首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Masting is usually considered as a population phenomenon but it results from individuals?? reproductive patterns. Studies of individual patterns of seed production and their synchrony are essential to an understanding of the mechanisms of masting. The aim of this study was to find the relationship between population and individual levels of masting. We examined individuals?? contribution to masting, considering their endogenous cycles, interannual variability and associated weather cues, as well as inter-individual synchrony of fruit production. We studied masting of Sorbus aucuparia L., which in Europe is one of the most common trees bearing fleshy fruits and is strongly affected by a specialized seed predator. The data are 11-year measurements of fruit production of 250 individuals distributed on a 27-ha area of subalpine forest in the Western Carpathians (Poland). Population- and individual-level interannual variability of fruit production was moderate. Synchrony among individuals was relatively high for all years, but the trees were much less synchronized in heavy crop years than in years of low fruit production. Weak synchrony among trees for heavy production years suggests that the predator satiation hypothesis does not explain the observed masting behavior. Fruit production, both at individual and at population level, was highly correlated with weather conditions. However, the presence of masting cannot be fully explained by the resource-matching hypothesis either. We suggest that adverse weather conditions effectively limit fruit production, causing high inter-individual synchrony in low crop years, whereas the unsynchronized heavy crop years seem to have been affected by individually available resources.  相似文献   

2.
Many plant species produce large fruit crops in some years and then produce few or no fruits in others. Synchronous, inter‐annual variation in plant reproduction is known as ‘masting’ and its adaptive significance has yet to be fully resolved. For 8 consecutive years, I quantified every fruit produced by 22 females of a New Zealand tree species (Dysoxylum spectabile), which has an unusual habit of taking a full calendar year to mature fruits after flowering. Fruit production varied strongly among years and was tightly synchronized among trees. Annual variability in fruit production declined with total reproductive output, indicating trees with lower fecundity exhibited a stronger tendency to mast. Although unrelated to temperature, annual fruit production was positively related to precipitation during annual periods of fruit development, and negatively related to fruit production in the previous year. Seedlings had higher rates of survivorship in a wet, high‐seed year than in a dry, low‐seed year, suggesting that seedlings might be drought sensitive. Therefore, D. spectabile produced large fruit crops during periods of high rainfall prior to fruit maturation, which may enhance survivorship of drought‐intolerant seeds. Results were inconsistent with several hypotheses that are widely believed to be the most likely explanations for masting. Instead, results were consistent with the environmental prediction hypothesis, suggesting that this hypothesis may be more important than previously appreciated.  相似文献   

3.
Weather and its lagged effects have been associated with interannual variability and synchrony of fruit production for several tree species. Such relationships are used often in hypotheses relating interannual variability in fruit production with tree resources or favourable pollinating conditions and with synchrony in fruit production among sites through the Moran effect (the synchronisation of biological processes among populations driven by meteorological variability) or the local availability of pollen. Climatic teleconnections, such as the North Atlantic Oscillation (NAO), representing weather packages, however, have rarely been correlated with fruit production, despite often being better predictors of ecological processes than is local weather. The aim of this study was to test the utility of seasonal NAO indices for predicting interannual variability and synchrony in fruit production using data from 76 forests of Abies alba, Fagus sylvatica, Picea abies, Pseudotsuga menziesii, Quercus petraea, and Q. robur distributed across central Europe. Interannual variability in fruit production for all species was significantly correlated with seasonal NAO indices, which were more prominently important predictors than local meteorological variables. The relationships identified by these analyses indicated that proximal causes were mostly responsible for the interannual variability in fruit production, supporting the premise that local tree resources and favourable pollinating conditions are needed to produce large fruit crops. Synchrony in fruit production between forests was mainly associated with weather and geographical distance among sites. Also, fruit production for a given year was less variable among sites during warm and dry springs (negative spring NAO phases). Our results identify the Moran effect as the most likely mechanism for synchronisation of fruit production at large geographical scales and the possibility that pollen availability plays a role in synchronising fruit production at local scales. Our results highlight the influence of the NAO on the patterns of fruit production across western Europe.  相似文献   

