首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In doping control laboratories the misuse of anabolic androgenic steroids is commonly investigated in urine by gas chromatography–low-resolution mass spectrometry with selected ion monitoring (GC–LRMS–SIM). By using high-resolution mass spectrometry (HRMS) detection sensitivity is improved due to reduction of biological background. In our study HRMS and LRMS methods were compared to each other. Two different sets were measured both with HRMS and LRMS. In the first set metandienone (I) metabolites 17α-methyl-5β-androstan-3α,17β-diol (II), 17-epimetandienone (III), 17β-methyl-5β-androst-1-ene-3α,17α-diol (IV) and 6β-hydroxymetandienone (V) were spiked in urine extract prepared by solid-phase extraction, hydrolysis with β-glucuronidase from Escherichia coli and liquid–liquid extraction. In the second set the metabolites were first spiked in blank urine samples of four male persons before pretreatment. Concentration range of the spiked metabolites was 0.1–10 ng/ml in both sets. With HRMS (resolution of 5000) detection limits were 2–10 times lower than with LRMS. However, also with the HRMS method the biological background hampered detection and compounds from matrix were coeluted with some metabolites. For this reason the S/N values of the metabolites spiked had to be first compared to S/N values of coeluted matrix compounds to get any idea of detection limits. At trace concentrations selective isolation procedures should be implemented in order to confirm a positive result. The results suggest that metandienone misuse can be detected by HRMS for a prolonged period after stopping the intake of metandienone.  相似文献   

2.
A procedure for detecting and confirming 23 anabolic substances and/or metabolites has been developed using a GC–MS–MS ion trap system in full-scan mode. The process used to select the precursor ion, and the optimization of the system parameters used to obtain the daughter ion spectra, are explained. Urine samples were prepared using solid-phase extraction and enzymatic hydrolysis, and after TMS derivatives had been formed, they were injected into the mass spectrometer. This method permits confirmation of the presence of anabolic substances at low ng ml−1 levels without the need of further purification procedures on the samples. This procedure has been used on more than 2000 urine samples collected from sporting competitions and has made it possible to confirm more than 45 true positive cases which could not have been confirmed using routine GC–MS methods.  相似文献   

3.
A rapid, selective and reproducible high-performance liquid chromatographic (HPLC) method with ultraviolet detection was developed for the determination of the anti-cancer agent Taxotere in biological fluids. The method involves a solid-phase extraction step (C2 ethyl microcolumns) using a Varian Advanced Automated Sample Processor (AASP) followed by reversed-phase HPLC. The validated quantitation range of the method is 10–2500 ng/ml in plasma with coefficients of variation ≤ 11%. The method is also suitable for the determination of Taxotere in urine samples under the same conditions. The method was applied in a phase I tolerance study of Taxotere in cancer patients, allowing the pharmacokinetic profile of Taxotere to be established.  相似文献   

4.
A novel solid-phase extraction (SPE) method and HPLC method were developed for the determination of methadone and its metabolite from spiked human urine. For sample cleanup, a spiked urine sample was pretreated with phosphoric acid followed by a well-thought-out SPE method using a 10-mg Oasis HLB 96-well extraction plate. In this SPE method, the concentration of methanol as well as the pH are optimized to preferentially isolate the analytes of interest from the sample matrix. Low elution volumes (200 μl) are achieved; this eliminates evaporation and reconstitution of the sample solution. Recoveries from human urine matrix were greater than 91% with RSD values less than 4.5%. For the HPLC analysis, the separation was obtained using a SymmetryShield RP18 column with a mobile phase of 0.1% TFA–methanol (60:40, v/v). Good peak shapes were obtained without the need of addition of any competing reagent to the mobile phase. Additionally, significant signal-to-noise enrichment was achieved by diluting the final SPE eluates four-fold with water.  相似文献   

