首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study aimed to investigate the degradation of the natural substrates tropoelastin and elastin by the neutrophil-derived serine proteases human leukocyte elastase (HLE), proteinase 3 (PR3) and cathepsin G (CG). Focus was placed on determining their cleavage site specificities using mass spectrometric techniques. Moreover, the release of bioactive peptides from elastin by the three proteases was studied. Tropoelastin was comprehensively degraded by all three proteases, whereas less cleavage occurred in mature cross-linked elastin. An analysis of the cleavage site specificities of the three proteases in tropoelastin and elastin revealed that HLE and PR3 similarly tolerate hydrophobic and/or aliphatic amino acids such as Ala, Gly and Val at P1, which are also preferred by CG. In addition, CG prefers the bulky hydrophobic amino acid Leu and accepts the bulky aromatic amino acids Phe and Tyr. CG shows a strong preference for the charged amino acid Lys at P1 in tropoelastin, whereas Lys was not identified at P1 in CG digests of elastin due to extensive cross-linking at Lys residues in mature elastin. All three serine proteases showed a clear preference for Pro at P2 and P4′. With respect to the liberation of potentially bioactive peptides from elastin, the study revealed that all three serine proteases have a similar ability to release bioactive sequences, with CG producing the highest number of these peptides. In bioactivity studies, potentially bioactive peptides that have not been investigated on their bioactivity to date, were tested. Three new bioactive GxxPG motifs were identified; GVYPG, GFGPG and GVLPG.  相似文献   

2.
An increased proportion (about twofold) of polar amino acids (aspartic acid, glutamic acid, arginine and tyrosine) was found both in insoluble elastin and tropoelastin preparations from aortae of rats fed high fat diet. Concomitantly the number of val-pro sequences drops from 48.7 to 26.8 in elastin from control and atheromatous aortae. The observed changes can be explained either by assuming a tight attachment of a non-elastin protein rich in polar amino acids or by assuming the existence two elastin types the proportion of which is changed in aortae by high fat diet feeding. The data obtained are in favor of two different genetic types of elastin.  相似文献   

3.
Summary We examine in this paper one of the expected consequences of the hypothesis that modern proteins evolved from random heteropeptide sequences. Specifically, we investigate the lengthwise distributions of amino acids in a set of 1,789 protein sequences with little sequence identity using the run test statistic (r o) of Mood (1940,Ann. Math. Stat. 11, 367–392). The probability density ofr o for a collection of random sequences has mean=0 and variance=1 [the N(0,1) distribution] and can be used to measure the tendency of amino acids of a given type to cluster together in a sequence relative to that of a random sequence. We implement the run test using binary representations of protein sequences in which the amino acids of interest are assigned a value of 1 and all others a value of 0. We consider individual amino acids and sets of various combinations of them based upon hydrophobicity (4 sets), charge (3 sets), volume (4 sets), and secondary structure propensity (3 sets). We find that any sequence chosen randomly has a 90% or greater chance of having a lengthwise distribution of amino acids that is indistinguishable from the random expectation regardless of amino acid type. We regard this as strong support for the random-origin hypothesis. However, we do observe significant deviations from the random expectation as might be expected after billions years of evolution. Two important global trends are found: (1) Amino acids with a strong α-helix propensity show a strong tendency to cluster whereas those with β-sheet or reverse-turn propensity do not. (2) Clustered rather than evenly distributed patterns tend to be preferred by the individual amino acids and this is particularly so for methionine. Finally, we consider the problem of reconciling the random nature of protein sequences with structurally meaningful periodic “patterns” that can be detected by sliding-window, autocorrelation, and Fourier analyses. Two examples, rhodopsin and bacteriorhodopsin, show that such patterns are a natural feature of random sequences.  相似文献   