4.
Masting is the intermittent and synchronous production of large crops, but its relation to tree growth remains elusive despite the ecological relevance of mast seeding. The production of huge fruit crops has been linked to the accumulation and consumption of resources as nutrients and carbohydrates, but no conclusive assessment has supported this assumption. To evaluate if masting takes place once trees’ canopies reach maximum foliage, changes in canopy cover were measured in Quercus ilex susbp. ballota stands before and after a masting event using the normalized difference vegetation index (NDVI). The results on the whole underline that masting in Q. ilex occurred once maximum levels of NDVI and canopy cover were reached. After the masting event, NDVI dropped, leaf shedding increased and trees produced shorter shoots, narrower tree rings and fewer acorns than before the masting event. These findings support our contention that an increase in canopy cover precedes masting.  相似文献   

5.
Seed production in many plants is characterized by large interannual variation, which is synchronized at subcontinental scales in some species but local in others. The reproductive synchrony affects animal migrations, trophic responses to resource pulses and the planning of management and conservation. Spatial synchrony of reproduction is typically attributed to the Moran effect, but this alone is unable to explain interspecific differences in synchrony. We show that interspecific differences in the conservation of seed production-weather relationships combine with the Moran effect to explain variation in reproductive synchrony. Conservative timing of weather cues that trigger masting allows populations to be synchronized at distances >1000 km. Conversely, if populations respond to variable weather signals, synchrony cannot be achieved. Our study shows that species vary in the extent to which their weather cueing is spatiotemporally conserved, with important consequences, including an interspecific variation of masting vulnerability to climate change.  相似文献   

6.
Genetic transformation of perennial tropical fruits   总被引:4,自引:0,他引:4  
Summary Genetic transformation provides the means for modifying single horticultural traits in perennial plant cultivars without altering their phenotype. This capability is particularly valuable for perennial plants and tree species in which development of new cultivars is often hampered by their long generation time, high levels of heterozygosity, nucellar embryony, etc. Most of these conditions apply to many tropical and subtropical fruit crops. Targeting specific gene traits is predicated upon the ability to regenerate elite selections of what are generally trees from cell and tissue cultures. The integrity of the clone would thereby remain unchanged except for the altered trait. This review provides an overview of the genetic transformation of perennial tropical and subtropical fruit crops, i.e., citrus (Citrus spp.), banana and plantain (Musa groups AAA, AAB, ABB, etc.), mango (Mangifera indica L.), pineapple (Ananas comosus L.), avocado (Persea americana Mill.), passion fruit (Passiflora edulis L.), longan (Dimocarpus longan Lour.), and litchi (Litchi chinensis Sonn.).  相似文献   

7.
Fruit crops are regarded as important health promoters and constitute a major part of global agricultural production, and Rosaceae species are of high economic impact. Their culture is threatened by bacterial diseases, whose control is based on preventative treatments using compounds of limited efficacy and negative environmental impact. One of the most economically relevant examples is the pathogen Xanthomonas arboricola pv. pruni (Xap) affecting Prunus spp. The plant immune response against pathogens can be triggered and amplified by plant elicitor peptides (Peps), perceived by specific receptors (PEPRs). Although they have been described in various angiosperms, scarce information is available on Rosaceae species. Here, we identified the Pep precursor (PROPEP), Pep and PEPR orthologues of 10 Rosaceae species and confirmed the presence of the Pep/PEPR system in this family. We showed the perception and elicitor activity of Rosaceae Peps using the Prunus–Xap pathosystem as proof‐of‐concept. Treatment with nanomolar doses of Peps induced the corresponding PROPEP and a set of defence‐related genes in Prunus leaves, and enhanced resistance against Xap. Peps from the same species had the highest efficiencies. Rosaceae Peps could potentially be used to develop natural, targeted and environmentally friendly strategies to enhance the resistance of Prunus species against biotic attackers.  相似文献   

