首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The voltage- and time-dependent properties of whole-cell, multi-channel (outside-out), and single channel inwardly-rectifying K+ currents were studied using adult and neonatal rat, and embryonic chick ventricular myocytes. Inward rectification of the current-voltage relationship was found in the whole-cell and single channel measurements. The steady-state single channel probability of opening decreased with hyperpolarization from EK, as did the mean open time, thereby explaining the time-dependent inactivation of the macroscopic current. Myocytes dialysed with a Mg++-free K+ solution (to remove the property of inward rectification) displayed a quasi-linear current-voltage relationship. The outward K+ currents flowing through the modified inward rectifier channels were able to be blocked by the local anesthetic and anti-arrhythmic agent, lidocaine.  相似文献   

2.
Summary ADH, acting through cAMP, increases the potassium conductance of apical membranes of mouse medullary thick ascending limbs of Henle. The present studies tested whether exposure of renal medullary apical membranes in vitro to the catalytic subunit of cAMP-dependent protein kinase resulted in an increase in potassium conductance. Apical membrane vesicles prepared from rabbit outer renal medulla demonstrated bumetanide-and chloride-sensitive22Na+ uptake and barium-sensitive, voltage-dependent86Rb+-influx. When vesicles were loaded with purified catalytic subunit of cAMP-dependent protein kinase (150 mU/ml), 1mm ATP, and 50mm KCl, the barium-sensitive86Rb+ influx increased from 361±138 to 528±120pm/mg prot · 30 sec (P<0.01). This increase was inhibited completely when heat-stable protein kinase inhibitor (1 g/ml) was also present in the vesicle solutions. The stimulation of86Rb+ uptake by protein kinase required ATP rather than ADP. It also required opening of the vesicles by hypotonic shock, presumably to allow the kinase free access to the cytoplasmic face of the membranes. We conclude that cAMP-dependent protein kinase-mediated phosphorylation of apical membranes from the renal medulla increases the potassium conductance of these membranes. This mechanism may account for the ADH-mediated increase in potassium conductance in the mouse mTALH.  相似文献   

3.
Studies on single K+-channel currents recorded from isolated rat heart muscle cells, in which early repolarization is known to be exceptionally fast, are reported here. A K+-channel which is blocked by TEA (tetraethylammonium) from the inside only has been found.The total open time of the channel, measured in steady-state after activation, indicated outward rectifying properties. The single channel conductance increases with depolarization from 25 pS at-70 mV to 75 pS at+70 mV.Selectivity of the channel has also been measured and it was found that only Rb+ and K+ can permeate the channel, whereas the permeability (P) for Li+, Na+, Cl-, Mg2+, and Ca2+ is less than 0.05 times .Ba2+ and Cs+ block the channel activity.These results clearly demonstrate the existence of K+-selective outward rectifying conductance pathways in rat ventricular myocytes.  相似文献   

4.
5.
Summary In patches from neonatal rat heart myocytes, elementary Na+ currents were recorded at near threshold potentials in order to compare cardiac Na+ channels kinetics in the cell-attached mode with those in the inside-out mode.The transition from cell-attached to cell-free recording conditions caused a small prolongation of the conductive state of about 20%. This appeared within 8 min after, patch excision regardless of the anionic composition (in mmol/liter) at the cytoplasmic membrane surface: 20 Cl plus 120 aspartate, 140 Cl, or 140 F. Prolonged exposure (up to 50 min) to cell-free conditions evoked no additional changes and, specifically, left the monoexponential open-time distribution unchanged. Increased burst activity only developed in the cytoplasmic presence of F, indicating that it is this artificial anion which influences reopening, but not the isolation of the Na+ channels from their natural environmentper se. The mean number of openings per sequence (increase by a factor of 1.23±0.04) and decay, of reconstructed macroscopicI Na (increase by a factor of 1.32±0.06) responded rather weakly to F. Cooling from 19 to 9°C accentuated this F effect significantly and led, at –65 mV, to pronounced burst activity. Moreover, the combined influence of F and cooling induced a second. long-lasting and sometimes dominating open state. It is concluded that isolated cardiac Na+ channels largely, preserve their intrinsic kinetic properties when facing a cytoplasmic environment with a quasi-physiological anionic composition.  相似文献   

