首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The emergence of drug resistance is one of the most prevalent reasons for treatment failure in HIV therapy. This has severe implications for the cost of treatment, survival and quality of life.

Methods

We use mathematical modelling to describe the interaction between T cells, HIV-1 and protease inhibitors. We use impulsive differential equations to examine the effects of different levels of protease inhibitors in a T cell. We classify three different regimes according to whether the drug efficacy is low, intermediate or high. The model includes two strains: the wild-type strain, which initially dominates in the absence of drugs, and the mutant strain, which is the less efficient competitor, but has more resistance to the drugs.

Results

Drug regimes may take trajectories through one, two or all three regimes, depending on the dosage and the dosing schedule. Stability analysis shows that resistance does not emerge at low drug levels. At intermediate drug levels, drug resistance is guaranteed to emerge. At high drug levels, either the drug-resistant strain will dominate or, in the absence of longer-lived reservoirs of infected cells, a region exists where viral elimination could theoretically occur. We provide estimates of a range of dosages and dosing schedules where the trajectories lie either solely within a region or cross multiple regions.

Conclusion

Under specific circumstances, if the drug level is physiologically tolerable, elimination of free virus is theoretically possible. This forms the basis for theoretical control using combination therapy and for understanding the effects of partial adherence.  相似文献   

2.
3.
We combine standard pharmacokinetics with an established model of viral replication to predict the outcome of therapy as a function of adherence to the drug regimen. We consider two types of treatment failure: failure to eliminate the wild-type virus, and the emergence of drug-resistant virus. Specifically, we determine the conditions under which resistance dominates as a result of imperfect adherence. We derive this result for both single- and triple-drug therapies, with attention to conditions which favour the emergence of viral strains that are resistant to one or more drugs in a cocktail. Our analysis provides quantitative estimates of the degree of adherence necessary to prevent resistance. We derive results specific to the treatment of human immunodeficiency virus infection, but emphasize that our method is applicable to a range of viral or other infections treated by chemotherapy.  相似文献   

4.
There are many biological steps between viral infection of CD4(+) T cells and the production of HIV-1 virions. Here we incorporate an eclipse phase, representing the stage in which infected T cells have not started to produce new virus, into a simple HIV-1 model. Model calculations suggest that the quicker infected T cells progress from the eclipse stage to the productively infected stage, the more likely that a viral strain will persist. Long-term treatment effectiveness of antiretroviral drugs is often hindered by the frequent emergence of drug resistant virus during therapy. We link drug resistance to both the rate of progression of the eclipse phase and the rate of viral production of the resistant strain, and explore how the resistant strain could evolve to maximize its within-host viral fitness. We obtained the optimal progression rate and the optimal viral production rate, which maximize the fitness of a drug resistant strain in the presence of drugs. We show that the window of opportunity for invasion of drug resistant strains is widened for a higher level of drug efficacy provided that the treatment is not potent enough to eradicate both the sensitive and resistant virus.  相似文献   

5.
Telaprevir, a novel hepatitis C virus (HCV) NS3-4A serine protease inhibitor, has demonstrated substantial antiviral activity in patients infected with HCV. However, drug-resistant HCV variants were detected in vivo at relatively high frequency a few days after drug administration. Here we use a two-strain mathematical model to explain the rapid emergence of drug resistance in HCV patients treated with telaprevir monotherapy. We examine the effects of backward mutation and liver cell proliferation on the preexistence of the mutant virus and the competition between wild-type and drug-resistant virus during therapy. We also extend the two-strain model to a general model with multiple viral strains. Mutations during therapy only have a minor effect on the dynamics of various viral strains, although they are capable of generating low levels of HCV variants that would otherwise be completely suppressed because of fitness disadvantages. Liver cell proliferation may not affect the pretreatment frequency of mutant variants, but is able to influence the quasispecies dynamics during therapy. It is the relative fitness of each mutant strain compared with wild-type that determines which strain(s) will dominate the virus population. This study provides a theoretical framework for exploring the prevalence of preexisting mutant variants and the evolution of drug resistance during treatment with other HCV protease inhibitors or polymerase inhibitors.  相似文献   

