxified hemicellulose hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol with high yields, and this has the potential to improve the economics of the biomass to ethanol process.  相似文献   

9.
Bovine serum albumin (BSA), Tween‐20, and polyethylene glycol (PEG6000) were added to washed corn stover solids produced by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), dilute sulfuric acid (DA), lime, controlled pH, and sulfur dioxide (SO2) pretreatments and to untreated corn stover (UT) and pure Avicel glucan prior to adding cellulase supplemented with β‐glucosidase at an activity ratio of 1:2/g and a moderate enzyme loading of 16.1 mg/g glucan in the raw corn stover. The additives were applied individually at 150, 300, and 600 mg/g glucan in the pretreated solids and in combinations of equal amounts of each that totaled 600 mg/g. The greatest increase in total sugar release was by Tween‐20 with SO2 pretreated solids followed by PEG6000 with ARP solids and Tween‐20 with lime solids. The effectiveness of the additives was observed to depend on the type of sugars left in the solids, suggesting that it may be more beneficial to use the mixture of these additives to realize a high total sugar yield. In addition, little enhancement in sugar release was possible beyond a loading of 150 mg additives/g glucan for most pretreatments, and combinations did not improve sugar release much over use of additives alone for all except SO2. Additives were also found to significantly increase concentrations of cellobiose and cellooligomers after 72 h of Avicel hydrolysis. Biotechnol. Bioeng. 2009;102: 1544–1557. © 2008 Wiley Periodicals, Inc.  相似文献   

10.
Zhang J  Wang X  Chu D  He Y  Bao J 《Bioresource technology》2011,102(6):4480-4488
Two rarely noticed but important parameters of the dilute sulfuric acid pretreatment of lignocellulose biomass, the feedstock filling ratio to the pretreatment reactor and the solids/liquid presoaking ratio, were extensively studied. The effects of the two parameters on the steam consumption, waste water generation, and pretreatment efficiency were investigated. At the full filling ratio and high solids/liquid presoaking ratio, this “dry” pretreatment method provided at least the following advantages: (1) the steam consumption was significantly reduced; (2) no aqueous acid containing waste water was generated; (3) high solids content of the pretreated materials were obtained and the consequent saccharification and fermentation was carried out at high solids loading easily. This method was applied to various lignocellulose feedstocks successfully and provided a practical means to produce ethanol economically feasible.  相似文献   

11.
Inorganic salts, NaCl, KCl, CaCl2, MgCl2, FeCl2, FeSO4, FeCl3, and Fe2(SO4)3, were studied as catalysts for the degradation of hemicellulose in corn stover. FeCl3 significantly increased the hemicellulose degradation in aqueous solutions heated between 140 and 200 °C with high xylose recovery and low cellulose removal, amounting to 90% and <10%, respectively. Hemicellulose removal increased 11-fold when the corn stover was pretreated with 0.1 M FeCl3 compared to pretreatment with hot water under otherwise the same conditions, which was also 6-fold greater than pretreatment with dilute sulfuric acid at the same pH. Optimum pretreatment conditions were found where the corn stover was pretreated with 0.1 M FeCl3 at 140 °C for 20 min. Under such conditions, 91% of hemicellulose was removed, and the recovery of monomeric and oligomeric xylose in liquid fraction achieved 89%, meanwhile, only 9% of cellulose was removed.  相似文献   

12.
不同玉米秸秆部位的成分组成及分布对预处理和酶解影响显著。研究表明:韧皮部与髓芯的成分相近,但叶子的差异较大,其木聚糖和总糖的质量分数最高,分别为29.48%和66.15%,而木质素的质量分数最低,因而叶子更容易预处理。玉米秸秆在稀酸预处理过程中可回收96.9%葡聚糖和50.0%~70.0%木聚糖,其中50.0%~60.0%木聚糖水解成木糖溶出;不同部位的木聚糖损失率与初始的木聚糖含量正相关;经稀酸预处理后,叶子中葡聚糖的质量分数最高,达72.40%,叶子和髓芯易于被纤维素酶水解生成葡萄糖,而韧皮部困难。不同部位的酶解得率与自身的葡聚糖含量正相关,与酸不溶木质素含量负相关,同时受原料的物理结构、葡聚糖和木质素大分子的化学组成等影响。  相似文献   

