首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
V(D)J recombinase mediates rearrangements at immune loci and cryptic recombination signal sequences (cRSS), resulting in a variety of genomic rearrangements in normal lymphocytes and leukemic cells from children and adults. The frequency at which these rearrangements occur and their potential pathologic consequences are developmentally dependent. To gain insight into V(D)J recombinase-mediated events during human development, we investigated 265 coding junctions associated with cRSS sites at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus in peripheral T cells from 111 children during the late stages of fetal development through early adolescence. We observed a number of specific V(D)J recombinase processing features that were both age and gender dependent. In particular, TdT-mediated nucleotide insertions varied depending on age and gender, including percentage of coding junctions containing N-nucleotide inserts, predominance of GC nucleotides, and presence of inverted repeats (Pr-nucleotides) at processed coding ends. In addition, the extent of exonucleolytic processing of coding ends was inversely related to age. We also observed a coding-partner-dependent difference in exonucleolytic processing and an age-specific difference in the subtypes of V(D)J-mediated events. We investigated these age- and gender-specific differences with recombination signal information content analysis of the cRSS sites in the human HPRT locus to gain insight into the mechanisms mediating these developmentally specific V(D)J recombinase-mediated rearrangements in humans.  相似文献   

2.
SCP1 is a giant linear plasmid of 350 kb coding for the methylenomycin biosynthetic genes in Streptomyces coelicolor. The unusually long terminal inverted repeats present on both ends of SCP1 were analyzed on the nucleotide sequence level. Analysis of six clones containing the terminal 0.35-kb XbaI fragment revealed a slight heterogeneity in the nucleotide sequences of the SCP1 ends. Moreover, it was indicated that this fragment contained seven palindromic inverted repeats and a GT-rich region in the 5'-end strand. The size of the terminal inverted repeats was determined to be 81 kb by the cloning and sequencing of their end-points. An insertion sequence, IS466 was shown to be present just at the end of the right terminal inverted repeat.  相似文献   

3.
4.
V(D)J recombination proceeds in two stages. Precise cleavage at the border of the conserved recombination signal sequences (RSSs) and the coding ends results in flush double-stranded signal ends and coding ends terminating in hairpins. In the second stage, the signal and coding ends are processed into signal and coding joints. Coding ends containing certain nucleotide homopolymers affect the efficiency of V(D)J recombination. In this study, we have tested the effect of small changes in coding-end nucleotide composition on the frequency of coding- and signal joint formation. Furthermore, we have determined the sequences of coding joints resulting from recombination of coding ends with different compositions. We found that the presence of two T nucleotides 5' of both RSSs, but not a single T, reduces the frequency of signal joint formation, i.e., interferes with the cleavage stage of V(D)J recombination. However, coding-joint processing is sensitive even to a single T. Both the sequence of the coding ends and the particular RSS (12-mer or 23-mer) with which the coding end is associated affect the final composition of the coding joints. Thus, the presence of P nucleotides, the conservation of one undeleted coding end, the formation of joints without any deletions, and the template-dependent insertion of nucleotides are strongly influenced by the coding-end nucleotide composition and/or RSS association. The implications of these results with respect to the processing of coding ends are discussed.  相似文献   

5.
Nucleotide sequencing of Rhizobium meliloti insertion sequence ISRm1 showed that it is 1319 nucleotides long and includes 32/31 nucleotide terminal inverted repeats. Analysis of five different insertion sites using sequencing primers complementary to sequences within the left and right ends demonstrated that ISRm1 generates five bp direct repeats at the sites of insertion. Although ISRm1 has shown a target preference for certain short regions (hot spots), there was no apparent similarity in the DNA sequences near the insertion sites. On one strand ISRm1 contains two contiguous open reading frames (ORFs) spanning most of its length. ISRm1 was found to have over 50% sequence homology to insertion sequences IS2 from Escherichia coli and IS426 from Agrobacterium tumefaciens. Their sizes, the sequences of their inverted repeats, and the characteristics of their insertion sites are also comparable, indicating that ISRm1, IS2 and IS426 belong to a class of related insertion sequences. Comparison of the proteins potentially encoded by these insertion sequences showed that the two ORFs found in ISRm1 are also present in IS2 and IS426, suggesting that they may be functional genes.  相似文献   