4.
The enzyme oxaloacetate hydrolase (EC 3.7.1.1), which is involved in oxalate formation, was purified from Aspergillus niger. The native enzyme has a molecular mass of 360–440 kDa, and the denatured enzyme has a molecular mass of 39 kDa, as determined by gel electrophoresis. Enzyme activity is maximal at pH 7.0 and 45 °C. The fraction containing the enzyme activity contained at least five proteins. The N-terminal amino acid sequences of four of these proteins were determined. The amino acid sequences were aligned with EST sequences from A. niger, and an EST sequence that showed 100% identity to all four sequences was identified. Using this EST sequence the gene encoding oxaloacetate hydrolase (oah) was cloned by inverse PCR. It consists of an ORF of 1227 bp with two introns of 92 and 112 bp, respectively. The gene encodes a protein of 341 amino acids with a molecular mass of 37 kDa. Under the growth conditions tested, the highest oah expression was found for growth on acetate as carbon source. The gene was expressed only at pH values higher than 4.0. Received: 9 May 1999 / Accepted: 30 November 1999  相似文献   

5.
Tyrosyl-DNA phosphodiesterase-1 (Tdp1) is the only known enzyme to remove tyrosine from complexes in which the amino acid is linked to the 3′-end of DNA fragments. Such complexes can be produced following DNA processing by topoisomerase I, and recent studies in yeast have demonstrated the importance of TDP1 for cell survival following topoisomerase I-mediated DNA damage. In the present study, we used synthetic oligodeoxynucleotide–peptide conjugates (nucleopeptides) and recombinant yeast Tdp1 to investigate the molecular determinants for Tdp1 activity. We find that Tdp1 can process nucleopeptides with up to 13 amino acid residues but is poorly active with a 70 kDa fragment of topoisomerase I covalently linked to a suicide DNA substrate. Furthermore, Tdp1 was more effective with nucleopeptides with one to four amino acids than 15 amino acids. Tdp1 was also more effective with nucleopeptides containing 15 nt than with homolog nucleopeptides containing 4 nt. These results suggest that DNA binding contributes to the activity of Tdp1 and that Tdp1 would be most effective after topoisomerase I has been proteolyzed in vivo.  相似文献   

6.
Summary. Four series of ω-N-quinonyl amino acids were synthesized by Michael-like additions. The quinones include 2-phenylthio-1,4-benzoquinone, 1,4-naphthoquinone, 2-methyl-1,4-naphthoquinone and 2,3-dichloro-1,4-naphthoquinone. These modified amino acids can be used for post chain assembly modifications of biologically active peptides, which target the quinonic drug to a cancer damaged area. The electron-transfer capabilities of the modified amino acids were probed by cyclic voltammetry measurements. The results described in this paper show that the novel N-quinonyl amino acids are effective in producing semiquinone radicals similarly to the unconjugated quinones themselves. A direct relation was found between the first reduction potentials of the quinones and their reactivity towards the ω-amino acids. The successful generation of stable semiquinone radicals by the novel quinone derivatives is a prerequisite for the manifestation of site-directed antitumor activity of corresponding quinone-peptide conjugates. Received January 3, 2001 Accepted March 28, 2001  相似文献   

7.
Ornithine decarboxylase (ODC) degrades in proteasome in a ubiquitin-independent manner with the half life of approximately 2 h. Thirty seven C-terminal amino acids of this enzyme constitute a fragment known as the degradation signal (degron), which is responsible for the effectiveness of protein degradation. Among these amino acids, the key positions have recently been mapped (Cys441 and Ala442). Mutations of the key amino acids led to ODC general stabilization, whereas substitution of other amino acids had no significant influence on the ODC degron activity. In addition, deletions or insertions into the region located between the key amino acids and ODC C-end diminished significantly the rate of protein degradation; hence, the distance (remoteness) of these amino acids from ODC C-end is, probably, of crucial importance. Taking into account these data, we have introduced the key amino acids that determine ODC-degron activity into alpha-fetoprotein with the truncated export signal (ΔAFP) so that their positioning was 20 amino-acid away from the C-end (ΔAFPCAG and ΔAFPLCAG). Secretion of ΔAFP and the modified proteins from cells was impossible because of a removal of the N-terminal export signal. Computer analysis of ΔAFP and the derivative ΔAFPCAG and ΔAFPLCAG revealed no significant changes in protein hydrophobicity or in the secondary structure of C-terminal region. The in vitro experiments on HEK293T cells using MG132 proteasome inhibitor and translation inhibitor cycloheximide have demonstrated similar stability of ΔAFP and the derivative ΔAFPCAG and ΔAFPLCAG in cells. Thus, introduction of the key amino acids of ODC degron at the key positions relative to the C-end of ΔAFP did not change the parameters of protein degradation. Perhaps, some other still unknown amino acids are important for ODC-degron functioning. It may well be that ΔAFP conformation prevents interaction of the protein C-end with proteasome.  相似文献   