13.
Heating of batch tubular reactors with fluidized sand baths and with microwaves resulted in distinctive sugar yield profiles from pretreatment and subsequent enzymatic hydrolysis of corn stover at the same time, temperature, and dilute sulfuric acid concentration combinations and hydrothermal pretreatment conditions. Microwave heated pretreatment led to faster xylan, lignin, and acetyl removal as well as earlier xylan degradation than sand baths, but maximum sugar recoveries were similar. Solid state CP/MAS NMR revealed that microwave heating was more effective in altering cellulose structural features especially in breakdown of amorphous regions of corn stover than sand bath heating. Enzymatic hydrolysis of pretreated corn stover was improved by microwave heating compared to sand bath heating. Mechanisms were proposed to explain the differences in results for the two systems and provide new insights into pretreatment that can help advance this technology.  相似文献   

14.
Yoo CG  Nghiem NP  Hicks KB  Kim TH 《Bioresource technology》2011,102(21):10028-10034
A simple pretreatment method using anhydrous ammonia was developed to minimize water and ammonia inputs for cellulosic ethanol production, termed the low moisture anhydrous ammonia (LMAA) pretreatment. In this method, corn stover with 30–70% moisture was contacted with anhydrous ammonia in a reactor under nearly ambient conditions. After the ammoniation step, biomass was subjected to a simple pretreatment step at moderate temperatures (40–120 °C) for 48–144 h. Pretreated biomass was saccharified and fermented without an additional washing step. With 3% glucan loading of LMAA-treated corn stover under best treatment conditions (0.1 g-ammonia + 1.0 g-water per g biomass, 80 °C, and 84 h), simultaneous saccharification and cofermentation test resulted in 24.9 g/l (89% of theoretical ethanol yield based on glucan + xylan in corn stover).  相似文献   

15.
The thermotolerant strain Saccharomyces cerevisiae DQ1 was applied to the simultaneous saccharification and fermentation (SSF) at high temperature and high solids loading of the dilute acid-pretreated corn stover in the present study. The SSF using S. cerevisiae DQ1 was operated at 30?% solids loading of the pretreated corn stover with three-step SSF mode and achieved up to ethanol titer of 48?g/L and yield of 65.6?%. S. cerevisiae DQ1 showed strong thermotolerance in both the regular one-step SSF and the three-step SSF with changing temperature in each step. The three-step SSF at 40°C using S. cerevisiae DQ1 tolerated the greater cellulase dosage and solids loading of the pretreated corn stover and resulted in increased ethanol production. The present study provided a practical potential for the future SSF of lignocellulose feedstock at high temperature to reach high ethanol titer.  相似文献   

16.
Moderate loadings of cellulase enzyme supplemented with beta-glucosidase were applied to solids produced by ammonia fiber expansion (AFEX), ammonia recycle (ARP), controlled pH, dilute sulfuric acid, lime, and sulfur dioxide pretreatments to better understand factors that control glucose and xylose release following 24, 48, and 72 h of hydrolysis and define promising routes to reducing enzyme demands. Glucose removal was higher from all pretreatments than from Avicel cellulose at lower enzyme loadings, but sugar release was a bit lower for solids prepared by dilute sulfuric acid in the Sunds system and by controlled pH pretreatment than from Avicel at higher protein loadings. Inhibition by cellobiose was observed to depend on the type of substrate and pretreatment and hydrolysis times, with a corresponding impact of beta-glucosidase supplementation. Furthermore, for the first time, xylobiose and higher xylooligomers were shown to inhibit enzymatic hydrolysis of pure glucan, pure xylan, and pretreated corn stover, and xylose, xylobiose, and xylotriose were shown to have progressively greater effects on hydrolysis rates. Consistent with this, addition of xylanase and beta-xylosidase improved performance significantly. For a combined mass loading of cellulase and beta-glucosidase of 16.1 mg/g original glucan (about 7.5 FPU/g), glucose release from pretreated solids ranged from 50% to75% of the theoretical maximum and was greater for all pretreatments at all protein loadings compared to pure Avicel cellulose except for solids from controlled pH pretreatment and from dilute acid pretreatment by the Sunds pilot unit. The fraction of xylose released from pretreated solids was always less than for glucose, with the upper limit being about 60% of the maximum for ARP and the Sunds dilute acid pretreatments at a very high protein mass loading of 116 mg/g glucan (about 60 FPU).  相似文献   