6.
Defining the beginning and end of KpnI family segments.   总被引:28,自引:0,他引:28       下载免费PDF全文
Comparison of the sequences at the ends of several newly cloned and full length members of the monkey KpnI family with one another and with previously described monkey and human segments defines the nucleotide sequence at the two termini. No terminal repeats either direct or inverted are noted within full length family members which may or may not be immediately flanked by direct repeats. At the 3' terminus, several family members have polyadenylation signals followed by a d(A)-rich stretch. The genomic frequency of segments within the full length element increases markedly from the 5' to the 3' terminus, consistent with the cloning of various truncated family members. One such truncated version joined to a low copy number DNA segment is inserted in monkey alpha-satellite where the combination appears to have been amplified in conjunction with the satellite itself.  相似文献   

7.
Rare Ig and TCR coding joints can be isolated from mice that have a targeted deletion in the gene encoding the 86-kDa subunit of the Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). However in the coding joints isolated from Ku86-/- animals, there is an extreme paucity of N regions (the random nucleotides added during V(D)J recombination by the enzyme TdT). This finding is consistent with a decreased frequency of coding joints containing N regions isolated from C.B-17 SCID mice that express a truncated form of the catalytic subunit of the DNA-PK (DNA-PKCS). This finding suggests an unexpected role for DNA-PK in addition of N nucleotides to coding ends during V(D)J recombination. In this report, we establish that TdT forms a stable complex with DNA-PK. Furthermore, we show that DNA-PK modulates TdT activity in vitro by limiting both the length and composition of nucleotide additions.  相似文献   

8.
Structural and functional studies of insertion element IS200   总被引:10,自引:0,他引:10  
  相似文献   

9.
La Claire  J.W.  II  &Wang  J. 《Journal of phycology》2000,36(S3):40-40
Ernodesmis verticillata contains novel, linear plasmid-like DNA molecules in its chloroplasts, whose function remains unclear. Their molecular architecture is putatively a "hairpin," wherein every molecule consists of a long inverted repeat folded back on itself. Thus, each molecule is composed of a terminal (telomeric) domain, a central inverted repeat, and a "loop" domain. Cloning strategies have been devised for characterizing the terminal and loop regions, since they might contain landmark features like replication origins. Polymerase chain reaction (PCR) was used to amplify loop domains of native molecules, and ligation of the PCR products with commercial cloning vectors initially yielded 11 clones. So far, no recognizable sequences have turned up in the loop domains of the molecules. Unlike what has been reported for most linear plasmids, we have been unable to verify that any proteins are associated with either the 5'- or 3'-ends of the Ernodesmis plasmids. In fact, the 5'-end of each molecule contains a terminal phosphate that is accessible to alkaline phosphatase and subsequently to T4 polynucleotide kinase in vitro. It is also possible to modify the 3'-end with terminal deoxynucleotidyl transferase (TdT) for homopolymeric tailing. Poly-(C) tailing of native molecules promotes their annealing to poly-(G) tailed vectors, for cloning of the terminal domains. An initial library of 14 TdT clones (10 unique) indicates that short (11–28 bp) direct repeats occur near the termini of the plasmids. Shorter (4–6 bp) inverted repeats at the very ends may lead to terminal foldbacks that might serve to protect the termini.  相似文献   

10.
Summary The detailed structural organization of DNA sequences transferred to the plant genome via Agrobacterium tumefaciens has been determined in 11 transgenic tomato plants that carry the transferred DNA (T-DNA) at a single genetic locus. The majority (seven) of these plants were found to carry multiple copies of T-DNA arranged in inverted repeat structures. Such a high frequency of inverted repeats among transgenotes has not been previously reported and appears to be characteristic of transformation events caused by C58/pGV3850 strains of Agrobacterium. The inverted repeats were found to be centered on either the left or the right T-DNA boundary and both types were observed at similar frequency. In several plants both types of inverted repeat were found to coexist in the same linear array of elements. Direct repeats were observed in two plants, each time at the end of an array of inverted repeat elements, and at a lower frequency than inverted repeats. The junctions between T-DNA elements and plant DNA sequences and the junctions between adjacent T-DNA elements were mapped in the same 11 plants, allowing the determination of the distribution of junction points at each end for both types of junction. Based on a total of 17 distinct junctions at the right end of T-DNA and 19 at the left end, the distribution of junction points was found to be much more homogeneous at the right end than at the left end. Left end junctions were found to be distributed over a 3 kb region of T-DNA with two thirds of the junctions within 217 bp of the left repeat. Two thirds of the right end junctions were found to lie within 11 bp of the right repeat with the rest more than 39 bp from the right repeat. T-DNA::plant DNA junctions and T-DNA::T-DNA inverted repeat junctions showed similar distributions of junction points at both right and left ends. The possibilities that T-DNA inverted repeats are unstable in plants and refractory to cloning in wild type Escherichia coli is discussed. Two distinct types of mechanisms for inverted repeat formation are contrasted, replication and ligation mechanisms.  相似文献   

