首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions for isolation and culture of porcine myogenic satellite cells.   总被引:5,自引:0,他引:5  
Myogenic satellite cells were isolated from semimembranosus muscles of 4-8 week-old pigs. Muscles were ground and incubated in 0.8 mg/ml Pronase solution for 40 min at 37 degrees C. Following enzymatic digestion, cells were separated from muscle debris by differential centrifugation and sequential filtering through 500 and 53 microns nylon mesh. Primary cultures grown in 16 mm diameter cell culture wells were used to evaluate five sera, media, and substrata for their ability to promote satellite cell proliferation and differentiation. Porcine satellite cell proliferation and myotube formation were optimized in cultures grown on gelatin-coated substratum in the presence of Minimum Essential Medium-alpha supplemented with 10% fetal bovine serum (FBS) (P less than 0.01). Maximum fusion was induced by 48 hr exposure to 2% FBS, horse serum, or lamb serum. These data 1) document the first evidence that myogenic satellite cells can be isolated from porcine skeletal muscle, and 2) identify culture conditions which optimize proliferation and myotube formation of porcine satellite cells.  相似文献   

2.
Myogenic satellite cells were isolated from the pectoralis major muscle of young growing tom turkeys. These cells were capable of proliferating and forming large multinucleated myotubes in vitro. Of 36 media-sera combinations evaluated, McCoy's 5A medium containing 15% chicken serum (CS) promoted the greatest level of proliferation and subsequent myotube formation when cells were induced to differentiate (P less than 0.05). Myotube formation was maximized following exposure of cultures to Dulbecco's Modified Eagle's Medium (DMEM) containing 1% horse serum (HS; DMEM-1% HS) for 4 days. Satellite cells grown under these conditions generally resulted in cultures containing greater than 90% fused nuclei. Cells plated in the presence of DMEM-10% HS resulted in greater attachment and larger cultures (and consequently a greater fused nuclei number) when transferred to growth media than similarly grown cultures plated in McCoy's 5A medium-10% CS, regardless of substrata tested (P less than 0.05). The greatest proliferation and myotube formation was seen in cultures grown in gelatin-coated wells. Proliferation was maximized in McCoy's 5A medium containing 18% CS, although this was not significantly different than the proliferation with media containing 15% CS (P greater than 0.05). Our results (1) document that the postnatal myogenic satellite cell can be isolated from the turkey in sufficient quantities for biological studies and (2) identify culture conditions which optimize proliferation and differentiation of these cells in vitro.  相似文献   

3.
Myogenic satellite cells were isolated from control and dystrophic hamster diaphragms to examine cellular mechanisms involved in the physiology of muscular dystrophy. The Bio 14.6 dystrophic hamster, which possesses a defect in the delta-sarcoglycan gene, develops biochemical and physical symptoms of Duchenne-like and limb girdle muscular dystrophies. Because primary cultures of the control and dystrophic satellite cells became extensively contaminated with non-myogenic cells during proliferation, cell clones were developed to provide pure cultures for study. Cell culture conditions were optimized with the use of Ham's F-12K medium containing 10% fetal bovine serum +5% horse serum + 10 ng/mL basic fibroblast growth factor + 50 microg/mL porcine gelatin. Proliferation rates of the two clonal cultures were similar between the two lines. Satellite cell-derived myotubes from both primary cultures and clones differed between control and dystrophic animals. Dystrophic myotubes tended to be long and narrow, while the control-derived myotubes were broader. Measurement of muscle-specific creatine kinase during differentiation revealed that the dystrophic myotubes possessed higher creatine kinase levels than control myotubes (up to 146-fold at 168 h). The results demonstrate that satellite cells can be isolated from the hamster and may provide a useful tool to study muscular dystrophies associated with defects in the sarcoglycan complex and the involvement of sarcoglycans in normal skeletal muscle growth and development.  相似文献   

4.
5.
Summary The aim of this study was to test the versatility of a new basal cell culture medium, GTSF-2. In addition to traditional growth-factors, GTSF-2 contains a blend of three sugars (glucose, galactose, and fructose) at their physiological levels. For these studies, we isolated normal endothelial cells from human, bovine, and rat large blood vessels and microvessels. In addition, GTSF-2 was also tested as a replacement for high-glucose-containing medium for PC12 pheochromocytoma cells and for other, transformed cell lines. The cell growth characteristics were assessed with a novel cell viability and proliferation assay, which is based on the bioreduction of the fluorescent dye, Alamar Blue. After appropriate calibration, the Alamar Blue assay was found to be equivalent to established cell proliferation assays. Alamar Blue offers the advantage that cell proliferation can be measured in the same wells over an extended period of time. For some of the cell types (e.g., endothelial cells isolated from the bovine aorta, the rat adrenal medulla, or the transformed cells), proliferation in unmodified GTSF-2 was equivalent to that in the original culture media. For others cell types (e.g., human umbilical vein endothelial cells and PC12 cells), GTSF-2 proved to be a superior growth medium, when supplemented with simple additives, such as endothelial cell growth supplement (bFGF) or horse serum. Our results suggest that GTSF-2 is a versatile basal medium that will be useful for studying organ-specific differentiation in heterotypic coculture studies.  相似文献   

