首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
3.
4.
5.
The heat shock response (HSR) is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps) are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock factor 1 (HSF-1), however, recent work supports the activation of the HSR via an increase in the fluidity of specific membrane domains, leading to activation of heat-shock genes. Our findings support the existence of a plasma membrane-dependent mechanism of HSF-1 activation in animal cells, which is initiated by a membrane-associated transient receptor potential vanilloid receptor (TRPV). We found in various non-cancerous and cancerous mammalian epithelial cells that the TRPV1 agonists, capsaicin and resiniferatoxin (RTX), upregulated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70 and Hsp90 respectively, while the TRPV1 antagonists, capsazepine and AMG-9810, attenuated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70, Hsp90, respectively. Capsaicin was also shown to activate HSF-1. These findings suggest that heat-sensing and signaling in mammalian cells is dependent on TRPV channels in the plasma membrane. Thus, TRPV channels may be important drug targets to inhibit or restore the cellular stress response in diseases with defective cellular proteins, such as cancer, inflammation and aging.  相似文献   

6.
7.
8.
Sensory hair cells of the inner ear are sensitive to death from aging, noise trauma, and ototoxic drugs. Ototoxic drugs include the aminoglycoside antibiotics and the antineoplastic agent cisplatin. Exposure to aminoglycosides results in hair cell death that is mediated by specific apoptotic proteins, including c-Jun N-terminal kinase (JNK) and caspases. Induction of heat shock proteins (Hsps) can inhibit JNK- and caspase-dependent apoptosis in a variety of systems. We have previously shown that heat shock results in robust upregulation of Hsps in the hair cells of the adult mouse utricle in vitro. In addition, heat shock results in significant inhibition of both cisplatin- and aminoglycoside-induced hair cell death. In this system, Hsp70 is the most strongly induced Hsp, which is upregulated over 250-fold at the level of mRNA 2 h after heat shock. Hsp70 overexpression inhibits aminoglycoside-induced hair cell death in vitro. In this study, we utilized Hsp70-overexpressing mice to determine whether Hsp70 is protective in vivo. Both Hsp70-overexpressing mice and their wild-type littermates were treated with systemic kanamycin (700 mg/kg body weight) twice daily for 14 days. While kanamycin treatment resulted in significant hearing loss and hair cell death in wild-type mice, Hsp70-overexpressing mice were significantly protected against aminoglycoside-induced hearing loss and hair cell death. These data indicate that Hsp70 is protective against aminoglycoside-induced ototoxicity in vivo.  相似文献   

9.
10.
Hsp70 genes are linked to the Xenopus major histocompatibility complex   总被引:2,自引:0,他引:2  
Some of the inducible forms of the heat shock protein 70 (Hsp70) gene family are encoded in the class III region of the major histocompatibility complex (MHC) of mammals. This study was undertaken to determine whether Hsp 70 genes are linked to the MHC of Xenopus, an amphibian last sharing a common ancestor with mammals 300–350 million years ago. Segregation analyses involving seven haplotypes demonstrated the linkage of two or three inducible Hsp70 genes to the frog MHC. Another Hsp70 gene is not closely linked to the MHC. We conclude that the physical association of MHC class I and class II genes with Hsp70 genes is ancient. Correspondence to: M. F. Flajnik.  相似文献   

11.
Eggs of the American horseshoe crab, Limulus polyphemus L., develop on sandy estuarine beaches during the spring and summer, and are potentially vulnerable to thermal stress during the 3-4 weeks of development to the first instar (trilobite) larval stage. In many marine taxa, heat shock (stress) proteins (Hsp's) help individuals acclimate to stresses by restoring the proper folding of cellular proteins whose shape has been altered by temperature shock or other forms of environmental stress. We examined the survival of embryos and first instar (trilobite) larvae following heat shock, and compared the levels of Hsp70 in heat shocked and control animals. Animals acclimated to 13 or 22 °C had close to 100% survival when heat shocked for 3 h at 35 or 40 °C, but exposure to 45 °C for 3 h was lethal. To study the effect of heat shock on Hsp70 production under environmentally realistic conditions, animals were acclimated to either 13 or 22 °C, heat-shocked at 35 °C for 3 h, and soluble proteins were extracted following 0, 2, 4, or 6 h recovery at 22 °C. The relative amounts of Hsp70 in horseshoe crab embryos and larvae were examined using SDS-PAGE and Western blotting. Relative to controls animals held at a constant temperature, there was a slight elevation of Hsp70 only among heat shocked trilobite larvae in the 6 h recovery treatment. Hsp70 levels did not differ significantly between control and heat shocked embryos. Horseshoe crabs have adapted to living in a thermally stressful environment by maintaining a high baseline (constitutive) level of cellular stress proteins such as Hsp70, rather than by synthesizing inducible Hsp's when stressful temperatures are encountered. This may be an effective strategy given that the heat shocks encountered by intertidal embryos and larvae occur regularly as a function of diurnal and tidal temperature changes.  相似文献   