6.
Alves DP  Tatsuo MA  Leite R  Duarte ID 《Life sciences》2004,74(20):2577-2591
In order to investigate to the contribution of K+ channels on the peripheral antinociception induced by diclofenac, we evaluated the effect of several K+ channel blockers, using the rat paw pressure test, in which sensitivity is increased by intraplantar injection (2 microg) of prostaglandin E2. Diclofenac administered locally into the right hindpaw (25, 50, 100 and 200 microg) elicited a dose-dependent antinociceptive effect which was demonstrated to be local, since only higher doses produced an effect when injected in the contralateral paw. This blockade of PGE2 mechanical hyperalgesia induced by diclofenac (100 microg/paw) was antagonized in a dose-dependent manner by intraplantar administration of the sulphonylureas glibenclamide (40, 80 and 160 microg) and tolbutamide (80, 160 and 320 microg), specific blockers of ATP-sensitive K+ channels, and it was observed even when the hyperalgesic agent used was carrageenin, while the antinociceptive action of indomethacin (200 microg/paw), a typical cyclo-oxygenase inhibitor, over carrageenin-induced hyperalgesia was not affected by this treatment. Charybdotoxin (2 microg/paw), a blocker of large conductance Ca2+-activated K+ channels and dequalinium (50 microg/paw), a selective blocker of small conductance Ca2+-activated K+ channels, did not modify the effect of diclofenac. This effect was also unaffected by intraplantar administration of non-specific voltage-dependent K+ channel blockers tetraethylammonium (1700 microg) and 4-aminopyridine (100 microg) or cesium (500 microg), a non-specific K+ channel blocker. The peripheral antinociceptive effect induced by diclofenac was antagonized by NG-Nitro L-arginine (NOarg, 50 microg/paw), a NO synthase inhibitor and methylene blue (MB, 500 microg/paw), a guanylate cyclase inhibitor, and this antagonism was reversed by diazoxide (300 microg/paw), an ATP-sensitive K+ channel opener. We also suggest that an endogenous opioid system may not be involved since naloxone (50 microg/paw) did not affect diclofenac-induced antinociception in the PGE2-induced hyperalgesia model. This study provides evidence that the peripheral antinociceptive effect of diclofenac may result from activation of ATP-sensitive K+ channels, possible involving stimulation of L-arginine/NO/cGMP pathway, while Ca2+-activated K+ channels, voltage-dependent K+ channels as well as endogenous opioids appear not to be involved in the process.  相似文献   

7.
In this work, we used a panel prokaryote/eukaryote K+ channel chimeras to generate K+ channel arrays. Their behaviour in solution was compared with that when spotted on a nitrocellulose-supported film and their responses to selective high affinity ligands, including polypeptide toxins and TEA, were studied.  相似文献   

8.
Summary Patch-clamp methods were used to study single-channel events in isolated oxyntic cells and gastric glands fromNecturus maculosa. Cell-attached, excised inside-out and outside-out patches from the basolateral membrane frequently contained channels which had conductances of 67±21 pS in 24% of the patches and channels of smaller conductance, 33±6 pS in 56% of the patches. Channels in both classes were highly selective for K+ over Na+ and Cl, and shared linear current-voltage relations. The 67-pS channel was activated by membrane depolarization, whereas the activity of the 33-pS channel was relatively voltage independent. The larger conductance channels were activated by intracellular Ca2+ in the range between 5 and 500nm, but unaffected by cAMP. The smaller conductance channels were activated by cAMP, but not Ca2+. The presence of K+ channels in the basolateral membrane which are regulated by these known second messengers can account for the increase in conductance and the hyperpolarization of the membrane observed upon secretagogue stimulation.  相似文献   

9.
Heterotrimeic G proteins are thought to couple receptors to ionic channels via cytoplasmic mediators such as cGMP in the case of retinal rods, cAMP in the case of olfactory cells, and the cAMP cascade in the case of cardiac myocytes. G protein-mediated second messenger effects on K+ channels are dealt with elsewhere in this series. Recently, membrane-delimited pathways have been uncovered and an hypothesis proposed in which the subunits of G proteins directly couple receptors to ionic channels, particularly K+ channels. While direct coupling has not been proven, the membrane-delimited nature has been established for specific G proteins and their specific K+ channel effectors.  相似文献   