6.
An attempt was made to establish long-term cultures of marrow cells from genetically anaemic W/Wv mice. Two batches of horse sera were used. One batch of horse serum (HS-lot A) supported long-term maintenance (up to 20 weeks) of granulopoiesis in vitro. The number of suspension cells in W/Wv marrow culture was maintained at the same level as that in the control +/+ culture, but the number of granulocyte-macrophage progenitor cells (GM-CFC) and the ratio of immature to mature granulocytes were at a lower level than those in +/+ culture. These data suggest that haemopoietic progenitors in W/Wv cultures maintain a higher level of differentiation, and hence an increased self-renewal than those in +/+ cultures. Another batch of horse serum (HS-lot B) was less effective in the maintenance of the cultures, and the cultures deteriorated within 10 weeks. Addition of bacterial lipopolysaccharide (LPS) induced increased granulopoiesis in +/+ cultures, whereas such treatment resulted in the depletion of suspension cells in W/Wv cultures. The results suggest that haemopoietic cells of W/Wv mouse cannot cope with the strong stimulus for differentiation that occurs after the administration of LPS, although the cells can continue a moderately increased self-renewal and differentiation, as indicated by the results in the culture with HS-lot A.  相似文献   

7.
Satellite cells, isolated from hind limb of normal C57BL/6J mice, differentiate in culture in the presence of concentrations of phorbol esters which inhibit differentiation of embryonic myoblasts. However, if phosphatidylserine containing liposomes were added to the culture medium together with TPA, differentiation of satellite cells was reversibly inhibited. Under these conditions, the withdrawal of these cells from the cell cycle still occurred as in untreated cells. Phosphatidylserine liposomes alone or liposomes containing phosphatidylcholine (either alone or in combination with TPA) had no effect on satellite cell differentiation. In the case of satellite cells from dystrophic C57BL/6J/dydy mice, TPA addition (0.1 microM) to the culture medium partially (about 70%) inhibited morphological and biochemical differentiation. This effect could be prevented by preincubating dystrophic satellite cells with liposomes containing phosphatidylcholine but not other phospholipids. These data indicate that it is possible to change the sensitivity to TPA of satellite cells by modifying the phospholipid composition of their plasma membrane. Possible relationships of these phenomena with activation of protein kinase C or phosphatidylinositol breakdown have been investigated. The results obtained are discussed with regard to possible modulation of the intracellular response to agonist binding.  相似文献   

8.
Summary The fatty acid composition of different kinds of commercially available serum used to supplement cell culture media differs widely. As compared with fetal bovine serum, horse and bovine calf serum have a very high content of linoleic acid (18:2) and are low in arachidonic acid (20:4). (Fatty acids are abbreviated as number of carbon atoms: number of double bonds). Swine serum contains substantial amounts of both 18:2 and 20:4. Only fetal bovine serum contains more than 1% docosahexaenoic acid (22:6). Considerable differences in fatty acid composition occur when cells are grown in media containing any of these different serum supplements. The 18:2 and 20:4 content of 3T3 mouse fibroblast phospholipids is highest when the medium contains horse serum, intermediate with bovine calf serum, and lowest with swine or fetal bovine serum. Likewise, the highest phospholipid 18:2 content in Madin-Darby canine kidney cells (MDCK) occurs when the medium contains horse serum. With MDCK cells, however, growth in swine serum produces the highest 20:4 content. The 3T3 cell phospholipids accumulate more than 1% 22:6 only when the medium contains fetal bovine serum, whereas in no case do the MDCK cell phospholipids accumulate appreciable amounts of 22:6. The fact that the cellular fattyacid composition is likely to change should be taken into account when changes are contemplated in the serum used to grow established cell lines. These studies were supported by Arteriosclerosis Specialized Center of Research Grant HL 14,230 from the National Heart, Lung, and Blood Institute, National Institutes of Health.  相似文献   