17.
Supercritical CO2 (SC-CO2), a green solvent suitable for a mobile lignocellulosic biomass processor, was used to pretreat corn stover and switchgrass at various temperatures and pressures. The CO2 pressure was released as quickly as possible by opening a quick release valve during the pretreatment. The biomass was hydrolyzed after pretreatment using cellulase combined with β-glucosidase. The hydrolysate was analyzed for the amount of glucose released. Glucose yields from corn stover samples pretreated with SC-CO2 were higher than the untreated sample’s 12% glucose yield (12 g/100 g dry biomass) and the highest glucose yield of 30% was achieved with SC-CO2 pretreatment at 3500 psi and 150 °C for 60 min. The pretreatment method showed very limited improvement (14% vs. 12%) in glucose yield for switchgrass. X-ray diffraction results indicated no change in crystallinity of the SC-CO2 treated corn stover when compared to the untreated, while SEM images showed an increase in surface area.  相似文献   

18.
Native aspen (Populus tremuloides) was pretreated using sulfuric acid and sodium bisulfite (SPORL) and dilute sulfuric acid alone (DA). Simultaneous enzymatic saccharification and fermentation (SSF) was conducted at 18% solids using commercial enzymes with cellulase loadings ranging from 6 to 15 FPU/g glucan and Saccharomyces cerevisiae Y5. Compared with DA pretreatment, the SPORL pretreatment reduced the energy required for wood chip size-reduction, and reduced mixing energy of the resultant substrate for solid liquefaction. Approximately 60% more ethanol was produced from the solid SPORL substrate (211 L/ton wood at 59 g/L with SSF efficiency of 76%) than from the solid DA substrate (133 L/ton wood at 35 g/L with SSF efficiency 47%) at a cellulase loading of 10 FPU/g glucan after 120 h. When the cellulase loading was increased to 15 FPU/g glucan on the DA substrate, the ethanol yield still remained lower than the SPORL substrate at 10 FPU/g glucan.  相似文献   

19.
Biomass contains cellulose, xylan and lignin in a complex interwoven structure that hinders enzymatic hydrolysis of the cellulose. To separate these components in yellow poplar biomass, we sequentially pretreated with dilute sulfuric acid and enzymatically-generated peracetic acid. In the first step, the dilute acid with microwave heating (140°C, 5 min) hydrolyzed 90% of xylan. The xylose yield in hydrolysate after dilute acid pretreatment was 83.1%. In the second step, peracetic acid (60°C, 6 h) removed up to 80% of lignin. This sequential pretreatment fractionated biomass into xylan and lignin, leaving a solid residue enriched in cellulose (~80%). The sequential pretreatment enhanced enzymatic digestibility of the cellulase by removal of the other components in biomass. The glucose yield after enzymatic hydrolysis was 90.5% at a low cellulase loading (5 FPU/g of glucan), which is 1.6 and 18 times higher than for dilute acid-pretreated biomass and raw biomass, respectively. This novel sequential pretreatment with dilute acid and peracetic acid efficiently separates the three major components of yellow poplar biomass, and reduces the amount of cellulase needed.  相似文献   

20.
In this study, raw corn stover was subjected to dilute acid pretreatments over a range of severities under conditions similar to those identified by the National Renewable Energy Laboratory (NREL) in their techno-economic analysis of biochemical conversion of corn stover to ethanol. The pretreated corn stover then underwent enzymatic hydrolysis with yields above 70?% at moderate enzyme loading conditions. The enzyme exhausted lignin residues were characterized by (31)P NMR spectroscopy and functional moieties quantified and correlated to enzymatic hydrolysis yields. Results from this study indicated that both xylan solubilization and lignin degradation are important for improving the enzyme accessibility and digestibility of dilute acid pretreated corn stover. At lower pretreatment temperatures, there is a good correlation between xylan solubilization and cellulose accessibility. At higher pretreatment temperatures, lignin degradation correlated better with cellulose accessibility, represented by the increase in phenolic groups. During acid pretreatment, the ratio of syringyl/guaiacyl functional groups also gradually changed from less than 1 to greater than 1 with the increase in pretreatment temperature. This implies that more syringyl units are released from lignin depolymerization of aryl ether linkages than guaiacyl units. The condensed phenolic units are also correlated with the increase in pretreatment temperature up to 180?°C, beyond which point condensation reactions may overtake the hydrolysis of aryl ether linkages as the dominant reactions of lignin, thus leading to decreased cellulose accessibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号