6.
The discovery of small molecules targeted to specific oncogenic pathways has revolutionized anti-cancer therapy. However, such therapy often fails due to the evolution of acquired resistance. One long-standing question in clinical cancer research is the identification of optimum therapeutic administration strategies so that the risk of resistance is minimized. In this paper, we investigate optimal drug dosing schedules to prevent, or at least delay, the emergence of resistance. We design and analyze a stochastic mathematical model describing the evolutionary dynamics of a tumor cell population during therapy. We consider drug resistance emerging due to a single (epi)genetic alteration and calculate the probability of resistance arising during specific dosing strategies. We then optimize treatment protocols such that the risk of resistance is minimal while considering drug toxicity and side effects as constraints. Our methodology can be used to identify optimum drug administration schedules to avoid resistance conferred by one (epi)genetic alteration for any cancer and treatment type.  相似文献   

7.
Anti-cancer drugs targeted to specific oncogenic pathways have shown promising therapeutic results in the past few years; however, drug resistance remains an important obstacle for these therapies. Resistance to these drugs can emerge due to a variety of reasons including genetic or epigenetic changes which alter the binding site of the drug target, cellular metabolism or export mechanisms. Obtaining a better understanding of the evolution of resistant populations during therapy may enable the design of more effective therapeutic regimens which prevent or delay progression of disease due to resistance. In this paper, we use stochastic mathematical models to study the evolutionary dynamics of resistance under time-varying dosing schedules and pharmacokinetic effects. The populations of sensitive and resistant cells are modeled as multi-type non-homogeneous birth-death processes in which the drug concentration affects the birth and death rates of both the sensitive and resistant cell populations in continuous time. This flexible model allows us to consider the effects of generalized treatment strategies as well as detailed pharmacokinetic phenomena such as drug elimination and accumulation over multiple doses. We develop estimates for the probability of developing resistance and moments of the size of the resistant cell population. With these estimates, we optimize treatment schedules over a subspace of tolerated schedules to minimize the risk of disease progression due to resistance as well as locate ideal schedules for controlling the population size of resistant clones in situations where resistance is inevitable. Our methodology can be used to describe dynamics of resistance arising due to a single (epi)genetic alteration in any tumor type.  相似文献   

8.
The current paradigm for modeling viral kinetics and resistance evolution after treatment initiation considers only the level of circulating virus and cellular infection (CI model), while the intra-cellular level is disregarded. This model was successfully used to explain HIV dynamics and Hepatitis C virus (HCV) dynamics during interferon-based therapy. However, in the new era of direct-acting antiviral agents (DAAs) against HCV, viral kinetics is characterized by a more rapid decline of the wild-type virus as well as an early emergence of resistant strains that jeopardize the treatment outcome. Although the CI model can be extended to describe these new kinetic patterns, this approach has qualitative and quantitative limitations. Instead, we suggest that a more appropriate approach would consider viral dynamics at the cell infection level, as done currently, as well as at the intracellular level. Indeed, whereas in HIV integrated DNA serves as a static replication unit and mutations occur only once per infected cell, HCV replication is deeply affected by DAAs and furthermore processes of resistance evolution can occur at the intra-cellular level with a faster time-scale.We propose a comprehensive model of HCV dynamics that considers both extracellular and intracellular levels of infection (ICCI model). Intracellular viral genomic units are used to form replication units, which in turn synthesize genomic units that are packaged and secreted as virions infecting more target cells. Resistance evolution is modeled intra-cellularly, by different genomic- and replication-unit strains with particular relative-fitness and drug sensitivity properties, allowing for a rapid resistance takeover.Using the ICCI model, we show that the rapid decline of wild-type virus results from the ability of DAAs to destabilize the intracellular replication. On the other hand, this ability also favors the rapid emergence, intracellularly, of resistant virus. By considering the interaction between intracellular and extracellular infection we show that resistant virus, able to maintain a high level of intracellular replication, may nevertheless be unable to maintain rapid enough de novo infection rate at the extracellular level. Hence this model predicts that in HCV, and contrary to our experience with HIV, the emergence of productively resistant virus may not systematically prevent from a viral decline in the long-term. Thus, the ICCI model can explain the transient viral rebounds observed with DAA treatment as well as the viral resistance found in most patients with viral relapse at the end of DAA combination therapy.  相似文献   

9.