9.
It is shown that 2,2'-thiodiethanol, a product of yperite hydrolysis, strongly stimulates differentiation of chick embryo myogenic cells. In its presence myoblasts fused, yielding myotubes with the same efficiency in standard media for chick embryo fibroblast-like cell culture (containing 4% bovine serum and 1% chick serum) as in media specially designed to promote myoblast fusion (containing 10% horse serum and 5% chick serum). What is more, the myofibres formed in the presence of 0.1% 2,2'-thiodiethanol morphologically resembled more closely myofibres formed in vivo than those formed in the presence of horse serum.  相似文献   

10.
Abstract. An attempt was made to establish long-term cultures of marrow cells from genetically anaemic W/W v mice. Two batches of horse sera were used. One batch of horse serum (HS-lot A) supported long-term maintenance (up to 20 weeks) of granulopoiesis in vitro. The number of suspension cells in W/Wv marrow culture was maintained at the same level as that in the control +/+ culture, but the number of granulocyte-macrophage progenitor cells (GM-CFC) and the ratio of immature to mature granulocytes were at a lower level than those in +/+ culture. These data suggest that haemopoietic progenitors in W/Wv cultures maintain a higher level of differentiation, and hence an increased self-renewal than those in +/+ cultures. Another batch of horse serum (HS-lot B) was less effective in the maintenance of the cultures, and the cultures deteriorated within 10 weeks. Addition of bacterial lipopolysaccharide (LPS) induced increased granulopoiesis in +/+ cultures, whereas such treatment resulted in the depletion of suspension cells in W/Wv cultures. The results suggest that haemopoietic cells of W/Wv mouse cannot cope with the strong stimulus for differentiation that occurs after the administration of LPS, although the cells can continue a moderately increased self-renewal and differentiation, as indicated by the results in the culture with HS-lot A.  相似文献   

11.
Mechanical stress leads to satellite cell activation, which is an important event in the development, growth, and remodeling of postnatal skeletal muscle. Although there is a considerable knowledge on the events involved in skeletal muscle regeneration and development, the precise role of mechanical stress on activation of satellite cells remains unclear. Previously, satellite cells were isolated from adult bovine muscle and it was shown that the cells are multipotent, i.e., capable of proliferating and to differentiating into both myoblasts and adipocytes. This study investigated the cellular mechanisms by which cyclic mechanical stretching modulates the proliferation and differentiation of adult bovine satellite cells. The application of cyclic stretch induced the proliferation of satellite cells and inhibited their differentiation into myotubes. This response is believed to be closely related to the stretch-mediated changes in the expression of myogenic and cell cycle regulatory factors. Cyclic stretching increased the level of extracellular signal-regulated kinase (ERK) phosphorylation, whereas a specific ERK inhibitor (PD98058) blocked the stretch-mediated inhibition of myogenesis in a dose-dependent manner. Overall, this study demonstrates for the first time that cyclic mechanical stretch induces the proliferation of bovine satellite cells and suppresses their myogenic differentiation through the activation of ERK.  相似文献   

12.
The presence of desmin was characterized in cultured rat and bovine satellite cells and its potential usefulness as a marker for identifying satellite cells in vitro was evaluated. In primary cultures, positive immunohistochemical staining for desmin and skeletal muscle myosin was observed in rat and bovine myotubes. A small number of mononucleated cells (20% of rat satellite cells and 5% of bovine satellite cells) were myosin-positive, indicative of post-mitotic differentiated myocytes. In bovine satellite cell cultures 13% of the mononucleated cells were desmin-positive, while 84% of the mononucleated cells in rat satellite cell cultures were desmin-positive. Rat satellite cell mass cultures and bovine satellite cell clonal density cultures were pulsed with 3H-thymidine, and autoradiographic data revealed that greater than 94% of dividing rat cells were desmin-positive, suggesting that desmin is synthesized in proliferating rat satellite cells. However, no desmin was seen in cells that incorporated labeled thymidine in bovine satellite cell clones. Analysis of clonal density cultures revealed that only 14% of the mononucleated cells in bovine satellite cell colonies were desmin-positive, whereas 98% of the cells in rat satellite cell colonies were desmin-positive. Fibroblast colonies from both species were desmin-negative. In order to further examine the relationship between satellite cell differentiation and desmin expression, 5-bromo-2'-deoxyuridine (BrdU) was added to culture medium at the time of plating to inhibit differentiation. Fusion was inhibited in rat and bovine cultures, and cells continued to divide. Very few desmin-positive cells were found in bovine cultures, but greater than 90% of the cells in rat cultures stained positive for desmin. The presence of desmin and sarcomeric myosin was also evaluated in regenerating rat tibialis anterior five days after bupivacaine injection. In regenerating areas of the muscle many desmin-positive cells were present, and only a few cells stained positive for skeletal muscle myosin. Application of desmin staining to rat satellite cell growth assays indicated that rat satellite cells cultured in serum-containing medium were contaminated with fibroblasts at levels that ranged from approximately 5% in 24 hr cultures to 15% in mature cultures. In defined medium 4 day cultures contain approximately 95% to 98% desmin-positive satellite cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Satellite cells in skeletal muscle have been implicated in muscle growth processes and regeneration. However, very little is known about the regulation of their proliferation and differentiation. The effect of fibroblast growth factor (FGF) on the proliferation of myogenic cells from adult rat skeletal muscle, presumably satellite cells, has been examined, and FGF has been found to be a potent mitogen for these cells. The mitogenic properties of serum were also documented and studied in conjunction with FGF. Even under conditions of maximal stimulation by serum, the addition of FGF caused a substantial increase in proliferation of satellite cells. The additive nature of the FGF and serum-stimulatory activity suggests that FGF-like molecules are not the active agents in serum and that more than one pathway may be involved in stimulating satellite cell proliferation.  相似文献   