8.
Impurities of free aromatic amino acids (Phe and Tyr) and the elastin protein were found in the heparin commercial drug (Hep) by spectral luminescent and spectrophotometric methods. The fluorescence quenching of the Trp, Tyr, and Phe amino acids by the Hep drug was studied, and the Stern-Folmer constants (K) that reflected stability of the Hep complexes with amino acids were determined. The stability of AA-Hep complexes increased in the following sequence: Trp < Tyr < Phe (K = 19 ± 2 < 39 ± 3 < 710 ± 70 M?1, respectively). These values probably determined the dominant contribution of the phenylalanine impurity in the heparin drug. The contamination of animal elastin whose structure differed from that of the human elastin is thought to be a reason for allergic reactions and even anaphylactic shock during medical treatment with this drug.  相似文献   

9.
10.
Direct physical chemistry measurements of the hydrophobicity of amino acids or their derivatives have often been used to estimate the propensity of amino acids to participate in transmembrane helices. In this short note, it is found that there is a very high degree of correlation (r = 0.944–0.965) between an average physical chemistry hydrophobicity scale (an average of scales derived, e.g., from the solubility of amino acid derivatives in organic solvents versus water or their binding to hydrophobic particles) and the statistically based transmembrane tendency scale (derived from the relative abundance of residues in known transmembrane and soluble protein sequences (Zhao and London, Protein Sci 15:1987–2001, 2006)). This correlation indicates that, other than hydrophobicity, amino acid properties/interactions that promote or inhibit transmembrane helix formation in a specific membrane protein largely cancel out when averaged over all transmembrane sequences. In other words, other than hydrophobicity, there are no properties of a specific amino acid residue within a hydrophobic segment that have a strong systematic effect upon transmembrane helix formation independent of the remainder of the sequence in that hydrophobic segment. However, proline is an exception to this rule.  相似文献   

11.
The stereoselective nitrile hydratase (NHase) from Pseudomonas putida 5B has been over-produced in Escherichia coli. Maximal enzyme activity requires the co-expression of a novel downstream gene encoding a protein (P14K) of 127 amino acids, which shows no significant homology to any sequences in the protein database. Nitrile hydratase produced in transformed E. coli showed activity as high as 472 units/mg dry cell (sixfold higher than 5B), and retained the stereoselectivity observed in the native organism. Separated from the end of the β subunit by only 51 bp, P14K appears to be part of an operon that includes the α and β structural genes of nitrile hydratase, and other potential coding sequences. Received: 13 May 1997 / Received revision: 22 August 1997 / Accepted: 15 September 1997  相似文献   

12.
Tropoelastin and elastin preparations obtained from aortae of spontaneously hypertensive rats (SHR) show an increased proportion of polar amino acids (aspartic acid, glutamic acid, arginine and tyrosine). The content of these amino acids is 1.43-3.04 times higher in SHR rats than in similar elastin or tropoelastin preparations obtained from normotensive animals. On the other hand elastin and tropoelastin preparations obtained from SHR rats show a lower frequency of the Val-Pro sequence; this was found to be 35.93 per 1000 amino acid residues in SHR rats as compared to 51.04 per 1000 amino acids in the preparations obtained from control animals. Since similar differences were found not only in elastin preparations but also in tropoelastin, contamination of these preparations with an acidic protein seems unlikely. In general the results obtained are similar to those seen in animals kept on a long term high fat diet. It appears feasible to suggest that these differences are caused by a changed proportion of two different elastin type.  相似文献   

13.
A direct solid-phase synthesis of a series of substituted benzimidazole-containing peptides is described. The method involves on-resin formation of new amino acids containing benzimidazole derivatives in the side chain. The heterocycle conjugates were obtained by reaction between aldehydes and peptides containing β-(3,4-diaminophenyl)alanine residue, immobilized on a polymeric solid support.  相似文献   

