首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyclonal antibodies were raised in rabbits against isoprimeverose (Xyl1Glc1), xyloglucan heptasaccharides (Xyl3Glc4), and octasaccharides (Gal1Xyl3Glc4). Antibodies specific for hepta- and octasaccharides suppressed auxin-induced elongation of epicotyl segments of azuki bean (Vigna angularis Ohwi and Ohashi cv Takara). These antibodies also inhibited auxin-induced cell wall loosening (decrease in the minimum stress-relaxation time and the relaxation rate of the cell walls) of azuki segments. However, none of the antibodies influenced auxin-induced elongation or cell wall loosening of coleoptile segments of oat (Avena sativa L. cv Victory). Auxin caused a decrease in molecular mass of xyloglucans in the cell walls of azuki epicotyls and oat coleoptiles. The antibodies inhibited such a change in molecular mass of xyloglucans in both species. Preimmune serum exhibited little or no inhibitory effect on auxin-induced elongation, cell wall loosening, or breakdown of xyloglucans. The results support the view that the breakdown of xyloglucans is associated with the cell wall loosening responsible for auxin-induced elongation in dicotyledons. The view does not appear to be applicable to poaceae, because the inhibition of xyloglucan breakdown by the antibodies did not influence auxin-induced elongation or cell wall loosening of oat coleoptiles.  相似文献   

2.
The effects of auxin and gibberellic acid on cell wall composition in various regions of epicotyls of azuki bean ( Vigna angularis Ohwi and Ohashi cv. Takara) were investigated with the following results. (1) Young segments excised from apical regions of the epicotyl elongated in response to added 10−4 M indole-3-acetic acid (IAA). When the segments were supplied with 50 m M sucrose, the IAA-induced segment growth was accompanied by enhanced overall synthesis of cell wall polysaccharides, such as xyloglucans, polyuronides and cellulose. This IAA effect on the cell wall synthesis is a consequence of extension growth induced by IAA. Gibberellic acid (GA) at 10−4 M synergistically enhanced the IAA-induced cell wall synthesis as well as IAA-induced extension growth, although GA by itself neither stimulated the cell wall synthesis nor extension growth. In the absence of sucrose, cell wall synthesis was not induced by IAA or GA. (2) In mature segments excised from basal regions of the epicotyl, no extension growth was induced by IAA or GA. GA enhanced the synthesis of xylans and cellulose when the segments were supplied with 50 m M sucrose. IAA had no effect on the cell wall synthesis. These findings indicate that synthesis of polyuronides, xyloglucans and cellulose, which occurs during extension growth of the apical region of the epicotyl, is regulated chiefly by auxin whereas synthesis of xylans and cellulose during cell maturation in the basal region of the epicotyl is regulated by GA.  相似文献   

3.
Rapid effects of indole-3-acetic acid (IAA) on the mechanical properties of cell wall, and sugar compositions, intrinsic viscosity and molecular weight distribution of cell wall polysaccharides were investigated with excised epicotyl segments of Vigna angularis Ohwi et Ohashi cv. Takara.
  • 1 IAA caused cell wall loosening as studied by stress-relaxation analysis within 15 min after the IAA application.
  • 2 IAA stimulated the decrease in the content of arabinose and galactose in the hemicellulose 1 h after its application. The amounts of other component sugars in the cell wall polysaccharides remained constant during the IAA-induced segment growth.
  • 3 The intrinsic viscocity of the pectin increased as early as 30 min after the IAA application. This effect was not prevented when elongation growth of the segment was osmotically suppressed by 0.15 M mannitol.
  • 4 Gel permeation chromatography of the pectin on a Sepharose 4 B column demonstrated that IAA caused increase in the mass-average molecular weight of the pectin. Analysis of the sugar compositions of the pectin eluted from the Sepharose 4 B column indicated that IAA increased the molecular weight of the polysaccharides composed of uronic acid, galactose, rhamnose and arabinose. This effect became apparent within 30 min after the IAA application. Furthermore, IAA increased the molecular weight of the pectin when elongation growth of the epicotyl segments was osmotically suppressed by 0.15 M mannitol.
  • 5 Hemicellulose of the cell wall chromatographed on a Sepharose CL-4 B column. Analysis of the neutral sugar compositions and the iodine staining property (specific for xyloglucans) of the polysaccharide solution eluted from the column indicated that the hemicellulose consisted of xyloglucans, arabinogalactans and polysaccharides composed of xylose and/or mannose. IAA caused a decrease in the arabinogalactan content and depolymerization of xyloglucans. These IAA effects became apparent within 30 min after the IAA application. These changes occurred even when elongation growth of the epicotyl segments was osmotically suppressed by 0.15 M mannitol.
Polymerization of the pectin, degradation of arabinogalactans and depolymerization of xyloglucans appear to be involved in the mechanism by which IAA induces cell wall loosening and therefore extension growth of cells.  相似文献   