11.
After Agrobacterium-mediated plant transformation, multiple T-DNAs frequently integrate at the same position in the plant genome, resulting in the formation of inverted and direct repeats. Because these inverted repeats cannot be amplified and analyzed by PCR, Arabidopsis root cells were co-transformed with two different T-DNAs with distinct sequences adjacent to the T-DNA borders. Nine direct or inverted T-DNA border junctions were analyzed at the sequence level. Precise end-to-end fusions were found between two right border ends, whereas imprecise fusions and filler DNA were present in T-DNA linkages containing a left border end. The results suggest that end-to-end ligation of double-stranded T-DNAs occurs especially between right T-DNA ends and that illegitimate recombination on the basis of microhomology, deletions, repair activities and insertions of filler DNA is involved in the formation of left border T-DNA junctions. Therefore, a similar illegitimate recombination mechanism is proposed that is involved in the formation of complex T-DNA inserts as well as in the integration of the T-DNA in the plant genome.  相似文献   

12.
13.
The nucleotide sequence of the integrated avian myeloblastosis virus long terminal repeat has been determined. The sequence is 385 base pairs long and is present at both ends of the viral DNA. The cell-virus junctions at each end consist of a 6-base-pair direct repeat of cell DNA next to the inverted repeat of viral DNA. The long terminal repeat also contains promoter-like sequences, an mRNA capping site, and polyadenylation signals. Several features of this long terminal repeat suggest a structural and functional similarity with sequences of transposable and other genetic elements. Comparison of these sequences with long terminal repeats of other avian retroviruses indicates that there is a great variation in the 3' unique sequence (U3), whereas the 5' specific sequences (U5) and the R region are highly conserved.  相似文献   

14.
The addition of nontemplated (N) nucleotides to coding ends in V(D)J recombination is the result of the action of a unique DNA polymerase, TdT. Although N-nucleotide addition by TdT plays a critical role in the generation of a diverse repertoire of Ag receptor genes, the mechanism by which TdT acts remains unclear. We conducted a structure-function analysis of the murine TdT protein to determine the roles of individual structural motifs that have been implicated in protein-protein and protein-DNA interactions important for TdT function in vivo. This analysis demonstrates that the N-terminal portion of TdT, including the BRCA-1 C-terminal (BRCT) domain, is not required for TdT activity, although the BRCT domain clearly contributes quantitatively to N-nucleotide addition activity. The second helix-hairpin-helix domain of TdT, but not the first, is required for activity. Deletional analysis also suggested that the entire C-terminal region of TdT is necessary for N-nucleotide addition in vivo. The long isoform of TdT was found to reduce N-nucleotide addition by the short form of TdT, but did not increase nucleotide deletion from coding ends in either human or rodent nonlymphoid cells. We consider these results in light of the recently reported structure of the catalytic region of TdT.  相似文献   

15.
Two distinct processed calmodulin genes of rat (lambda SC8 and lambda SC9) were identified, cloned and their DNA sequences determined. The existence of direct repeats of 19 base-pairs for lambda SC8 or 9 base-pairs for lambda SC9 at both ends of the coding plus non-coding regions suggested a possible involvement of a mRNA-mediated process of insertion. Total genomic Southern hybridization suggested the existence of at least three different calmodulin-related genes in the rat genome. The other gene was the bona fide calmodulin gene (lambda SC4) which was split into at least five exons. lambda SC9 contained insertions of one nucleotide and two 17 base-pair direct repeats in the coding region. These insertions cause frameshift mutations probably preventing it from encoding a functional calmodulin. It also carried an insertion of a rat middle repetitive sequence, identifier sequence (IDS: Sutcliffe et al., 1982) in the 3'-non-coding region. Otherwise, it consisted of an almost identical DNA sequence to that of the bona fide calmodulin gene (lambda SC4), including the 3'-non-coding region down to the poly(A) recognition signal, A-A-T-A-A-A. On the other hand, lambda SC8 did not possess frameshift mutations in the coding region, and hence was capable of encoding a functional protein. In fact, a probe specific to the lambda SC8 sequence identified a band in Northern blotting whose size was 300 nucleotides smaller than that of authentic calmodulin mRNA. Comparison of the nucleotide sequences showed that only the coding regions of these two processed genes were homologous, indicating that the divergence of these two processed genes from the common ancestor calmodulin was an ancient event.  相似文献   