Background

The advent of targeted therapy for cancer treatment has brought about a paradigm shift in the clinical management of human malignancies. Agents such as erlotinib used for EGFR-mutant non-small cell lung cancer or imatinib for chronic myeloid leukemia, for instance, lead to rapid tumor responses. Unfortunately, however, resistance often emerges and renders these agents ineffective after a variable amount of time. The FDA-approved dosing schedules for these drugs were not designed to optimally prevent the emergence of resistance. To this end, we have previously utilized evolutionary mathematical modeling of treatment responses to elucidate the dosing schedules best able to prevent or delay the onset of resistance. Here we expand on our approaches by taking into account dose-dependent mutation rates at which resistant cells emerge. The relationship between the serum drug concentration and the rate at which resistance mutations arise can lead to non-intuitive results about the best dose administration strategies to prevent or delay the emergence of resistance.

Methods

We used mathematical modeling, available clinical trial data, and different considerations of the relationship between mutation rate and drug concentration to predict the effectiveness of different dosing strategies.

Results

We designed several distinct measures to interrogate the effects of different treatment dosing strategies and found that a low-dose continuous strategy coupled with high-dose pulses leads to the maximal delay until clinically observable resistance. Furthermore, the response to treatment is robust against different assumptions of the mutation rate as a function of drug concentration.

Conclusions

For new and existing targeted drugs, our methodology can be employed to compare the effectiveness of different dose administration schedules and investigate the influence of changing mutation rates on outcomes.  相似文献   

10.
11.
12.
Influenza A virus (IAV) has its natural reservoir in wild waterfowl, and emerging human IAVs often contain gene segments from avian viruses. The active drug metabolite of oseltamivir (oseltamivir carboxylate [OC]), stockpiled as Tamiflu for influenza pandemic preparedness, is not removed by conventional sewage treatment and has been detected in river water. There, it may exert evolutionary pressure on avian IAV in waterfowl, resulting in the development of resistant viral variants. A resistant avian IAV can circulate among wild birds only if resistance does not restrict viral fitness and if the resistant virus can persist without continuous drug pressure. In this in vivo mallard (Anas platyrhynchos) study, we tested whether an OC-resistant avian IAV (H1N1) strain with an H274Y mutation in the neuraminidase (NA-H274Y) could retain resistance while drug pressure was gradually removed. Successively infected mallards were exposed to decreasing levels of OC, and fecal samples were analyzed for the neuraminidase sequence and phenotypic resistance. No reversion to wild-type virus was observed during the experiment, which included 17 days of viral transmission among 10 ducks exposed to OC concentrations below resistance induction levels. We conclude that resistance in avian IAV that is induced by exposure of the natural host to OC can persist in the absence of the drug. Thus, there is a risk that human-pathogenic IAVs that evolve from IAVs circulating among wild birds may contain resistance mutations. An oseltamivir-resistant pandemic IAV would pose a substantial public health threat. Therefore, our observations underscore the need for prudent oseltamivir use, upgraded sewage treatment, and surveillance for resistant IAVs in wild birds.  相似文献   

13.
Repurposed drugs that are safe and immediately available constitute a first line of defense against new viral infections. Despite limited antiviral activity against SARS-CoV-2, several drugs are being tested as medication or as prophylaxis to prevent infection. Using a stochastic model of early phase infection, we evaluate the success of prophylactic treatment with different drug types to prevent viral infection. We find that there exists a critical efficacy that a treatment must reach in order to block viral establishment. Treatment by a combination of drugs reduces the critical efficacy, most effectively by the combination of a drug blocking viral entry into cells and a drug increasing viral clearance. Below the critical efficacy, the risk of infection can nonetheless be reduced. Drugs blocking viral entry into cells or enhancing viral clearance reduce the risk of infection more than drugs that reduce viral production in infected cells. The larger the initial inoculum of infectious virus, the less likely is prevention of an infection. In our model, we find that as long as the viral inoculum is smaller than 10 infectious virus particles, viral infection can be prevented almost certainly with drugs of 90% efficacy (or more). Even when a viral infection cannot be prevented, antivirals delay the time to detectable viral loads. The largest delay of viral infection is achieved by drugs reducing viral production in infected cells. A delay of virus infection flattens the within-host viral dynamic curve, possibly reducing transmission and symptom severity. Thus, antiviral prophylaxis, even with reduced efficacy, could be efficiently used to prevent or alleviate infection in people at high risk.  相似文献   