4.
The effects of auxin and osmotic stress on elongation growth of maize (Zea mays L.) coleoptile segments are accompanied by characteristic changes in the extensibility of the growth-limiting cell walls. At full turgor auxin causes growth by an increase in wall extensibility (wall looseining). Growth can be stopped by an osmotically produced step-down in turgor of 0.45 MPa. Under these conditions auxin causes the accumulation of a potential for future wall extension which is released after restoration of full turgor. Turgor reduction causes a reversible decrease in wall extensibility (wall stiffening) both in the presence and absence of auxin. These changes in vivo are correlated with corresponding changes in the rheological properties of the cell walls in vitro which can be traced back to specific modifications in the shape of the hysteretic stress-strain relationship. The longitudinally load-bearing walls of the coleoptile demonstrate almost perfect viscoelasticity as documented by a nearly closed hysteresis loop. Auxin-mediated wall loosening causes an increase of loop width and thus affects primarily the amount of hysteresis in the isolated wall. In contrast, turgor reduction by osmotic stress reduces loop length and thus affects primarily the amount of viscoelastic wall extensibility. Pretreatment of segments with anoxia and H2O2 modify the hysteresis loop in agreement with the conclusion that the wall-stiffening reaction visualized under osmotic stress in vivo is an O2-dependent process in which O2 can be substituted by H2O2. Cycloheximide specifically inhibits auxin-mediated wall loosening without affecting wall stiffening, and this is mirrored in specific changes of the hysteresis loop. Corroborating a previous in vivo study (Hohl et al. 1995, Physiol. Plant. 94: 491–498) these results show that cell wall stiffening in vivo can also be demonstrated by Theological measurements with the isolated cell wall and that this process can be separated from cell wall loosening by specific changes in the shape of the hysteresis loop.  相似文献   

5.
It has been proposed that cell wall loosening during plant cell growth may be mediated by the endotransglycosylation of load-bearing polymers, specifically of xyloglucans, within the cell wall. A xyloglucan endotransglycosylase (XET) with such activity has recently been identified in several plant species. Two cell wall proteins capable of inducing the extension of plant cell walls have also recently been identified in cucumber hypocotyls. In this report we examine three questions: (1) Does XET induce the extension of isolated cell walls? (2) Do the extension-inducing proteins possess XET activity? (3) Is the activity of the extension-inducing proteins modulated by a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2)? We found that the soluble proteins from growing cucumber (cucumis sativum L.) hypocotyls contained high XET activity but did not induce wall extension. Highly purified wall-protein fractions from the same tissue had high extension-inducing activity but little or no XET activity. The XET activity was higher at pH 5.5 than at pH 4.5, while extension activity showed the opposite sensitivity to pH. Reconstituted wall extension was unaffected by the presence of a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2), an oligosaccharide previously shown to accelerate growth in pea stems and hypothesized to facilitate growth through an effect on XET-induced cell wall loosening. We conclude that XET activity alone is neither sufficient nor necessary for extension of isolated walls from cucumber hypocotyls.  相似文献   

6.
Effects of indole-3-acetic acid (IAA) on the mechanical properties of cell walls and structures of cell wall polysaccharides in outer and inner tissues of segments of dark grown squash (Cucurbita maxima Duch.) hypocotyls were investigated. IAA induced the elongation of unpeeled, intact segments, but had no effect on the elongation of peeled segments. IAA induced the cell wall loosening in outer tissues as studied by the stress-relaxation analysis but not in inner tissues. IAA-induced changes in the net sugar content of cell wall fractions in outer and inner tissues were very small. Extracted hemicellulosic xyloglucans derived from outer tissues had a molecular weight about two times as large as in inner tissues, and the molecular weight of xyloglucans in both outer and inner tissues decreased during incubation. IAA substantially accelerated the depolymerization of xyloglucans in outer tissues, while it prevented that in inner tissues. These results suggest that IAA-induced growth in intact segments is due to the cell wall loosening in outer tissues, and that IAA-accelerated depolymerization of hemicellulosic xyloglucans in outer tissues is involved in the cell wall loosening processes.  相似文献   