14.
Dispersed horse luteal cells were used to evaluate the ability of horse LH, hCG and PMSG to stimulate progesterone secretion in vitro. Morphological characterization of these cells before gonadotrophin stimulation indicated the presence of two populations of cells based on cell diameters. In luteal cells incubated as suspended cells, horse LH and hCG stimulated (P less than or equal to 0.05) progesterone production at all levels of treatment. Stimulation of progesterone secretion by hCG was greater (P less than or equal to 0.05) than by horse LH over the range of concentrations utilized. When mares (N = 7) received an intramuscular injection of 1000 i.u. hCG on Days 3, 4 and 5 after the end of oestrus, there was an increase (P less than or equal to 0.05), in peripheral progesterone concentrations beginning on Day 7 and continuing until Day 14 compared with controls (N = 7). Peripheral progesterone concentrations continued to be elevated in hCG-treated mares for Days 15-30 after oestrus in those mares that conceived. Although treatment with hCG increased progesterone concentrations, it had no influence on anterior pituitary release of LH as measured by frequency and amplitude of LH discharge. We conclude that the mare corpus luteum is responsive to gonadotrophins in vitro and that exogenous hCG can enhance serum progesterone concentrations throughout the oestrous cycle and early pregnancy.  相似文献   

15.
Proliferation and differentiation (fusion) of myogenic satellite cells isolated from Nicholas tom and hen turkeys at 3, 9, and 15 weeks of age and the response of a satellite cell clone to serum from these birds were examined. Responsiveness of satellite cells to culture conditions was proportional to donor age, and sex of bird had no effect on satellite cell proliferation. Fusion percentages were similar in all cultures. When a turkey satellite cell clone was exposed to serum from tom and hen turkeys at each age, an age-related decline in proliferation occurred with serum from hen but not from tom turkeys. Minimal cell fusion occurred in turkey serum and neither proliferation nor fusion was correlated with serum IGF-I levels. Cells derived from pectoralis major and anterior latissimus dorsi muscles of 15-week-old tom turkeys possessed similar proliferation and fusion properties in vitro. It appears that satellite cells retain a high proliferative activity throughout growth in turkeys, and the mitogenic properties of turkey serum may be evaluated using turkey satellite cells in culture.  相似文献   

16.
The study was performed to explore the effects of adult bovine male serum (MS), female serum (FS), and castrated male serum (C-MS) on myogenic satellite cells (MSCs) proliferation and differentiation into myotubes or into adipocyte-like cells (ALCs). MSC proliferation and differentiation was highest in the medium supplemented with MS, implying the important role of male steroid hormones. Myogenin and desmin were highly upregulated in cells cultured in MS-supplemented medium. In contrast, lipid accumulation in ALCs was highest in the medium supplemented with FS. Fatty acid transporter (FAT/CD36) was upregulated in FS-supplemented cultures. Detection of higher FAT/CD36 inducing fatty acids (arachidic acid and eicosapentaenoic acid) in FS compared with MS and C-MS suggests that these fatty acids may have influenced the enhanced formation of lipid droplets in ALCs. Effect of sex steroids on cell proliferation and cell growth of bovine MSCs and C2C12 cell in C-MS was greater than charcoal-dextran-treated fetal bovine serum (CDFBS). Concluding the above facts, the results indicate that each gender-specific bovine serum constitutes of different component, which leads to unique effects on cell behavior.  相似文献   