8.
Rock-degrading endophytic bacteria in cacti   总被引:1,自引:1,他引:0  
A plant–bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2, produce volatile and non-volatile organic acids, and reduce rock particle size to form mineral soil. This study revealed the presence of large populations of culturable endophytic bacteria inside the seeds extracted from wild plants, from seeds extracted from the guano of bats feeding on cactus fruit, in seedlings growing from these seeds, in the pulp of fruit, and in small, mature wild plants, and are comparable in size to populations of endophytic populations in some agricultural crops. The dominant culturable endophytes were isolates of the genera Bacillus spp., Klebsiella spp., Staphylococcus spp., and Pseudomonas spp. Based on partial sequencing of the 16s rRNA gene, the isolated strains had low similarity to known strains in these genera. However, these strains have higher molecular similarity among endophytes obtained from seeds, endophytes from roots, and some bacterial strains from the rhizoplane. Seedlings developed from seeds with endophytes contain the similar species of endophytes in their shoots, possibly derived from the seeds. This study shows the involvement of endophytic bacteria in rock weathering by cacti in a hot, subtropical desert and their possible contribution to primary colonization of barren rock. This study proposes that cacti capable of acquiring diverse populations of endophytes may give them an evolutionary advantage to gain a foothold on highly uncompromising terrain.  相似文献   

9.
Elucidating the mechanisms and conditions facilitating the formation of biodiversity are central topics in evolutionary biology. A growing number of studies imply that divergent ecological selection may often play a critical role in speciation by counteracting the homogenising effects of gene flow. Several examples involve phytophagous insects, where divergent selection pressures associated with host plant shifts may generate reproductive isolation, promoting speciation. Here, we use ddRADseq to assess the population structure and to test for host‐related genomic differentiation in the European cherry fruit fly, Rhagoletis cerasi (L., 1758) (Diptera: Tephritidae). This tephritid is distributed throughout Europe and western Asia, and has adapted to two different genera of host plants, Prunus spp. (cherries) and Lonicera spp. (honeysuckle). Our data imply that geographic distance and geomorphic barriers serve as the primary factors shaping genetic population structure across the species range. Locally, however, flies genetically cluster according to host plant, with consistent allele frequency differences displayed by a subset of loci between Prunus and Lonicera flies across four sites surveyed in Germany and Norway. These 17 loci display significantly higher FST values between host plants than others. They also showed high levels of linkage disequilibrium within and between Prunus and Lonicera flies, supporting host‐related selection and reduced gene flow. Our findings support the existence of sympatric host races in R. cerasi embedded within broader patterns of geographic variation in the fly, similar to the related apple maggot, Rhagoletis pomonella, in North America.  相似文献   

10.
No previous studies have been conducted on the diversity and population of arbuscular mycorrhizal fungi (AMF) in relation to organically grown chili (Capsicum frutescens L.) in Thailand. This study was carried out to investigate the diversity and status of AMF populations at four organically managed farms in Ubon Ratchathani and Sisaket provinces. The effects of each AMF species on the growth and nutrient uptake of chili grown in sterile, organically managed soil were determined. Fourteen AM fungal taxa belonging to the genera Acaulospora (4 spp.), Entrophospora (1 sp.), Glomus (7 spp.) and Scutellospora (2 spp.) were found. Among these, Glomus was the dominant genus found at all sites, followed by Acaulospora. The spore density and root colonization of AMF on chili did not vary significantly among the sites. The effects of ten selected AMF species on the growth of chili showed that Gl. clarum RA0305 increased the growth, flowering, and fruit production of chili, and also increased the P uptake significantly, compared to non-mycorrhizal plants. This fungus showed the highest potential as a promoter of growth, flowering and yield in organically managed chili production.  相似文献   

11.
The reproductive success of animal-dispersed plants is closely linked to the number of seeds that they are able to disperse. The fruit crop size hypothesis states that a plant with large fruit crop size will attract more dispersers than a plant with a smaller fruit crop, which may result in more seeds being dispersed from the foremost. In this study, we experimentally examined the effect of crop size and other factors on primary seed dispersal in a neotropical shrub/tree, Casearia corymbosa (Flacourtiaceae). We used two predictive variables of reproductive success, which produce an accurate picture of seed dispersal ratio: fruit removal efficiency (proportion of a fruit crop removed by frugivores) and fruit removal success (relative contribution of each individual tree to the number of fruits removed in the population). We established two levels of fruit crop size at the C. corymbosa individuals, using plants with large (150 fruits) and small crops (50 fruits). We found that individual plants with larger crops had significantly higher values of fruit removal efficiency (92.6%) and success (5%) than plants with smaller crops (69.3% and 1.3%, respectively). Fruit removal efficiency was related to vegetation type, plant height and fruit width, but the variance explained by these variables was low ( < 8%). Fruit removal success was significantly related to crop size ( > 90% of the variance explained). These results suggest that fruit removal efficiency and success are strongly related to fruit crop size of C. corymbosa plants.  相似文献   