14.
Evolution of the triplet code is reconstructed on the basis of consensus temporal order of appearance of amino acids. Several important predictions are confirmed by computational sequence analyses. The earliest amino acids, alanine and glycine, have been encoded by GCC and GGC codons, as today. They were succeeded, respectively, by A- and G-series of amino acids, encoded by pyrimidine-central and purine-central codons. The length of the earliest proteins is estimated to be 6–7 residues. The earliest mRNAs were short G+C-rich molecules. These short sequences could have formed hairpins. This is confirmed by analysis of modern prokaryotic mRNA sequences. Predominant size of detected ancient hairpins also corresponds to 6–7 amino acids, as above. Vestiges of last common ancestor can be found in extant proteins in form of entirely conserved short sequences of size six to nine residues present in all or almost all sequenced prokaryotic proteomes (omnipresent motifs). The functions of the topmost conserved octamers are not involved in the basic elementary syntheses. This suggests an initial abiotic supply of amino acids, bases and sugars. Presented at: National Workshop on Astrobiology: Search for Life in the Solar System, Capri, Italy, 26 to 28 October, 2005.  相似文献   

15.
Putrescine N-methyltransferase (PMT) is a key enzyme of plant secondary metabolism at the start of the specific biosynthesis of nicotine, of tropane alkaloids, and of calystegines that are glycosidase inhibitors with nortropane structure. PMT is assumed to have developed from spermidine synthases (SPDS) participating in ubiquitous polyamine metabolism. In this study decisive differences between both enzyme families are elucidated. PMT sequences were known from four Solanaceae genera only, therefore additional eight PMT cDNA sequences were cloned from five Solanaceae and a Convolvulaceae. The encoded polypeptides displayed between 76% and 97% identity and typical amino acids different from plant spermidine synthase protein sequences. Heterologous expression of all enzymes proved catalytic activity exclusively as PMT and K cat values between 0.16 s−1 and 0.39 s−1. The active site of PMT was initially inferred from a protein structure of spermidine synthase obtained by protein crystallisation. Those amino acids of the active site that were continuously different between PMTs and SPDS were mutated in one of the PMT sequences with the idea of changing PMT activity into spermidine synthase. Mutagenesis of active site residues unexpectedly resulted in a complete loss of catalytic activity. A protein model of PMT was based on the crystal structure of SPDS and suggests that overall protein folds are comparable. The respective cosubstrates S-adenosylmethionine and decarboxylated S-adenosylmethionine, however, appear to bind differentially to the active sites of both enzymes, and the substrate putrescine adopts a different position.  相似文献   

16.
κ-Casein is one of the major proteins in the milk of mammals. It plays an important role in determining the size and specific function of milk micelles. We have previously identified and characterized a genetic variant of yak κ-casein by evaluating genomic DNA. Here, we isolate and characterize a yak κ-casein cDNA harboring the full-length open reading frame (ORF) from lactating mammary gland. Total RNA was extracted from mammary tissue of lactating female yak, and the κ-casein cDNA were synthesized by RT-PCR technique, then cloned and sequenced. The obtained cDNA of 660-bp contained an ORF sufficient to encode the entire amino acid sequence of κ-casein precursor protein consisting of 190 amino acids with a signal peptide of 21 amino acids. Yak κ-casein has a predicted molecular mass of 19,006.588 Da with a calculated isoelectric point of 7.245. Compared with the corresponding sequences in GenBank of cattle, buffalo, sheep, goat, Arabian camel, horse, and rabbit, yak κ-casein sequence had identity of 64.76–98.78% in cDNA, and identity of 44.79–98.42% and similarity of 53.65–98.42% in deduced amino acids, revealing a high homology with the other livestock species. Based on κ-casein cDNA sequences, the phylogenetic analysis indicated that yak κ-casein had a close relationship with that of cattle. This work might be useful in the genetic engineering researches for yak κ-casein.  相似文献   