5.
The semi-automatic bioanalytical assays for olpadronate [(3-dimethylamino-1-hydroxypropylidene)bisphosphonate] involves a protein precipitation with trichloroacetic acid and a double co-precipitation with calcium phosphate for serum samples and a triple calcium co-precipitation for urine samples. These manual procedures are followed by an automated solid-phase extraction on a cation-exchange phase. The procedure is continued either directly, at high olpadronate levels in urine, or after off-line evaporation under nitrogen and reconstitution in water on the same robotic workstation. The continued automatic procedure comprehends derivatization with (9-fluorenylmethyl)chloroformate, ion-pair liquid–liquid extraction and ion-pair HPLC with fluorescence detection at 274/307 nm. The intra- and inter-day precisions for urine and serum samples are typically in the 5–8% range for different olpadronate concentrations [levels near the lower limit of quantification (LLQ) excluded]. The LLQ is 5 ng/ml olpadronate for a 2.5-ml urine sample and 10 ng/ml for a 1-ml serum sample, respectively.  相似文献   

6.
A reversed-phase high-performance liquid chromatography (HPLC) method for the simultaneous determination of cortisol and cortisone in human urine samples using methylprednisolone as the internal standard is decribed. The method involves the systematic use of isocratic mobile phases of water and methanol, acetonitrile or tetrahydrofuran and a reversed-phase Hypersil C18 column. A water-acetonitrile mixture used as the mobile phase proved to be the most adequate one for analyzing urine samples purified by solvent extraction. The proposed method is sensitive, reproducible and selective. It was applied to the determination of cortisol and cortisone in several human urine samples: healthy subjects, sportsmen before and/or after stress for doping control purposes, and patients with Cushing's syndrome.  相似文献   

7.
An enantioselective high-performance liquid chromatography method was developed for the simultaneous determination of disopyramide (DP) and mono-N-dealkyldisopyramide (MND) enantiomers in plasma and urine. The drugs were extracted from plasma samples by liquid–liquid extraction with dichloromethane after protein precipitation with trichloroacetic acid; the urine samples were processed by liquid–liquid extraction with dichloromethane. The enantiomers were resolved on a Chiralpak AD column using hexane–ethanol (91:9, v/v) plus 0.1% diethylamine as the mobile phase and monitored at 270 nm. Under these conditions the enantiomeric fractions of the drug and of its metabolite were analyzed within 20 min. The extraction procedure was efficient in removing endogenous interferents and low values for the relative standard deviations were demonstrated for both within-day and between-day assays. The method described in this paper allows the determination of DP and MND enantiomers at plasma levels as low as 12.5 ng/ml and can be used in clinical pharmacokinetic studies.  相似文献   

8.
An HPLC method has been developed for the separation and the determination of caffeine and its metabolites in urine samples using a one extraction–analysis run and UV detection. The compounds were extracted by liquid–liquid extraction using chloroform–isopropylalcohol (85:15, v/v). Chromatographic separation was accomplished on an ODS analytical column with a mobile phase containing 0.05% acetic acid/methylalcohol (92.5:7.5, v/v). Compounds were monitored at 280 nm. The method was validated for the determination of AFMU, 1X, 1U, 17X and 17U caffeine metabolites required to assess the metabolic activity of the enzymes subject to in vivo caffeine testing. The validated assay was applied to urine samples from ten healthy volunteers. The method was proved to be suitable to assess simultaneously the enzymatic activity of cytochrome P450 CYP1A2 and CYP2A6, as well as N-acetyltransferase and xanthine oxidase.  相似文献   

9.
A fast method is described for the screening of eleven β-blockers, two narcotic analgesics and two stimulants in urine by HPLC with column switching. The urine sample (100 μl), buffered tto pH 9–9.5, is injected onto a short extraction column packed with CN stationary phase. The extraction is flushed with water for 2.5 min to elute polar matrix components to waste. The retained components are then backflushed by means of a six-port valve onto the ODS analytical column where they are separated. Phosphate buffer pH 3.0 and acetonitrile were used as mobile phase. Gradient elution was applied in the screening method to improve separation. Detection was performed with diode-array detector at 220, 235 and 300 nm. Recoveries were near 100%, precision was excellent and sensitivity about 0.25 μg/1. The speed up the quantitative analysis, the same method but with isocratic elution was successfully applied to the determination of acebutolol and metoprolol in urine samples collected 4 h after administration of the compounds as single doses.  相似文献   