12.
“Bottom‐up” influences, that is, masting, plus population density and climate, commonly influence woodland rodent demography. However, “top‐down” influences (predation) also intervene. Here, we assess the impacts of masting, climate, and density on rodent populations placed in the context of what is known about “top‐down” influences. To explain between‐year variations in bank vole Myodes glareolus and wood mouse Apodemus sylvaticus population demography, we applied a state‐space model to 33 years of catch‐mark‐release live‐trapping, winter temperature, and precise mast‐collection data. Experimental mast additions aided interpretation. Rodent numbers in European ash Fraxinus excelsior woodland were estimated (May/June, November/December). December–March mean minimum daily temperature represented winter severity. Total marked adult mice/voles (and juveniles in May/June) provided density indices validated against a model‐generated population estimate; this allowed estimation of the structure of a time‐series model and the demographic impacts of the climatic/biological variables. During two winters of insignificant fruit‐fall, 6.79 g/m2 sterilized ash seed (as fruit) was distributed over an equivalent woodland similarly live‐trapped. September–March fruit‐fall strongly increased bank vole spring reproductive rate and winter and summer population growth rates; colder winters weakly reduced winter population growth. September–March fruit‐fall and warmer winters marginally increased wood mouse spring reproductive rate and September–December fruit‐fall weakly elevated summer population growth. Density dependence significantly reduced both species' population growth. Fruit‐fall impacts on demography still appeared after a year. Experimental ash fruit addition confirmed its positive influence on bank vole winter population growth with probable moderation by colder temperatures. The models show the strong impact of masting as a “bottom‐up” influence on rodent demography, emphasizing independent masting and weather influences; delayed effects of masting; and the importance of density dependence and its interaction with masting. We conclude that these rodents show strong “bottom‐up” and density‐dependent influences on demography moderated by winter temperature. “Top‐down” influences appear weak and need further investigation.  相似文献   

13.
The stone fruit genus Prunus, within the family Rosaceae, comprises more than 230 species, some of which have great importance or value as ornamental or fruit crops. Prunus are affected by numerous viruses and viroids linked to the vegetative propagation practices in many of the cultivated species. To date, 44 viruses and three viroids have been described in the 9 main cultivated Prunus species. Seven of these viruses and one viroid have been identified in Prunus hosts within the last 5 years. This work addresses recent advances and prospects in the study of viruses and viroids affecting Prunus species, mostly concerning the detection and characterisation of the agents involved, pathogenesis analysis and the search for new control tools. New sequencing technologies are quickly reshaping the way we can identify and characterise new plant viruses and isolates. Specific efforts aimed at virus identification or data mining of high‐throughput sequencing data generated for plant genomics‐oriented purposes can efficiently reveal the presence of known or novel viruses. These technologies have also been used to gain a deeper knowledge of the pathogenesis mechanisms at the gene and miRNA expression level that underlie the interactions between Prunus spp. and their main viruses and viroids. New biotechnological control tools include the transfer of resistance by grafting, the use of new sources of resistance and the development of gene silencing strategies using genetic transformation. In addition, the application of next generation sequencing and genome editing techniques will contribute to improving our knowledge of virus–host interactions and the mechanisms of resistance. This should be of great interest in the search to obtain new Prunus cultivars capable of dealing both with known viruses and viroids and with those that are yet to be discovered in the uncertain scenario of climate change.  相似文献   

14.
Bactrocera latifrons (Hendel) is a tephritid fruit fly of primarily Asian distribution that has invaded Hawaii and, more recently, the continent of Africa (Tanzania and Kenya). It primarily infests solanaceous fruits, so has the potential to impact production of crops such as peppers (Capsicum annuum L. and Capsicum frutescens L.), eggplant (Solanum melongena L.), African eggplant (Solanum aethiopicum L.) and tomatoes (Solanum lycopersicum L.). Because little work has been done to develop suppression techniques for this fruit fly species, field cage tests of the effectiveness of a commercially available bait spray, GF‐120NF Fruit Fly Bait, against wild B. latifrons were conducted. Sexually mature B. latifrons adults (75 male and 75 female) were introduced to both a control cage and a treatment cage, each of which held six fruiting Anaheim chili pepper (C. annuum L.) plants. Fruits were harvested, and assessed for infestation, both before and after the application of the bait spray in the treatment cage. There was no difference in infestation rate between control and treatment cages before the application of the bait spray, whereas there was a significantly lower infestation rate in treatment cages following the application of the bait spray. Post‐spray infestation rate in the treatment cages (in two separate, replicated bioassays) was always zero and no live flies were detected in the treatment cages at the end of the trials. The results of this study provide evidence that GF‐120NF Fruit Fly Bait should be effective in suppressing B. latifrons populations in the field.  相似文献   