7.
Daie J 《Plant physiology》1987,84(4):1033-1037
Phloem tissue isolated from celery (Apium graveolens L.) was used to investigate the regulation of sucrose uptake by turgor (manipulated by 50-400 milliosomolal solutions of polyethylene glycol) and hormones indoleacetic acid (IAA) and gibberillic acid (GA3). Sucrose uptake was enhanced under low cellular turgor (increase in the Vmax). Furthermore, enhancement of sucrose uptake was due to a net increase in influx rates since sucrose efflux was not affected by cell turgor. Manipulations of cell turgor had no effect on 3-O-methyl glucose uptake. When 20 millimolar buffer was present in uptake solutions, low turgor-induced effects were observed only at low pH range (4.5-5.5). However, the effect was extended to higher external pH (up to 7.5) when buffer was omitted from uptake solutions. A novel interaction between cellular turgor and hormone treatments was observed, in that GA3 (10 micromolar) and IAA (0.1-100 micromolar) enhanced sucrose uptake only at moderate turgor levels. The hormones elicited little or no response on sucrose uptake under conditions of low or high cell turgor. Low cell turgor, IAA, GA3, and fusicoccin caused acidification by isolated phloem segments in a buffer-free solution. It is suggested that enhanced sucrose uptake in response to low turgor and/or hormones was mediated through the plasmalemma H+-ATPase and most likely occurred at the site of loading.  相似文献   

8.
The effect of auxin on the molecular weight (Mw) distributionof cell wall xyloglucans was investigated by gel permeationchromatography using coleoptile segments of Avena sativa L.cv. Victory, and the following results were obtained.
  1. The water-insoluble hemicellulose (HC-A) mainly consisted ofxyloglucans. Iodine staining method revealed that relativelylarge amounts of xyloglucans were present in the water-solublehemicellulose (HC-B) and water-soluble polysaccharide (WS) fractions.
  2. IAA did not cause remarkable changes in xyloglucan contentsin the hemicellulose, but significantly increased the xyloglucancontent in the WS fraction.
  3. IAA substantially decreased theweight-average Mw of HC-A. Thiseffect became apparent within30 min of the incubation period,and was not affected by the0.15 M mannitol or 2% sucrose applied.Hydrogen ions also causeda decrease in the weight-average Mwof HC-A; its effect beingreversible.
  4. Neither IAA nor hydrogen ions caused any remarkablechangesin the weightaverage Mw of water-soluble xyloglucansin theHC-B.
These results suggest that cell wall xyloglucans have an importantrole in auxininduced cell wall loosening in oat coleoptile cells. (Received May 10, 1984; Accepted August 20, 1984)  相似文献   

9.
Changes in cell wall polysaccharides and mechanical propertiesof the cell wall were examined during IAA-induced elongationgrowth of excised azuki bean epicotyl segments under differentgrowth conditions. Sucrose promoted IAA-induced cell elongation,but had very little effect on IAA-induced cell wall loosening.In the absence of sucrose, the amount of galactose in the cellwall decreased during the incubation period. IAA enhanced thedecrease in the galactose level. In the presence of sucrose,on the other hand, IAA induced increases in the amounts of cellulose,galactose and xylose in noncellulosic polysaccharides. TheseIAA-induced increases were not observed in the presence of mannitolat concentrations higher than 0.1 M, although cell wall looseningwas induced by IAA even in the presence of 0.2 M mannitol. (Received November 21, 1978; )  相似文献   