17.
Starch is degraded by amylases that frequently have a modular structure composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. The C-terminal domain from the Lactobacillus amylovorus α-amylase has an unusual architecture composed of five tandem starch-binding domains (SBDs). These domains belong to family 26 in the carbohydrate-binding modules (CBM) classification. It has been reported that members of this family have only one site for starch binding, where aromatic amino acids perform the binding function. In SBDs, fold similarities are better conserved than sequences; nevertheless, it is possible to identify in CBM26 members at least two aromatic residues highly conserved. We attempt to explain polysaccharide recognition for the L. amylovorus α–amylase SBD through site-directed mutagenesis of aromatic amino acids. Three amino acids were identified as essential for binding, two tyrosines and one tryptophan. Y18L and Y20L mutations were found to decrease the SBD binding capacity, but unexpectedly, the mutation at W32L led to a total loss of affinity, either with linear or ramified substrates. The critical role of Trp 32 in substrate binding confirms the presence of just one binding site in each α-amylase SBD.  相似文献   

18.
Based on reported TMV-U1 sequence, primers were designed and fragments covering the entire genome of TMV broad bean strain (TMV-B) were obtained with RT-PCR. These fragments were cloned and sequenced and the 5’ and 3’ end sequences of genome were confirmed with RACE. The complete sequence of TMV-B comprises 6 395 nucleotides (nt) and four open reading frames, which correspond to 126 ku (1 116 amino acids), 183 ku (1 616 amino acids), 30 ku (268 amino acids) and 17.5 ku proteins (159 amino acids). The complete nucleotide sequence of TMV-B is 99.4% identical to that of TMV-U1. The two virus isolates share the same sequence of 5’, 3’ non-coding region and 17.5 K ORF, and 6, 1 and 3 amino acid changes are found in 126 K protein, 54 K protein and 30 K protein, respectively. The possible mechanism on the infection of TMV-B inVicia faba is discussed.  相似文献   

19.
All the desmosine-containing elastolytic peptides of bovine ligamentum-nuchae elastin have now been examined for amino acid sequences C-terminal to the cross-links. In addition, amino acid residues C-terminal to lysine residues in bovine tropoelastin were also examined. No tyrosine C-terminal to cross-links in bovine elastin or C-terminal to lysine in tropoelastin was detected. Apparently all the tyrosine residues C-terminal to lysine residues in pig tropoelastin are replaced with phenylalanine in bovine tropoelastin. All the data presented are consistent with the scheme proposed for the formation of desmosine and isodesmosine cross-links of elastin by Gerber & Anwar [(1975) Biochem. J. 149, 685--695].  相似文献   

20.
Isolation and structure analysis of two amino acids from bovine ligamentum nuchae elastin hydrolysates revealed the presence of pyridine cross-links in elastin. The structures of these amino acids were determined to have 3,4,5- and 2,3,5-trisubstituted pyridine skeletons both with three carboxylic acids and a mass of 396 (C(18)H(28)N(4)0(6)) identified as 4-(4-amino-4-carboxybutyl)-3,5-di-(3-amino-3-carboxypropyl)-pyridine and 2-(4-amino-4-carboxybutyl)-3,5-di-(3-amino-3-carboxypropyl)-pyridine. We have named these pyridine cross-links desmopyridine (DESP) and isodesmopyridine (IDP), respectively. Structure analysis of these pyridine cross-links implied that the formation of these cross-links involved the condensation reaction between ammonia and allysine. The elastin incubated with ammonium chloride showed that DESP and IDP levels increased as the allysine content decreased. DESP and IDP were measured by high pressure liquid chromatography (HPLC) with UV detection and were found in a variety of bovine tissues. The DESP/desmosine (DES) and IDP/isodesmosine (IDE) ratios in aorta elastin were higher than in other tissues. DESP and IDP contents in human aorta elastin were found to be gradually increased with age. The concentration of IDP was significantly elevated in aorta elastin of rat with chronic liver cirrhosis induced by carbon tetrachloride (mean +/- S.D.; 11.1 +/- 0.9 nmol/mg elastin) when compared with normal rats (5.9 +/- 1.5 nmol/mg elastin). Although DESP and IDP are present at only trace concentrations in the tissue elastin, these pyridine cross-links may be useful biomarkers for the aortic elastin damaged by ammonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号