14.
Antiviral drugs, most notably the neuraminidase inhibitors, are an important component of control strategies aimed to prevent or limit any future influenza pandemic. The potential large-scale use of antiviral drugs brings with it the danger of drug resistance evolution. A number of recent studies have shown that the emergence of drug-resistant influenza could undermine the usefulness of antiviral drugs for the control of an epidemic or pandemic outbreak. While these studies have provided important insights, the inherently stochastic nature of resistance generation and spread, as well as the potential for ongoing evolution of the resistant strain have not been fully addressed. Here, we study a stochastic model of drug resistance emergence and consecutive evolution of the resistant strain in response to antiviral control during an influenza pandemic. We find that taking into consideration the ongoing evolution of the resistant strain does not increase the probability of resistance emergence; however, it increases the total number of infecteds if a resistant outbreak occurs. Our study further shows that taking stochasticity into account leads to results that can differ from deterministic models. Specifically, we find that rapid and strong control cannot only contain a drug sensitive outbreak, it can also prevent a resistant outbreak from occurring. We find that the best control strategy is early intervention heavily based on prophylaxis at a level that leads to outbreak containment. If containment is not possible, mitigation works best at intermediate levels of antiviral control. Finally, we show that the results are not very sensitive to the way resistance generation is modeled.  相似文献   

15.
Plants can be genetically engineered for virus resistance by transformation with a viral gene. We transformed tobacco with the tomato spotted wilt virus (TSWV) nucleocapsid gene from the Hawaiian L isolate in order to obtain TSWV resistant breeding lines. Doubled-haploid lines were produced from primary transgenic plants that were selected for resistance to the virus. Several of these lines showed very high levels of resistance and were symptomless after inoculation with the Hawaiian L isolate of TSWV. The accumulation of only low levels of full-length transgene RNA and protein observed in these lines is consistent with an RNA-mediated mechanism of resistance. The lines that were highly resistant to the Hawaiian L isolate of TSWV were also found to be highly resistant to several other isolates of TSWV, while lines that were only moderately resistant to the Hawaiian L isolate were often susceptible to the other isolates. The highly resistant lines were advanced over several generations by self-pollination. Although these lines were fully homozygous, several lines lost resistance in later generations, indicating that the resistance was unstable. Selection for resistance in these unstable lines did not prevent the occurrence of susceptible progeny in subsequent generations. Therefore, testing over several generations is required to determine the stability of resistance when breeding crops with transgenic virus resistance.  相似文献   

16.
Kai Lin 《中国病毒学》2010,25(4):246-266
Over 170 million people worldwide are infected with hepatitis C virus (HCV), a major cause of liver diseases. Current interferon-based therapy is of limited efficacy and has significant side effects and more effective and better tolerated therapies are urgently needed. HCV is a positive, single-stranded RNA virus with a 9.6 kb genome that encodes ten viral proteins. Among them, the NS3 protease and the NSSB polymerase are essential for viral replication and have been the main focus of drug discovery efforts. Aided by structure-based drug design,potent and specific inhibitors of NS3 and NSSB have been identified, some of which are in late stage clinical trials and may significantly improve current HCV treatment. Inhibitors of other viral targets such as NSSA are also being pursued. However, HCV is an RNA virus characterized by high replication and mutation rates and consequently, resistance emerges quickly in patients treated with specific antivirals as monotherapy. A complementary approach is to target host factors such as cyclophilins that are also essential for viral replication and may present a higher genetic barrier to resistance. Combinations of these inhibitors of different mechanism are likely to become the essential components of future HCV therapies in order to maximize antiviral efficacy and prevent the emergence of resistance.  相似文献   