10.
Auxin-regulated Wall Loosening and Sustained Growth in Elongation   总被引:18,自引:9,他引:9       下载免费PDF全文
It is proposed that auxin regulates and coordinates both wall loosening and the supply of wall materials in elongation. The tenets of the proposal allowed testable predictions. It was determined that, if the cell walls of Glycine max L. var. Wayne hypocotyl segments are maintained in a loosened state (by excising the segments directly into pH 4 medium), exogenous auxin induced only the second response. It was also predicted and confirmed that elongating systems, e.g. pea epicotyl, with certain early auxin-induced growth kinetics (an initial high non-steady-state rate followed immediately by a drop to a lower steady-state rate) would show a transient second response (in addition to the usual transient first response) when stimulated by pH 4 medium. Finally, it is pointed out that recent results which establish the existence of auxin-induced elongation-associated proteins support the proposition that auxin coordinates wall loosening and the supply of wall materials in elongation.  相似文献   

11.
Lorences, E. P. and Zarra, I. 1987. Auxin-induced growth inhypocotyl segments of Pinus pinaster Aiton. Changes in molecularweight distribution of hemicellulosic polysaccharides.—J.exp. Bot. 38: 960–967. The changes in the molecular weightdistribution of water-soluble hemicelluloses and xyloglucanduring auxin-induced growth of Pinus pinaster Aiton hypocotylsections were investigated. IAA induced an increase in the relativeamount of a high molecular weight polysaccharide (MW 5 x 106)and a depolymerization of the xyloglucan present in the water-solublehemicelluloses extracted with 4% KOH. Moreover, the increasein the mean molecular weight distribution of total polysaccharidesand xyloglucan of the water-soluble hemicelluloses extractedwith 24% KOH was suppressed by auxin. We suggest that the decreasein the mass-average molecular weight of cell wall xyloglucanplays a critical role in the process responsible for the auxin-inducedcell wall extension in gymnosperm plants, as has been demonstratedfor monocot and dicot plants. Key words: Cell wall loosening, gymnosperm, xyloglucan  相似文献   

12.
Relative molecular size distributions of pectic and hemicellulosic polysaccharides of pea (Pisum sativum cv Alaska) third internode primary walls were determined by gel filtration chromatography. Pectic polyuronides have a peak molecular mass of about 1100 kilodaltons, relative to dextran standards. This peak may be partly an aggregate of smaller molecular units, because demonstrable aggregation occurred when samples were concentrated by evaporation. About 86% of the neutral sugars (mostly arabinose and galactose) in the pectin cofractionate with polyuronide in gel filtration chromatography and diethylaminoethyl-cellulose chromatography and appear to be attached covalently to polyuronide chains, probably as constituents of rhamnogalacturonans. However, at least 60% of the wall's arabinan/galactan is not linked covalently to the bulk of its rhamnogalacturonan, either glycosidically or by ester links, but occurs in the hemicellulose fraction, accompanied by negligible uronic acid, and has a peak molecular mass of about 1000 kilodaltons. Xyloglucan, the other principal hemicellulosic polymer, has a peak molecular mass of about 30 kilodaltons (with a secondary, usually minor, peak of approximately 300 kilodaltons) and is mostly not linked glycosidically either to pectic polyuronides or to arabinogalactan. The relatively narrow molecular mass distributions of these polymers suggest mechanisms of co- or postsynthetic control of hemicellulose chain length by the cell. Although the macromolecular features of the mentioned polymers individually agree generally with those shown in the widely disseminated sycamore cell primary wall model, the matrix polymers seem to be associated mostly noncovalently rather than in the covalently interlinked meshwork postulated by that model. Xyloglucan and arabinan/galactan may form tightly and more loosely bound layers, respectively, around the cellulose microfibrils, the outer layer interacting with pectic rhamnogalacturonans that occupy interstices between the hemicellulose-coated microfibrils.  相似文献   

13.
Auxin-induced changes of wall-rheological properties during different growth rates of rye coleoptile segments (Secale cereale L.) were investigated. In addition, changes of osmotic concentration and turgor pressure were measured. Decrease of turgor and of osmotic concentration followed a synchronous time course. Auxin-incubated segments exhibited a faster decrease and eventually lower values of both parameters. Creep test extensibility measurements demonstrate that apparent plastic as well as elastic extensibility of distilled-water-incubated segments strongly decreased during 24 h. In auxin-incubated segments apparent plastic as well as elastic extensibilities were strongly increased, even in the absence of growth due to insufficient turgor pressure. The increasing effect of auxin on elastic wall properties is also reflected by an increase in relative reversible length (part of segment length by which segments shrink after freezing/thawing as referred to total length) and a complementary decrease of relative irreversible length (remaining length after turgor elimination as referred to turgid length); again the effects were independent of growth rate and turgor pressure. Cellulose synthesis inhibition of approx. 80% by dichlorobenzonitrile (DCB) had no significant effect either on growth or on wall-rheological properties. Independent of whether the changed rheological wall behaviour of auxin-incubated segments is causally related to the mechanism of auxin-induced wall loosening, it indicates changes of wall polymer properties and/or interactions which are conserved when no actual length increase occurs due to insufficient turgor pressure. The results suggest that IAA-induced wall loosening may be primarily mediated by cell wall changes other than cleavage of covalent, load-bearing bonds as hypothesized in various wall loosening models.  相似文献   