15.
European forests are populated with a variety of wind‐pollinated tree species. Their pollen productivity and spatio‐temporal pattern are largely unknown. Long‐term data (17 years) collected at 22 sites across Austria were presented and the pollen production of 12 tree genera was analysed. We ranked the tree genera according to their pollen productivity taking actual tree abundances of the Austrian Forestry Inventory into account. The productivity varied strongly among tree genera with a maximum for Betula. Pollen production in Larix, Abies and Picea amounted to approximately 1/20, while in increasing order Salix, Quercus, Alnus, Populus and Fraxinus produced approximately 1/3 to 1/4 of the respective Betula estimate. In general, pollen quantity in broadleaves was higher than in conifers. We analysed the temporal pollen production pattern by means of hierarchical cluster analysis and identified three major groups: [(Fagus, Larix, Picea, Abies), (Alnus, Betula, Fraxinus)], [Carpinus],[Populus, Salix, Pinus, Quercus]. Distance matrices based on life‐history traits as well as molecular phylogeny were also constructed; they correlated significantly with each other by means of Mantel‐tests. However, there was no significant relationship between the distances on temporal pollen production with the other matrices. Intermittent or idiosyncratic pollen production was studied by means of deviation from expected means, skewness and spindle diagrams. We proposed that Fagus, Carpinus, Larix, Picea and Abies belong to ‘masting pollen producers’, while the remaining genera idiosyncratically produced pollen over the monitored period. Moreover we correlated the distance matrix of pollen production for each tree genus at each sampling site with respective ‘ecological distance matrices’ based on aerial and altitudinal distance among sites. Significant correlations were detected for tree genera (Fagus, Larix, Picea) which were also prone to pollen masting, thus indicating a Moran effect.  相似文献   

16.
ABSTRACT Fleshy fruit is a key food resource for both game and nongame wildlife, and it may be especially important for migratory birds during fall and for resident birds and mammals during winter. Land managers need to know how land uses affect the quantities and species of fruit produced in different forest types and how fruit production varies seasonally and as young stands mature. During June 1999-April 2004, we quantified fleshy fruit abundance monthly in 31 0.1-ha plots in 2 silvicultural treatments: 1) young 2-age stands with low basal area retention, created by shelterwood-with-reserves regeneration cuts (R; harvested 1998–1999); and 2) uncut mature closed-canopy stands (M) in 2 common southern Appalachian, USA, forest types (upland hardwood and cove hardwood [CH] forests). Over the 5-year study period, total dry pulp biomass production was low and relatively constant in both M forest types (x̄ = 0.5-2.0 kg/ha). In contrast, fruit production increased each year in R, and it was 5.0 to 19.6 times greater in R than in M stands beginning 3–5 years postharvest. Two disturbance-associated species, pokeweed (Phytolacca americana) and blackberry (Rubus allegheniensis), produced a large proportion of fruit in R but showed different patterns of establishment and decline. Huckleberry (Gaylussacia ursina) recovered rapidly after harvest and was a major producer in both silvicultural treatments and forest types each year. Several herbaceous species that are not associated with disturbance produced more fruit in CHR. Few species produced more fruit in M than in R. Fruit production by most tree species was similar between R and M, due to fruiting by stump sprouts in R within 1–3 years postharvest. Fruit availability was highest during summer and early fall. American holly (Ilex opaca), sumac (Rhus spp.), and greenbriar (Smilax spp.) retained fruit during winter months but were patchy in distribution. In the southern Appalachians, young recently regenerated stands provide abundant fruit compared to mature forest stands and represent an important source of food for wildlife for several years after harvest. Fruit availability differs temporally and spatially because of differences in species composition, fruiting phenology, and the dynamic process of colonization and recovery in recently harvested stands. Land managers could enhance fruit availability for many game and nongame species by creating or maintaining young stands within forests.  相似文献   