10.
A sensitive LC–MS quantitation method of cetrorelix, a novel gonadotropin releasing hormone (GnRH) antagonist, was developed. Plasma and urine samples to which brominated cetrorelix was added as an internal standard (I.S.) were purified by solid-phase extraction with C8 cartridges. The chromatographic separation was achieved on a C18 reversed-phase column using acetonitrile–water–trifluoroacetic acid (35:65:0.1, v/v/v) as mobile phase. The mass spectrometric analysis was performed by electrospray ionization mode with negative ion detection, and the adduct ions of cetrorelix and I.S. with trifluoroacetic acid were monitored in extremely high mass region of m/z 1543 and 1700, respectively. The lower limit of quantitation was 1.00 ng per 1 ml of plasma and 2.09 ng per 2 ml of urine, and the present method was applied to the analysis of pharmacokinetics of cetrorelix in human during phase 1 clinical trial.  相似文献   

11.
A selective gas–liquid chromatographic method with mass spectrometry (GC–MS) for the simultaneous confirmation and quantification of ephedrine, pseudo-ephedrine, nor-ephedrine, nor-pseudoephedrine, which are pairs of diastereoisomeric sympathomimetic amines, and methyl-ephedrine was developed for doping control analysis in urine samples. O-Trimethylsilylated and N-mono-trifluoroacetylated derivatives of ephedrines — one derivative was formed for each ephedrine — were prepared and analyzed by GC–MS, after alkaline extraction of urine and evaporation of the organic phase, using d3-ephedrine as internal standard. Calibration curves, with r2>0.98, ranged from 3.0 to 50 μg/ml depending on the analyte. Validation data (specificity, % RSD, accuracy, and recovery) are also presented.  相似文献   

12.
A heart-cut column-switching, ion-pair, reversed-phase HPLC system was used for the quantitation of efletirizine (EFZ) in biological fluids. The analyte and an internal standard (I.S.) were extracted from human EDTA plasma by C18 solid-phase extraction (SPE) using a RapidTrace® workstation. The eluent from the SPE was evaporated, reconstituted and injected onto the HPLC column. Urine samples were diluted and injected directly without the need of extraction. The compounds of interest were separated from most of the extraneous matrix materials by the first C18 column, and switched onto a second C18 column for further separation using a mobile phase of stronger eluting capability. Linearity range was 10–2000 ng ml−1 for plasma and 0.05–10 μg ml−1 for urine. The lower limit of quantitation (LOQ) was 10 ng from 1 ml of plasma, with a signal-to-noise ratio of 15:1. Inter-day precision and bias of quality control samples (QCs) were <5% for plasma and <7% for urine. Selectivity was established against six other antihistamines, three analogs of efletirizine, and on 12 control plasma lots and nine control urine lots. Recovery was 90.0% for EFZ and 89.5% for I.S. from plasma. One hundred samples can be processed in every 2.75 h on a 10-module RapidTrace® workstation with minimal human attention. Method ruggedness were tested on three brands of SPE and six different lots of one SPE brand. Performance ruggedness was demonstrated by different analysts on multiple HPLC systems. Analyte stability through sample storage, extraction process (benchtop, freeze–thaw, refrigeration after extraction) and chromatography (on-system, reinjection) was established.  相似文献   

13.
Sensitive high-performance liquid chromatographic assays have been developed for the quantification of stavudine (2′,3′-didehydro-3′-deoxythymidine, d4T) in human plasma and urine. The methods are linear over the concentration ranges 0.025–25 and 2–150 μg/ml in plasma and urine, respectively. An aliquot of 200 μl of plasma was extracted with solid-phase extraction using Oasis® cartridges, while urine samples were simply diluted 1/100 with HPLC water. The analytical column, mobile phase, instrumentation and chromatographic conditions are the same for both methods. The methods have been validated separately, and stability tests under various conditions have been performed. The detection limit is 12 ng/ml in plasma for a sample size of 200 μl. The bioanalytical assay has been used in a pharmacokinetic study of pregnant women and their newborns.  相似文献   