12.
Heat shock proteins play an important role as molecular chaperones of the cell. Inducible heat shock protein 70 is rapidly synthesised in response to numerous stressors and monocytes are sensitive to changes in core temperature resulting in a circadian variation of Hsp70 expression. Monocytes were isolated via density centrifugation from nine healthy male volunteers at 5 am, 1 pm and 9 pm, representing the nadir (5 am), peak (9 pm) and intermediate (1 pm) of Hsp70 expression in the 24-h cycle. Analysis of freshly isolated monocytes for Hsp70 expression confirmed Hsp70 levels at the three selected time points. Monocytes were subjected to in vitro heat shock at 40°C (±0.1) for 90 min with a 90 min 37°C (±0.1) exposure acting as a control. A significant increase in Hsp70 was observed at 5 am (p < 0.001) and 1 pm (p = 0.028) at 40°C when compared to 37°C but not at 9 pm (p = 0.19). A significant increase was also observed from the basal levels of Hsp70, measured on freshly isolated monocytes and the levels detected after heat shock at 40°C at 5 am (p < 0.001) and 1 pm (p = 0.001), which was not observed at 9 pm (p = 0.15). Furthermore, a significant correlation was observed in the heat shock response at 40°C and that obtained at 37°C (p < 0.001). In conclusion, the heat shock response in monocytes is directly proportional to the amount of Hsp70 present in the cells and the stress response may be much higher at different times of the day.  相似文献   

13.
Glutamine (GLN) has been shown to protect cells, tissues, and whole organisms from stress and injury. Enhanced expression of heat shock protein (HSP) has been hypothesized to be responsible for this protection. To date, there are no clear mechanistic data confirming this relationship. This study tested the hypothesis that GLN-mediated activation of the HSP pathway via heat shock factor-1 (HSF-1) is responsible for cellular protection. Wild-type HSF-1 (HSF-1+/+) and knockout (HSF-1–/–) mouse fibroblasts were used in all experiments. Cells were treated with GLN concentrations ranging from 0 to 16 mM and exposed to heat stress injury in a concurrent treatment model. Cell viability was assayed with phenazine methosulfate plus tetrazolium salt, HSP-70, HSP-25, and nuclear HSF-1 expression via Western blot analysis, and HSF-1/heat shock element (HSE) binding via EMSA. GLN significantly attenuated heat-stress induced cell death in HSF-1+/+ cells in a dose-dependent manner; however, the survival benefit of GLN was lost in HSF-1–/– cells. GLN led to a dose-dependent increase in HSP-70 and HSP-25 expression after heat stress. No inducible HSP expression was observed in HSF-1–/– cells. GLN increased unphosphorylated HSF-1 in the nucleus before heat stress. This was accompanied by a GLN-mediated increase in HSF-1/HSE binding and nuclear content of phosphorylated HSF-1 after heat stress. This is the first demonstration that GLN-mediated cellular protection after heat-stress injury is related to HSF-1 expression and cellular capacity to activate an HSP response. Furthermore, the mechanism of GLN-mediated protection against injury appears to involve an increase in nuclear HSF-1 content before stress and increased HSF-1 promoter binding and phosphorylation. knockout cells; amino acid; heat stress mechanism  相似文献   

