首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mimicry and deception are two important issues in studies about animal communication. The reliability of animal signs and the problem of the benefits of deceiving in sign exchanges are interesting topics in the evolution of communication. In this paper, we intend to contribute to an understanding of deception by studying the case of aggressive signal mimicry in fireflies, investigated by James Lloyd. Firefly femmes fatales are specialized in mimicking the mating signals of other species of fireflies with the purpose of attracting responding males to become their prey. These aggressive mimics are a major factor in the survival and reproduction of both prey and predator. It is a case of deception through active falsification of information that leads to efficient predation by femmes fatales fireflies and triggered evolutionary processes in their preys’ communicative behaviors. There are even nested coevolutionary interactions between these fireflies, leading to a remarkable system of deceptive and counterdeceptive signaling behaviors. We develop here a semiotic model of firefly deception and also consider ideas advanced by Lloyd about the evolution of communication, acknowledging that deception can be part of the explanation of why communication evolves towards increasing complexity. Increasingly complex sign exchanges between fireflies evolve in an extremely slow pace. Even if deceptive maneuvers are played out time and time again between particular firefly individuals, the evolution of the next level of complexity—and thus the next utterance in the dialogue between species—is likely to take an immense amount of generations.  相似文献   

2.
An organism may use misinformation, knowingly (through deception) or unknowingly (as in the case of camouflage), to gain advantage in a competitive environment. From an evolutionary perspective, greater tactical deception occurs among primates closer to humans, with larger neocortices. In humans, the onset of deceptive behaviours in childhood exhibits a developmental trajectory, which may be regarded as 'normal' in the majority and deficient among a minority with certain neurodevelopmental disorders (e.g. autism). In the human adult, deception and lying exhibit features consistent with their use of 'higher' or 'executive' brain systems. Accurate detection of deception in humans may be of particular importance in forensic practice, while an understanding of its cognitive neurobiology may have implications for models of 'theory of mind' and social cognition, and societal notions of responsibility, guilt and mitigation. In recent years, functional neuroimaging techniques (especially functional magnetic resonance imaging) have been used to study deception. Though few in number, and using very different experimental protocols, studies published in the peer-reviewed literature exhibit certain consistencies. Attempted deception is associated with activation of executive brain regions (particularly prefrontal and anterior cingulate cortices), while truthful responding has not been shown to be associated with any areas of increased activation (relative to deception). Hence, truthful responding may comprise a relative 'baseline' in human cognition and communication. The subject who lies may necessarily engage 'higher' brain centres, consistent with a purpose or intention (to deceive). While the principle of executive control during deception remains plausible, its precise anatomy awaits elucidation.  相似文献   

3.
Combinatorial communication, in which two signals are used together to achieve an effect that is different to the sum of the effects of the component parts, is apparently rare in nature: it is ubiquitous in human language, appears to exist in a simple form in some non-human primates, but has not been demonstrated in other species. This observed distribution has led to the pair of related suggestions, that (i) these differences in the complexity of observed communication systems reflect cognitive differences between species; and (ii) that the combinations we see in non-human primates may be evolutionary pre-cursors of human language. Here we replicate the landmark experiments on combinatorial communication in non-human primates, but in an entirely different species, unrelated to humans, and with no higher cognition: the bacterium Pseudomonas aeruginosa. Using the same general methods as the primate studies, we find the same general pattern of results: the effect of the combined signal differs from the composite effect of the two individual signals. This suggests that advanced cognitive abilities and large brains do not necessarily explain why some species have combinatorial communication systems and others do not. We thus argue that it is premature to conclude that the systems observed in non-human primates are evolutionarily related to language. Our results illustrate the value of an extremely broad approach to comparative research.  相似文献   