10.
Wu SN  Wu AZ  Sung RJ 《Life sciences》2007,80(4):378-387
The ATP-sensitive K(+) (K(ATP)) channels are known to provide a functional linkage between the electrical activity of the cell membrane and metabolism. Two types of inwardly rectifying K(+) channel subunits (i.e., Kir6.1 and Kir6.2) with which sulfonylurea receptors are associated were reported to constitute the K(ATP) channels. In this study, we provide evidence to show two types of K(ATP) channels with different biophysical properties functionally expressed in isolated rat ventricular myocytes. Using patch-clamp technique, we found that single-channel conductance for the different two types of K(ATP) channels in these cells was 57 and 21 pS. The kinetic properties, including mean open time and bursting kinetics, did not differ between these two types of K(ATP) channels. Diazoxide only activated the small-conductance K(ATP) channel, while pinacidil and dinitrophenol stimulated both channels. Both of these K(ATP) channels were sensitive to block by glibenclamide. Additionally, western blotting, immunochemistry, and RT-PCR revealed two types of Kir6.X channels, i.e., Kir6.1 and Kir6.2, in rat ventricular myocytes. Single-cell Ca(2+) imaging also revealed that similar to dinitrophenol, diazoxide reduced the concentration of intracellular Ca(2+). The present results suggest that these two types of K(ATP) channels may functionally be related to the activity of heart cells.  相似文献   

11.
Summary Patch-clamp techniques have been applied to characterize the channels in the basolateral membrane of resting (cimetidine-treated, nonacid secreting) oxyntic cells isolated from the gastric mucosa ofNecturus maculosa. In cell-attached patches with pipette solution containing 100mm KCl, four major classes of K+ channels can be distinguished on the basis of their kinetic behavior and conductance: (1) 40% of the patches contained either voltage-independent (a) or hyperpolarization-activated (b), inward-rectifying channels with short mean open times (16 msec fora, and 8 msec forb). Some channels showed subconductance levels. The maximal inward conductanceg max was 31±5 pS (n=13) and the reversal potentialE rev was atV p=–34±6 mV (n=9). (2) 10% of the patches contained depolarization-activated and inward-rectifying channels withg max=40 ±18 pS (n=3) andE rev was atV p=–31±5 mV (n=3). With hyperpolarization, the channels open in bursts with rapid flickerings within bursts. Addition of carbachol (1mm) to the bath solution in cell-attached patches increased the open probabilityP o of these channels. (3) 10% of the patches contained voltage-independent inward-rectifying channels withg max=21±3 pS (n=4) andE rev was atV p=–24±9 mV (n=4). These channels exhibited very high open probability (P o=0.9) and long mean open time (1.6 sec) at the resting potential. (4) 20% of the patches contained voltage-independent channels with limiting inward conductance of 26±2 pS (n=3) andE rev atV p=–33±3 mV (n=3). The channels opened in bursts consisting of sequential activation of multiple channels with very brief mean open times (10 msec). In addition, channels with conductances less than 6 pS were observed in 20% of the patches. In all nine experiments with K+ in the pipette solution replaced by Na+, unitary currents were outward, and inward currents were observed only for large hyperpolarizing potentials. This indicates that the channels are more selective for K+ over Na+ and Cl. A variety of K+ channels contributes to the basolateral K+ conductance of resting oxyntic cells.  相似文献   

12.
We have recently examined slow inactivation of Shab channels. Here we extend our characterization of Shab slow inactivation by presenting the properties of recovery from inactivation. The observations support our proposal that Shab reaches the same inactivated state either from open or closed states and suggest that closed and open state inactivation share the same mechanism. Regarding the latter, we also show that external K+ and TEA slow down recovery from inactivation in agreement with the hypothesis that the mechanism of Shab inactivation qualitatively differs from C-type inactivation.  相似文献   