17.
To establish an adequate model to study the proliferation and differentiation of porcine skeletal muscle in response to bioactive compounds, a pool of satellite cells was derived from the semimembranosus muscle (SM) of newborn piglets using a Percoll gradient centrifugation. The final yield amounted to 4.1 × 106 cells/g muscle tissue. The percentage of muscle satellite cells has been determined by immunostaining for desmin and subsequent fluorescence analysis by flow cytometry, which revealed 95% of desmin-positive cells. For proliferation studies, satellite cell born myoblasts were seeded in gelatin-coated 96-well microplates at about 5 × 103 cells per well. Cells were grown for 1 day in MEMα plus 10% fetal bovine serum (FBS) and 10% horse serum (HS), followed by 2 d cultivation in serum-free growth medium. For differentiation studies, myoblasts were cultured in matrigel-coated 24-well plates for 4 d with growth medium containing 10% FBS and 10% HS. At 80% confluence, cells were grown for 24 h in medium plus 10% FBS and 1 μM insulin to initiate differentiation. Subsequently, the cells were cultured in serum-free differentiation medium (SFDM) for 3 d to form myotubes. Cultures reached a maximum fusion rate of approximately 20% after 96 h. By establishing this culture system, we provide an advanced and appropriate in vitro model to study porcine skeletal muscle cell growth and differentiation including the responses to various bioactive compounds.  相似文献   

18.
The controversial effect of autologous serum (AS) on human mesenchymal stem cells (MSC) was studied in rat MSC culture. Rat bone marrow cells were plated in a medium containing either FBS (fetal bovine serum) or AS were cultured to passage 3, during which the population doubling number (PDN) of both cultures were measured and compared statistically. The number of viable cells, the cell colonogic activity, and cell growth rate were also compared. In addition, mineralization in the osteogenic cultures from each system was measured. Our data indicated that AS enriched medium provided a microenvironment in which growth rate as well as bone differentiation of the isolated MSCs were significantly higher than in FBS enriched medium.  相似文献   

19.
Summary The effects of various concentrations of horse serum on dissociated mouse glial precursor cells in colony cultures were evaluated. High concentrations (20% or more) favored cell attachment but inhibited cell proliferation and differentiation, whereas lower concentrations (5% to 10%) favored cell proliferation and differentiation. In fetal bovine serum the cells did not attach to culture surfaces to the same degree nor did they achieve the same level of differentiation as in corresponding concentrations of horse serum. Portions of this work were presented at the 29th Annual Meeting of the Tissue Culture Association, Denver, Colorado, June 10–14, 1978 (1). This investigation was supported by Grants MA and MT 4235 from the Medical Research Council of Canada.  相似文献   

20.
Following muscle damage, fast- and slow-contracting fibers regenerate, owing to the activation of their satellite cells. In rats, crush-induced regeneration of extensor digitorum longus (EDL, a fast muscle) and soleus (a slow muscle) present different characteristics, suggesting that intrinsic differences exist among their satellite cells. An in vitro comparative study of the proliferation and differentiation capacities of satellite cells isolated from these muscles is presented there. We observed several differences between soleus and EDL satellite cell cultures plated at high density on gelatin-coated dishes. Soleus satellite cells proliferated more actively and fused into myotubes less efficiently than EDL cells. The rate of muscular creatine kinase enzyme appeared slightly lower in soleus than in EDL cultures at day 11 after plating, when many myotubes were formed, although the levels of muscular creatine kinase mRNA were similar in both cultures. In addition, soleus cultures expressed higher levels of MyoD and myogenin mRNA and of MyoD protein than EDL satellite cell cultures at day 12. A clonal analysis was also carried out on both cell populations in order to determine if distinct lineage features could be detected among satellite cells derived from EDL and soleus muscles. When plated on gelatin at clonal density, cells from both muscles yielded clones within 2 weeks, which stemmed from 3–15 mitotic cycles and were classified into three classes according to their sizes. Myotubes resulting from spontaneous fusion of cells from the progeny of one single cell were seen regardless of the clone size in the standard culture medium we used. The proportion of clones showing myotubes in each class depended on the muscle origin of the cells and was greater in EDL- than in soleus-cell cultures. In addition, soleus cells were shown to improve their differentiation capacity upon changes in the culture condition. Indeed, the proportions of clones showing myotubes, or of cells fusing into myotubes in clones, were increased by treatments with a myotube-conditioned medium, with phorbol ester, and by growth on extra-cellular matrix components (Matrigel). These results, showing differences among satellite cells from fast and slow muscles, might be of importance to muscle repair after trauma and in pathological situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号