16.
Coding junction formation in V(D)J recombination generates diversity in the antigen recognition structures of immunoglobulin and T-cell receptor molecules by combining processes of deletion of terminal coding sequences and addition of nucleotides prior to joining. We have examined the role of coding end DNA composition in junction formation with plasmid substrates containing defined homopolymers flanking the recombination signal sequence elements. We found that coding junctions formed efficiently with or without terminal DNA homology. The extent of junctional deletion was conserved independent of coding ends with increased, partial, or no DNA homology. Interestingly, G/C homopolymer coding ends showed reduced deletion regardless of DNA homology. Therefore, DNA homology cannot be the primary determinant that stabilizes coding end structures for processing and joining.  相似文献   

17.
The nucleotide sequence of the 3' long terminal repeat and adjacent viral and host sequences was determined for a bovine leukemia provirus cloned from a bovine tumor. The long terminal repeat was found to comprise 535 nucleotides and to harbor at both ends an imperfect inverted repeat of 7 bases. Promoter-like sequences (Hogness box and CAT box), an mRNA capping site, and a core enhancer-related sequence were tentatively located. No kinship was detected between this bovine leukemia proviral fragment and other retroviral long terminal repeats, including that of human T-cell leukemia virus.  相似文献   

18.
V(D)J recombination is one of the most complex DNA transactions in biology. The RAG complex makes double-stranded breaks adjacent to signal sequences and creates hairpin coding ends. Here, we find that the kinase activity of the Artemis:DNA-PKcs complex can be activated by hairpin DNA ends in cis, thereby allowing the hairpins to be nicked and then to undergo processing and joining by nonhomologous DNA end joining. Based on these insights, we have reconstituted many aspects of the antigen receptor diversification of V(D)J recombination by using 13 highly purified polypeptides, thereby permitting variable domain exon assembly by using this fully defined system in accord with the 12/23 rule for this process. The features of the recombination sites created by this system include all of the features observed in vivo (nucleolytic resection, P nucleotides, and N nucleotide addition), indicating that most, if not all, of the end modification enzymes have been identified.  相似文献   

19.
T Hong  K Drlica  A Pinter    E Murphy 《Journal of virology》1991,65(1):551-555
During infection of cells by retroviruses, some of the nonintegrated viral DNA can be found as a circular form containing two tandem, directly repeated long terminal repeats. The nucleotide sequence at the point where the long terminal repeats join (the circle junction) can be used to deduce the terminal nucleotides of the linear form of the viral DNA. Comparison of the termini of linear viral DNA with sequences at the junctions between the integrated provirus and the host chromosome has revealed that for most retroviruses 2 bp are removed from each end of the linear viral DNA during integration. For human immunodeficiency virus type 1 (HIV-1), however, sequence considerations involving primer-binding sites had suggested that only 1 bp is removed during integration. We obtained the nucleotide sequences at the ends of HIV-1 DNA by using the polymerase chain reaction to amplify fragments corresponding to the HIV-1 circle junction. Of 17 clones containing amplified sequences, 10 had identical circle junctions that contained an additional 4 bp (GTAC) relative to the integrated provirus. This indicates that, as for other retroviruses, 2 bp are removed from each end of the linear HIV-1 viral DNA during integration. The remaining seven isolates contained insertions or deletions at the circle junction.  相似文献   

20.
B Allet  J D Rochaix 《Cell》1979,18(1):55-60
All of the chloroplast 23S ribosomal genes of C. reinhardii are interrupted by a 0.87 kb sequence (Rochaix and Malnoë, 1978). We have sequenced the DNA across the two ends of this intervening element. In parallel, we have examined the nucleotide sequences in the corresponding part of the 23S ribosomal RNA. This allowed us to locate precisely the boundaries between the coding (that is, transcribed into mature 23S rRNA) and the noncoding DNA. The results show that the intervening sequence is flanked by two identical sets of 3 bp (5′-CGT) oriented as direct repeats. In addition, a sequence of 5 bp (5′-CGTGA) lies exactly next to one end and is found very close (16 bp) to the other end, in the coding part of the gene. These two sets are also oriented as direct repeats. Finally, sequences near one end of the intervening element are found with a few alterations near the other end, but in an inverted orientation. Possible interpretations of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号