13.
Recent molecular dynamic simulations and electrostatic calculations suggested that the external TEA binding site in K+ channels is outside the membrane electric field. However, it has been known for some time that external TEA block of Shaker K+ channels is voltage dependent. To reconcile these two results, we reexamined the voltage dependence of block of Shaker K+ channels by external TEA. We found that the voltage dependence of TEA block all but disappeared in solutions in which K+ ions were replaced by Rb+. These and other results with various concentrations of internal K+ and Rb+ ions suggest that the external TEA binding site is not within the membrane electric field and that the voltage dependence of TEA block in K+ solutions arises through a coupling with the movement of K+ ions through part of the membrane electric field. Our results suggest that external TEA block is coupled to two opposing voltage-dependent movements of K+ ions in the pore: (a) an inward shift of the average position of ions in the selectivity filter equivalent to a single ion moving approximately 37% into the pore from the external surface; and (b) a movement of internal K+ ions into a vestibule binding site located approximately 13% into the membrane electric field measured from the internal surface. The minimal voltage dependence of external TEA block in Rb+ solutions results from a minimal occupancy of the vestibule site by Rb+ ions and because the energy profile of the selectivity filter favors a more inward distribution of Rb+ occupancy.  相似文献   

14.
15.
16.
Voltage-gated potassium (Kv) channels exist in the membranes of all living cells. Of the functional classes of Kv channels, the Kv1 channels are the largest and the best studies and are known to play essential roles in excitable cell function, providing an essential counterpoin to the various inward currents that trigger excitability. The serum potassium concentration [K o + ] is tightly regulated in mammals and disturbances can cause significant functional alterations in the electrical behavior of excitable tissues in the nervous system and the heart. At least some of these changes may be mediated by Kv channels that are regulated by changes in the extracellular K+ concentration. As well as changes in serum [K o + ], tissue acification is a frequent pathological condition known to inhibit Shaker and Kv1 voltage-gated potassium channels. In recent studies, it has become recognized that the acidification-induced inhibition of some Kv1 channels is K o + -dependent, and the suggestion has been made that pH and K o + may regulate the channels via a common mechanism. Here we discuss P/C type inactivation as the common pathway by which some Kv channels become unavailable at acid pH and lowered K o + . It is suggested that binding of protons to a regulatory site in the outer pore mouth of some Kv channels favors transitions to the inactivated state, whereas K+ ions exert countereffects. We suggest that modulation of the number of excitable voltage-gated K+ channels in the open vs inactivated states of the channels by physiological H+ and K+ concentrations represents an important pathway to control Kv channel function in health and disease.  相似文献   

17.
Klotho is a transmembrane protein expressed primarily in kidney, parathyroid gland, and choroid plexus. The extracellular domain could be cleaved off and released into the systemic circulation. Klotho is in part effective as β-glucuronidase regulating protein stability in the cell membrane. Klotho is a major determinant of aging and life span. Overexpression of Klotho increases and Klotho deficiency decreases life span. Klotho deficiency may further result in hearing loss and cardiac arrhythmia. The present study explored whether Klotho modifies activity and protein abundance of KCNQ1/KCNE1, a K+ channel required for proper hearing and cardiac repolarization. To this end, cRNA encoding KCNQ1/KCNE1 was injected in Xenopus oocytes with or without additional injection of cRNA encoding Klotho. KCNQ1/KCNE1 expressing oocytes were treated with human recombinant Klotho protein (30 ng/ml) for 24 h. Moreover, oocytes which express both KCNQ1/KCNE1 and Klotho were treated with 10 µM DSAL (D-saccharic acid-1,4-lactone), a β-glucuronidase inhibitor. The KCNQ1/KCNE1 depolarization-induced current (IKs) was determined utilizing dual electrode voltage clamp, while KCNQ1/KCNE1 protein abundance in the cell membrane was visualized utilizing specific antibody binding and quantified by chemiluminescence. KCNQ1/KCNE1 channel activity and KCNQ1/KCNE1 protein abundance were upregulated by coexpression of Klotho. The effect was mimicked by treatment with human recombinant Klotho protein (30 ng/ml) and inhibited by DSAL (10 µM). In conclusion, Klotho upregulates KCNQ1/KCNE1 channel activity by 'mainly' enhancing channel protein abundance in the plasma cell membrane, an effect at least partially mediated through the β-glucuronidase activity of Klotho protein.  相似文献   