17.
We studied the efficiency (proportion of the crop removed) and quantitative effectiveness (number of fruits removed) of dispersal of Miconia fosteri and M. serrulata (Melastomataceae) seeds by birds in lowland tropical wet forest of Ecuador. Specifically, we examined variation in fruit removal in order to reveal the spatial scale at which crop size influences seed dispersal outcome of individual plants, and to evaluate how the effect of crop size on plant dispersal success may be affected by conspecific fruit abundance and by the spatial distribution of frugivore abundance. We established two 9-ha plots in undisturbed terra-firme understory, where six manakin species (Pipridae) disperse most seeds of these two plant species. Mean levels of fruit removal were low for both species, with high variability among plants. In general, plants with larger crop sizes experienced greater efficiency and effectiveness of fruit removal than plants with smaller crops. Fruit removal, however, was also influenced by microhabitat, such as local topography and local neighborhood. Fruit-rich and disperser-rich patches overlapped spatially for M. fosteri but not M. serrulata, nonetheless fruit removal of M. serrulata was still much greater in fruit-rich patches. Fruit removal from individual plants did not decrease in patches with many fruiting conspecifics and, in fact, removal effectiveness was enhanced for M. fosteri with small crop sizes when such plants were in patches with more conspecifics. These results suggest that benefits of attracting dispersers to a patch balanced or outweighed the costs of competition for dispersers. Spatial pattern of fruit removal, a measure of plant fitness, depended on a complex interaction among plant traits, spatial patterns of plant distribution, and disperser behavior.  相似文献   

18.
Phylogenetic analysis of morphology in Prunus reveals extensive homoplasy   总被引:1,自引:0,他引:1  
Prunus is a large and economically important genus with considerable morphological variation. The evolution of vegetative and reproductive characters are examined here by parsimony reconstruction on trees obtained from data of ITS, trnL-trnF, trnS-trnG, and 25 morphological characters of 37 species of Prunus and representatives of eight other genera of Rosaceae. Prunus grayana is supported as the sister species to the rest of Prunus and the common ancestor of Prunus is reconstructed as having deciduous and serrated leaves, leafy racemes and fruit with well-developed pericarp. All diagnostic characters used in classification of the raceme-bearing species show some degree of convergent evolution and do not reflect phylogenetic relatedness. Some character states, such as evergreen foliage and entire leaf margin, are likely adaptations to environments with higher humidity and mean temperature. However, these hypotheses need to be tested by including species formerly classified in genus Pygeum, which were not available for this study. A clade consisting of subgenera Prunus, Amygdalus, Emplectocladus and section Microcerasus (formerly in subgenus Cerasus) is characterized by having axillary buds organized in groups of three, two of which give rise to flowers or inflorescences and one to a vegetative shoot. Fruits with thin pericarps are common in Prunus but they arose more than once independently. Dry fruits also evolved more than once, and only in species of Prunus living in arid environments, suggesting that this feature is another example of adaptation. Maddenia hypoleuca is nested within Prunus and the morphological characters used to segregate it from Prunus have been misinterpreted or are also found in species of Prunus previously classified in genus Pygeum.  相似文献   

19.
The Pacific islands have a diverse range of food and cash crops with indigenous and introduced nematode problems. The staple food crops have serious nematode pests, such as Meloidogyne spp. on sweet potato, Hirschmanniella miticausa causing corm rot of taro, and Pratylenchus coffeae and Radopholus sp. producing tuber dry rot of yams. Bananas are infested with P. coffeae or R. similis, citrus with Tylenchulus semipenetrans, rice with Aphelenchoides besseyi, and ginger with Meloidogyne spp. and R. similis. Rotylenchulus reniformis, P. zeae, P. brachyurus, and Helicotylenchus spp. are important on all of these and other crops, such as sugarcane, passion fruit, pawpaw, and cassava. Meloidogyne spp. cause serious damage to local and introduced leaf and fruit vegetables and other crops, such as tobacco, sugarcane, pawpaw, black pepper, and pyrethrum. Many other plant-parasitic genera and species, some undescribed, occur in the Pacific, and there are many islands still to be investigated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号