14.
15.
16.
Death-inducing ligands tumor necrosis factor alpha (TNFα) and Fas ligand (FasL) do not kill cultured astrocytes; instead they induce a variety of chemokines including macrophage-inflammatory protein-1α/CC chemokine ligand 3 (CCL3), monocyte chemoattractant protein-1 (CC CCL-2), macrophage-inflammatory protein-2/CXC chemokine ligand 2 (CXCL2, a murine homologue of interleukin 8), and interferon-induced protein of 10 kDa (CXCL10). Induction is enhanced by protein synthesis inhibition suggesting the existence of endogenous inhibitors. ERK, NF-κB, heat shock factor-1 (HSF-1) and heat shock proteins were examined for their possible roles in signal transduction. Inhibition of ERK activation by PD98059 partially inhibited expression of all but FasL-induced CXCL10. Although inhibition of NF-κB DNA binding inhibited chemokine induction, PD98059 did not inhibit TNFα-induced NF-κB DNA binding suggesting that ERK serves an NF-κB-independent pathway. Heat shock itself induced astrocytic chemokine expression; both TNFα and FasL induced HSF-1 DNA binding and Hsp72 production; and Hsp72-induced chemokine expression. Inhibition of either HSF-1 binding with quercetin or heat shock protein synthesis with KNK437 compromised chemokine induction without compromising cell survival. These data suggest that the induction of heat shock proteins via HSF-1 contribute to the TNFα- and FasL-induced expression of chemokines in astrocytes.  相似文献   

17.
18.
19.
Heat shock proteins are recognized as significant participants in immune reactions. In this study, we have demonstrated that the cell surface presentation of MHC class I antigen was increased in tandem with increased heat shock protein 70 (HSP70) expression and the immunogenicity of rat T-9 glioma cells was enhanced by hyperthermia. T-9 cells showed growth inhibition for 24 h after the heat treatment at 43 degrees C for 1 h in vitro, but then resumed a normal growth rate. HSP70 expression reached a maximum at 24 h after heating. Flow cytometric analysis revealed a significant increase in MHC class I antigen on the surface of the heated cells. The augmentation of MHC class I surface expression started 24 h after heating and reached a maximum 48 h after heating. The expression of other immunologic mediators, such as intracellular adhesion molecule-1 (ICAM-1) and MHC class II antigens, did not increase. In an in vivo experiment using immunocompetent syngeneic rats (F344), growth of the heated T-9 cells, with augmentation of MHC class I antigen surface expression, was significantly inhibited, while the cells grew progressively in nude rats (F344/N Jcl-rnu). Furthermore, compared with lymphocytes from non-immunized (PBS only injection) rats or rats injected with non-heated T-9 cells, the splenic lymphocytes of the rats in which the heated T-9 cells were injected displayed specific cytotoxicity against T-9 cells. These results suggest that HSP70 is an important modulator of tumor cell immunogenicity, and that hyperthermic treatment of tumor cells can induce the host antitumor immunity via the expression of HSP70. These results may benefit further efforts on developing novel cancer immunotherapies based on hyperthermia.  相似文献   

20.
In recent years, there are an increasing number of proteomics studies that investigated the alterations in the protein expression relevant to human diseases but none for stroke. We, therefore, attempted such a study in a paradigm of focal cerebral ischemia in rat. Rats were subjected to cerebral ischemia by unilateral occlusion of the middle cerebral artery. Global protein analysis was performed after 24 h on the lesioned and sham-control cerebral cortex using two-dimensional gel electrophoresis. Protein spots with more than a 3-fold change in intensity were identified by mass spectrometry. Middle cerebral artery occlusion (MCAO) caused infarct volume of 18–22% predominantly in the cortex of the lesioned hemisphere. Two-dimensional gel electrophoresis resolved about 1500 protein spots of which only 12 were significantly upregulated by 3–46-fold. Three spots were identified to be dihydropyrimidinase-related protein 2 (DRP-2, also known as collapsin response mediator protein 2 (CRMP-2) or turned on after division, 64 kD protein (TOAD-64)). The spots varied in pI values only and this may reflect different phosphorylation status of the same protein. Two spots were identified as spectrin α II chain (rat fragment, also known as α-fodrin or non-erythroid α chain, SPNA-2); and one spot each for heat shock cognate protein 70 pseudogene 1 (HSC70-ps1, also known as heat shock protein 8 pseudogene 1), and tropomodulin 2 (Tmod2). The upregulation of protein expression was corroborated by observed upregulation of mRNA expression. The remaining five spots were not identified satisfactorily. As DRP-2, spectrin, and Tmod2 are involved in axonal and neurite growth as well as synaptic plasticity and maturation, the presently observed upregulation of the expression of these proteins may indicate active neuroregeneration and repair at 24 h after the induction of cerebral ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号