14.
We have developed a powerful and simple sensitive method for testing hair for anabolic steroids and their esters. A 100-mg amount of powdered hair was treated with methanol in an ultrasonic bath for extraction of esters, then alkaline digested with 1 M NaOH for an optimum recovery of other drugs. The two liquid preparations were subsequently extracted with ethyl acetate, pooled, then finally highly purified using a twin solid-phase extraction on amino and silica cartridges. The residue was derivatized with N-methyl-N(trimethylsilyl)-trifluoracetamide (MSTFA) prior to injection. Analysis was conducted by gas chromatography coupled to a triple quadrupole mass spectrometer. The generally chosen parent ion was the molecular ion while two daughter ions were selected for each compound with collision energies ranging from −16 to −21 eV. Internal standards were nandrolone d3 for non-esterified drugs and testosterone phenyl propionate for esters. The limits of detection calculated from an analysis of the blanks (n=30) were 0.08 pg/mg for nandrolone, 6.20 pg/mg for boldenone, 0.07 pg/mg for methyl testosterone, 0.15 pg/mg for ethinyl estradiol, 2.10 pg/mg for metandienone, 0.86 pg/mg for testosterone propionate, 0.95 pg/mg for testosterone cypionate, 1.90 pg/mg for nandrolone decanoate, 3.10 pg/mg for testosterone decanoate and 4.80 pg/mg for testosterone undecanoate. Application to doping control has been demonstrated. In a series of 18 sportsmen, two tested positive for anabolic steroids in hair whereas urinalysis was negative for both of them. The first positive case was nandrolone and the second case concerned the identification of testosterone undecanoate. Measured in 10 white males aged between 22 and 31 years, the testosterone concentration was in the range 1.7–9.2 pg/mg (mean=5.0 pg/mg). The method was also applied in meat quality control. Of the 187 analyses realized based upon hair and urine sampling in slaughter houses, 23 were positive for anabolic steroids in hair: one case for boldenone, one case for metandienone, two cases for testosterone propionate, three cases for nandrolone, five cases for testosterone decanoate and 11 cases for methyl testosterone. In the meantime, urinalysis was always negative for these drugs or their metabolites.  相似文献   

15.
A selective and extremely sensitive procedure has been developed and optimized, using high-performance liquid chromatography (HPLC), specific derivatization and gas chromatography–mass spectrometry (GC–MS), to simultaneously quantify very small amounts of different neurosteroids from rat brain. Unconjugated and sulfated steroids in brain extracts were separated by solid-phase extraction. The unconjugated fraction was further purified by HPLC, the steroids being collected in a single fraction, and the sulfated fraction was solvolyzed. All steroids were derivatized with heptafluorobutyric acid anhydride and analyzed by GC–MS (electron impact ionization) using selected-ion monitoring. High sensitivity and accuracy were obtained for all steroids. The detection limits were 1 pg for pregnenolone (PREG), dehydroepiandrosterone (DHEA) and their sulfate esters PREG-S and DHEA-S, 2 pg for progesterone (PROG) and 5 pg for 3α,5α-tetrahydroprogesterone (3α,5α-THP). In a pilot study on a rat brain, the concentrations of PREG-S and DHEA-S were 8.26±0.80 and 2.47±0.27 ng/g, respectively. Those of PREG, DHEA and PROG were 4.17±0.22, 0.45±0.02 and 1.95±0.10 ng/g, respectively. Good linearity and accuracy were observed for each steroid. The methodology validated here, allows femtomoles of neurosteroids, including the sulfates, found in small brain samples (at least equal to 10 mg) to be quantified simultaneously.  相似文献   

16.
A sensitive method for the enantioselective high-performance liquid chromatography (HPLC) determination of nicardipine in human plasma is described. (+)-Nicardipine, (−)-nicardipine and (+)-barnidipine as an internal standard are detected by an ultraviolet detector at 254 nm. Racemic nicardipine in human plasma was extracted by a rapid and simple procedure based on C18 bonded-phase extraction. The extraction samples were purified and concentrated on a pre-column using a C1 stationary phase and the enantiomers of nicardipine are quantitatively separated by HPLC on a Sumichiral OA-4500 column, containing a chemically modified Pirkle-type stationary phase. Determination of (+)- and (−)-nicardipine was possible in a concentration range of 5–100 ng ml−1 and the limit of detection in plasma was 2.5 ng ml−1. The recoveries of (+)- and (−)-nicardipine added to plasma were 91.4–98.4% and 93.3–96.7%, respectively, with coefficients of variation of less than 9.0 and 9.4% respectively. The method was applied to low level monitoring of (+)- and (−)-nicardipine in plasma from healthy volunteers.  相似文献   