18.
Large conductance (approximately 210 pS), K+-selective channels were identified in excised, insideout patches obtained from the apical membranes of both ciliated and nonciliated epithelial cells grown as monolayers from the primary culture of rabbit oviduct. The open probability of channels showing stable gating was increased at positive membrane potentials and was sensitive to the concentration of free calcium ions at the cytosolic surface of the patch ([Ca2+] i ). In these respects, the channel resembled maxi K+ channels found in a number of other cell types. The distributions of dwell-times in the open state were most consistently described by two exponential components. Four exponential components were fitted to the distributions of dwelltimes in the closed state. Depolarizations and [Ca2+] i increases had similar effects on the distribution of open dwell-times, causing increases in the two open time constants ( o1 and o2) and the fraction of events accounted for by the longer component of the distribution. In contrast, calcium ions and voltage had distinct effects on the distribution of closed dwelltimes. While the three shorter closed time constants ( c1, c2 and c3) were reduced by depolarizing membrane potentials, increases in [Ca2+] i caused decreases in the longer time constants ( c3 and c4). It is concluded that oviduct large conductance Ca2+-activated K+ channels can enter at least two major open states and four closed states.A.F.J. was supported by a research fellowship from the Japan Society for the Promotion of Science and received a grant for laboratory expenses from the Ministry of Education, Science and Culture, Japan. The authors wish to thank Dr. Shigetoshi Oiki for valuable discussion of the analysis of gating kinetics and Dr. Jeman Kim (Kyoto Pharmaceutical University) for making the transmission electron micrographs.  相似文献   

19.
Klotho is a transmembrane protein expressed primarily in kidney, parathyroid gland, and choroid plexus. The extracellular domain could be cleaved off and released into the systemic circulation. Klotho is in part effective as β-glucuronidase regulating protein stability in the cell membrane. Klotho is a major determinant of aging and life span. Overexpression of Klotho increases and Klotho deficiency decreases life span. Klotho deficiency may further result in hearing loss and cardiac arrhythmia. The present study explored whether Klotho modifies activity and protein abundance of KCNQ1/KCNE1, a K+ channel required for proper hearing and cardiac repolarization. To this end, cRNA encoding KCNQ1/KCNE1 was injected in Xenopus oocytes with or without additional injection of cRNA encoding Klotho. KCNQ1/KCNE1 expressing oocytes were treated with human recombinant Klotho protein (30 ng/ml) for 24 h. Moreover, oocytes which express both KCNQ1/KCNE1 and Klotho were treated with 10 µM DSAL (D-saccharic acid-1,4-lactone), a β-glucuronidase inhibitor. The KCNQ1/KCNE1 depolarization-induced current (IKs) was determined utilizing dual electrode voltage clamp, while KCNQ1/KCNE1 protein abundance in the cell membrane was visualized utilizing specific antibody binding and quantified by chemiluminescence. KCNQ1/KCNE1 channel activity and KCNQ1/KCNE1 protein abundance were upregulated by coexpression of Klotho. The effect was mimicked by treatment with human recombinant Klotho protein (30 ng/ml) and inhibited by DSAL (10 µM). In conclusion, Klotho upregulates KCNQ1/KCNE1 channel activity by 'mainly' enhancing channel protein abundance in the plasma cell membrane, an effect at least partially mediated through the β-glucuronidase activity of Klotho protein.  相似文献   

20.
In the last 15 years, remarkable progress has been realized in identifying the genes that encode the ion-transporting proteins involved in exocrine gland function, including salivary glands. Among these proteins, Ca2+-dependent K+ channels take part in key functions including membrane potential regulation, fluid movement and K+ secretion in exocrine glands. Two K+ channels have been identified in exocrine salivary glands: (1) a Ca2+-activated K+ channel of intermediate single channel conductance encoded by the KCNN4 gene, and (2) a voltage- and Ca2+-dependent K+ channel of large single channel conductance encoded by the KCNMA1 gene. This review focuses on the physiological roles of Ca2+-dependent K+ channels in exocrine salivary glands. We also discuss interesting recent findings on the regulation of Ca2+-dependent K+ channels by protein–protein interactions that may significantly impact exocrine gland physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号