14.
Plant height is determined by the processes of cell proliferation and elongation. Plant hormones play key roles in a species-dependent manner in these processes. We used paclobutrazol (PAC) at 400 mg·L-1 in this study to spray Agapanthus praecox ssp. orientalis plants in order to induce dwarf scape (inflorescence stem). Morphological examination showed that PAC reduced scape height by inhibiting the cell elongation by 54.56% and reducing cell proliferation by 10.45% compared to the control. Quantification and immunolocalization of endogenous gibberellins (GAs) and indole-3-acetic acid (IAA) showed that the GA1, GA3, and GA4 levels and the IAA gradient were reduced. Among these hormones, GA4 was the key component of GAs, which decreased 59.51-92.01% compared to the control in scape. The expression of cell wall synthesis related genes cellulose synthase (CESA) and UDP-glucuronic acid decarboxylase (UXS) were upregulated significantly, whereas cell wall loosening gene xyloglucan endotransglucosylase 2 (XET2) was downregulated by 99.99% surprisingly. Correlation analysis suggested GA regulated cell elongation and auxin modulated cell proliferation in Agapanthus scape. Additionally, the accumulation of sugars played roles in cell wall synthesis and cell expansion. These results indicated GA and IAA signals triggered a downstream signaling cascade, controlled cell expansion and proliferation during scape elongation.  相似文献   

15.
M. J. Vesper 《Planta》1985,166(1):96-104
To determine the relationship between apparent pH of the wall solution and shoot segment elongation, curves for the initial growth rates as a function of pH of the external solution were determined for maize (Zea mays L.) coleoptiles and sunflower (Helianthus annuus L.) hypocotyls and used to predict apparent wall pH in segments responding to indole-3-acetic acid (IAA) and fusicoccin (FC). When a solution having a pH predicted for walls of coleoptile segments responding to IAA was applied to the segments in the presence of IAA, this pH was not maintained. However, when the same was done for coleoptile segments responding to FC, the predicted pH was maintained in the external solution. Sunflower hypocotyl tissue did not maintain the external pH at the predicted value in the presence of either IAA or FC. The results indicate that wall loosening in coleoptiles caused by IAA may not be solely controlled by pH in the wall, yet growth (wall loosening) caused by FC apparently is directly related to wall pH. In sunflower the growth response to neither IAA nor FC appears to be directly correlated with wall pH.  相似文献   

16.
A viridicatin derivative having anti-auxin action, i.e. 3-(4-phenylcarbostyriloxy)acetic acid (V-OCH2COOH) was found to increase the formation of both IAA (indole-3-acetic acid)-oxidase and -synthetase in rice and pea seedlings. With the IAA synthetase, the activity on indolepyruvic acid was markedly increased. V-OCH2COOH stimulated the induction ofIAA oxidase in the excised segments from pea epicotyl, but did not IAA synthetase. The effect of V-OCH2COOH on the former was inhibited by cycloheximide. Activity of the IAA oxidase extracted from pea epicotyl and dialyzed was also stimulated by V-OCH2COOH in the presence of a cofactor such as 2,4-dichlorophenol. Effect of IAA per se on enzyme regulation was tested in parallel and discussed.  相似文献   

17.
The elongation of light-grown azuki bean (Azukia angularis =Vigna angularis) epicotyl segments was promoted by indoleaceticacid (IAA) and this IAA-induced elongation was inhibited byboth kinetin and benzimidazole (BIA). Increased stem thickeningwas observed with kinetin- or BIA-treated segments, but thiswas not accompanied by incresed cell number in the transversedirection, suggesting that both kinetin and BIA promoted lateralcell expansion. Colchicine at a concentration with no effecton IAA-induced elongation reversed both the kinetic- and BIA-inducedinhibition. Electron-microscopic examination revealed that wall microtubulesin cells treated with kinetin together with IAA ran parallelto the cell axis, while wall microtubules in cells treated withonly IAA were randomly oriented. In the cell treated with gibberellintogether with IAA, wall microtubules ran tranverse to the cellaxis. (Received July 13, 1973; )  相似文献   