17.
Administration of either lamivudine (2'-deoxy-3'-thiacytidine) or L-FMAU (2'-fluoro-5-methyl-beta-L-arabinofuranosyluracil) to woodchucks chronically infected with woodchuck hepatitis virus (WHV) induces a transient decline in virus titers. However, within 6 to 12 months, virus titers begin to increase towards pretreatment levels. This is associated with the emergence of virus strains with mutations of the B and C regions of the viral DNA polymerase (T. Zhou et al., Antimicrob. Agents Chemother. 43:1947-1954, 1999; Y. Zhu et al., J. Virol. 75:311-322, 2001). The present study was carried out to determine which of the mutants that we have identified conferred resistance to lamivudine and/or to L-FMAU. When inserted into a laboratory strain of WHV, each of the mutations, or combinations of mutations, of regions B and C produced a DNA replication-competent virus and typically conferred resistance to both nucleoside analogs in cell culture. Sequencing of the polymerase active site also occasionally revealed other mutations, but these did not appear to contribute to drug resistance. Moreover, in transfected cells, most of the mutants synthesized viral DNA nearly as efficiently as wild-type WHV. Computational models suggested that persistence of several of the WHV mutants as prevalent species in the serum and, by inference, liver for up to 6 months following drug withdrawal required a replication efficiency of at least 10 to 30% of that of the wild type. However, their delayed emergence during therapy suggested replication efficiency in the presence of the drug that was still well below that of wild-type WHV in the absence of the drug.  相似文献   

18.
人免疫缺陷病毒Ⅰ型(HIV-1)抗3'─叠氮─3'─脱氧胸腺嘧啶(AZT)抗药株经体外感染C8166淋巴细胞在高浓度AZT条件下筛选获得,并暂命名为HIV─1─R株。该抗药株与HTLV─ⅢB株相比,在同一感染复数(M01)病毒量感染C8166细胞,经不同浓度的AZT处理后,其复制的病毒量和对AZT的敏感性有显著的差异,抗药株感染C8166细胞,加AZT处理后,分离细胞DNA作PCR扩增后分析,特异性病毒的DNA量比敏感株高100倍以上,显示其抗药性作用点在病毒逆转录DNA前。  相似文献   

19.
Continued use of antiretroviral therapy despite the emergence of drug-resistant human immunodeficiency virus (HIV) has been associated with the durable maintenance of plasma HIV RNA levels below pretherapy levels. The factors that may account for this partial control of viral replication were assessed in a longitudinal observational study of 20 HIV-infected adults who remained on a stable protease inhibitor-based regimen despite ongoing viral replication (plasma HIV RNA levels consistently >500 copies/ml). Longitudinal plasma samples (n = 248) were assayed for drug susceptibility and viral replication capacity (measured by using a single-cycle recombinant-virus assay). The initial treatment-mediated decrease in plasma viremia was directly proportional to the reduction in replicative capacity (P = 0.01). Early virologic rebound was associated the emergence of a virus population exhibiting increased protease inhibitor phenotypic resistance, while replicative capacity remained low. During long-term virologic failure, plasma HIV RNA levels often remained stable or increased slowly, while phenotypic resistance continued to increase and replicative capacity decreased slowly. The emergence of primary genotypic mutations within protease (particularly V82A, I84V, and L90M) was temporally associated with increasing phenotypic resistance and decreasing replicative capacity, while the emergence of secondary mutations within protease was associated with more-gradual changes in both phenotypic resistance and replicative capacity. We conclude that HIV may be constrained in its ability to become both highly resistant and highly fit and that this may contribute to the continued partial suppression of plasma HIV RNA levels that is observed in some patients with drug-resistant viremia.  相似文献   

20.
In order to investigate if there is any definite correlation between the degree of T-cell response in the bursa of Fabricius (BF) and the virulence of Infectious Bursal Disease (IBD) virus strains, chickens were infected with strains of different virulence i.e. mild (Lukert strain), intermediate (Georgia strain) or invasive intermediate (IV-95 strain). At various times post-inoculation, bursal samples were collected to study virus specific histopathological lesions, the distribution of viral antigen and the extent of T-cell infiltration in the bursa. Most severe bursal lesions were induced by IV-95 strain (the invasive intermediate strain), whereas Lukert, the mild strain caused the least severe lesions. The number of virus positive cells in the bursa was highest in chickens infected with IV-95 strain. Substantial infiltration of CD4+ and CD8+ T-cells in the bursal follicles of virus-infected groups was observed from 4 d.p.i. onwards. The magnitude of T-cell response was more in the birds infected with intermediate (Georgia) or invasive intermediate strains of virus than chickens inoculated with mild (Lukert) strain, even when 10-fold higher doses of the inoculums were used. PHA responses to peripheral lymphocytes were found suppressed in all the groups of chickens only transiently. The results indicate that the magnitude of T-cell responses in BF during IBDV infection is influenced more by the virulence of virus strain rather than the quantum of viral load in BF. Over all these studies may have implications in understanding the role of T-cells in pathogenesis and immunity in IBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号