17.
The novel compound methyl-1-(3,4-dimethoxyphenyl)-3-(3-ethylvaleryl)-4-hydroxy-6,7,8-trimethoxy-2-naphthoate (S-8921) has hypocholesterolemic activity in animals and is expected to exhibit a similar activity in human. Reversed-phase high-performance liquid chromatography (HPLC) separation followed by radioimmunoassay (RIA) for human plasma samples (HPLC–RIA) and immunoaffinity extraction (IAE) followed by RIA for human urine samples (IAE–RIA) were developed for investigation of S-8921 behavior in clinical studies. For the RIA, antisera from rabbit and a radioiodine-labelled S-8921 were prepared by immunizing a conjugate of S-8921 with bovine serum albumin and by the Bolton and Hunter method, respectively. HPLC–RIA using a semi-micro column was very sensitive, that is a 0.05 ng/ml limit of quantitation in human plasma, and specific for unchanged form of S-8921. IAE–RIA using a centrifugal filtration tube completely eliminated the matrix effect of human urine, and was very feasible. The limit of quantitation was 0.10 ng/ml. RIA detection following HPLC or IAE proved to be very useful for the pharmaceutical analysis of extremely low drug concentrations in body fluids.  相似文献   

18.
A rapid and sensitive method for the extraction and quantification of penicillin-G and procaine in horse urine and plasma samples has been successfully developed. The method involves the use of solid-phase extraction (SPE) for penicillin-G, liquid–liquid extraction (LLE) for procaine, and high-performance liquid chromatography (HPLC) for the quantification of penicillin-G and procaine. The new method described here has been successfully applied in the pharmacokinetic studies of procaine, penicillin-G and procaine–penicillin-G administrations in the horse.  相似文献   

19.
A sensitive, selective and accurate high-performance liquid chromatographic–tandem mass spectrometric assay was developed and validated for the determination of lidocaine and its metabolites 2,6-dimethylaniline (2,6-xylidine), monoethylglycinexylidide and glycinexylidide in human plasma and urine. A simple sample preparation technique was used for plasma samples. The plasma samples were ultrafiltered after acidification with phosphoric acid and the ultrafiltrate was directly injected into the LC system. For urine samples, solid-phase extraction discs (C18) were used as sample preparation. The limit of quantification (LOQ) was improved by at least 10 times compared to the methods described in the literature. The LOQ was in the range 1.6–5 nmol/l for the studied compounds in plasma samples.  相似文献   

20.
Gas chromatographic procedures [GC with electron-capture detection (ECD) and GC–MS] for the quantitative analysis of metrifonate and its active metabolite 2,2-dichlorovinyl dimethylphosphate (DDVP) in human blood and urine were developed, validated, and applied to the analysis of clinical study samples. Analysis of metrifonate involved extraction of acidified blood with ethyl acetate followed by solid-phase clean-up of the organic extract. Acidified urine was extracted with dichloromethane and the residue of evaporated organic phase was reconstituted in toluene. ECD and diethyl analogue of metrifonate internal standard (I.S.) were used for quantitation of metrifonate. The metrifonate lower limit of quantitation (LOQ) was 10.0 μg/l. The DDVP metabolite was chromatographed separately after cyclohexane extraction of acidified blood and urine using d6-DDVP I.S. and MS detection. The LOQ of DDVP was 1 μg/l. Stability studies have confirmed that the matrix should be acidified prior to storage at −20°C or −80°C to inhibit chemical and enzymatic degradation of the analytes and to avoid overestimation of DDVP concentrations. Metrifonate was found to be stable in acidified human blood after 20 months of storage at −20°C and after 23 months of storage at −80°C. Under these conditions DDVP was found to be stable after 12 months of storage. Both assay procedures were cross-validated by different world-wide laboratories and found to be accurate and robust during analyses of clinical study samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号