18.
Effects of 2,3,5-triiodobenzoic acid (TIBA) and age of etiolated pea epicotyl segments on the indol-3-ylacetic acid (IAA) stimulated transport of14C-abscisic acid (ABA) was studied. In spite of a slight decrease of IAA transport after the application of TIBA, the IAA stimulation of14C-ABA transport did not change. In segments excised from epicotyls of different age,3H-IAA transport was identical and the induction of prolongation growth by IAA in segments from the upper part of the epicotyl was observed. The IAA ap{ie226-01}ation to the growing segments was connected with intensive attraction of14C-ABA to the site {ie226-02}AA application, while the application of IAA to the older segments was growth ineffective ana no stimulation of14C-ABA transport by IAA was observed.  相似文献   

19.
The dependence of elongation on the osmotic potential of the medium was investigated, using coleoptile segments (CS) of Triticim aestivum L. (cv. Hartri) and an optoelectronic device. The study aimed at separating the osmoelastic response from the irreversible growth response when an osmoticum (mannitol) was added, and to compare both processes in order to consider the possibility of growth-induced reduction in turgor pressure. The prompt inhibition of elongation registered just after addition of 50 mM mannitol as well as the subsequent resumption of the original elongation rate could be quantitatively explained by the extent and the kinetics of the osmoelastic relaxation. An initial reduction in the irreversible elongation component by mild osmotic stress could not be demonstrated. Above a critical value, the irrevesible growth was insensitive to a further increase in water potential. The minimum turgor pressure required to drive steady growth was not far from zero in both the presence and absence of auxin. The rate (r) of osmotically caused shortening per unit change of water potential was determined from the kinetics of CS shortening induced by addition of mannitol at nearly isotonic concentration (300 mM). This parameter relates a fractional change in length to the difference in water potential between inside and outside, and was assumed to depend largely on the hydraulic resistance of the tissue and cuticle. It was found to be independent of IAA. The relatively low value of Γ suggests significant reduction of turgor at high growth rates. In accordance with this conclusion, the extent of osmoelastic shortening after a transfer to 300 mM mannitol (dependent on wall strain) was significantly decreased in the presence of IAA. Addition of 100 μM IAA to CS growing at a constant rate induced pronounced oscillations in the rate of elongation, which may be connected with the change in elastic cell wall strain. Whereas the steady state growth rate before the addition of IAA was the same in the presence and in the absence of 50 mM mannitol, the maximum growth rate found after addition of IAA was substantially reduced in the mannitol variant.  相似文献   

20.
The epidermis has been considered the site of auxin action on elongation of stems and coleoptiles. To try to identify mRNAs that might mediate auxin stimulation of cell enlargement, we compared, using in vitro translation assays, mRNA enhancement by indoleacetic acid (IAA) in the epidermis, with that in the internal tissues, of pea (Pisum sativum L., cv Alaska) third internode segments. We used seedlings that had been grown under red light, which enables the epidermis to be peeled efficiently from the internode. Most of the `early' IAA enhancements previously reported using etiolated peas, plus several hitherto undescribed enhancements, occur in both the epidermis and the internal tissue of the light-grown plants after 4 hours of IAA treatment. These enhancements, therefore, do not fulfill the expectation of elongation-specific mRNAs localized to the epidermis. One epidermis-specific IAA enhancement does occur, but begins only subsequent to 1 hour (but before 4 hours) of auxin treatment. Similarly, the previously mentioned IAA enhancements common to epidermis and internal tissue do not begin, in the light-grown plants, within 1 hour of IAA treatment. Since IAA stimulates elongation in light-grown internodes within 15 minutes, it appears that none of these mRNAs can be responsible for auxin induction of elongation. We confirmed, with our methods, the previous reports that some of these mRNAs are enhanced by IAA within 0.5 hour in etiolated internodes. This indicates that we could have detected an early enhancement in light-grown tissue had it occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号