4.
We review evolutionary views on honesty and deception and their application to studies of nonhuman primate communication. There is evidence that some primate signals are likely to be accurate on the basis of costliness. They appear most often in contexts that include overtly competitive interactions in which unrelated individuals have limited access to information about one another. However, both game theoretic models and most empirical work suggest that costly signals are not often likely to be the basis for honest communication in nonhuman primates. Inexpensive signaling can exist in contexts wherein communication occurs among related animals, something common among many nonhuman primate societies. Another condition in which inexpensive signaling is possible and that is also typical of nonhuman primates, is when sender and receiver both benefit from coordinated interactions. Additionally, when individuals interact repeatedly and can use past interactions to assess the honesty of signals and to modify future response to signals, low-cost signals can evolve. Nonhuman primates appear to deal with the problem of deception via skeptical responding, which can be largely accounted for by learning rules and the fact that they live in stable social groups and can recognize one another and recall past interactions.  相似文献   

5.
Theoretical models predict that deception should occur even in stable signalling systems. Assessment of the prevalence of deception and its importance has, however, been hampered by the lack of a rigorous definition of what constitutes deception and by the anecdotal nature of much of the literature. For an interaction to qualify as deception, the receiver of the "deceptive" signal must incur a cost. While this cost is often clear in interspecific interactions, it is more difficult to evaluate in interactions between members of the same species. A systematic approach to the study of deception, including the use of experimental techniques to elicit deceptive behaviour, is now required. Such an approach may enable us to address a crucial question in social evolution - whether animals are capable of manipulating the minds of others, or merely their behaviour.  相似文献   

6.
Signals in intraspecific communication should be inherently honest; otherwise the system is prone to collapse. Theory predicts, however, that honest signalling systems are susceptible to invasion by cheats, the extent of which is largely mediated by fear of reprisal. Cuttlefish facultatively change their shape and colour, an ability that evolved to avoid predators and capture prey. Here, we show that this ability is tactically employed by male mourning cuttlefish (Sepia plangon) to mislead conspecifics during courtship in a specific social context amenable to cheating 39 per cent of the time, while it was never employed in other social contexts. Males deceive rival males by displaying male courtship patterns to receptive females on one side of the body, and simultaneously displaying female patterns to a single rival male on the other, thus preventing the rival from disrupting courtship. The use of tactical deception in such a complex communication network indicates that sociality has played a key role in the cognitive evolution of cephalopods.  相似文献   

7.
A very important task in the ongoing search for new clinically useful drugs is the generation of large numbers of structurally diverse compounds. The emerging field of combinatorial biosynthesis, in which nature's chemical capabilities are exploited in a combinatorial 'mix-and-match' fashion, has generated libraries of novel molecules representing great structural diversity which are not available naturally or readily generated through (combinatorial) synthesis. Novel polyketides have been generated by manipulating type II iterative polyketide synthase (PKS) systems that express a variety of combinations of a minimal PKS with ketoreductases, cyclases, and other tailoring enzymes, resulting in a set of design rules to rationally engineer new metabolites. Engineering studies with the Streptomyces coelicolor whiE (spore pigment) and the 'Streptomyces maritimus' enterocin type II PKS provide additional insight on designing diverse assemblies of aromatic, as well as nonaromatic, polyketides.  相似文献   

8.
The doctor‐patient relationship is built on an implicit covenant of trust, yet it was not until the post‐World War Two era that respect for patient autonomy emerged as an article of mainstream medical ethics. Unlike their medical forebears, physicians today are expected to furnish patients with adequate information about diagnoses, prognoses and treatments. Against these dicta there has been ongoing debate over whether placebos pose a threat to patient autonomy. A key premise underlying medical ethics discussion is the notion that the placebo effect necessitates patient deception. Indeed, the American Medical Association guidelines imply that placebo treatment necessary entails a form of deception. As a consequence of this assumption, the fulcrum of debate on the use of placebo treatment has hinged on whether that deception is ever justified. Recently performed experiments with open‐label transparently prescribed placebos have begun to challenge the notion that deception is necessary in eliciting the placebo effect and such effects necessarily involve a binary distinction between autonomy and beneficence. In this article we focus on the content of disclosures in distinctive open‐label, transparently disclosed placebo studies and inquire whether they might be said to invoke deception in clinical contexts, and if so, whether the deception is unethical. We find that open placebos may be said to involve equivocation over how placebos work. However, drawing on surveys of patient attitudes we suggest that this equivocation appears to be acceptable to patients. We conclude that open placebos fulfil current American Medical Association guidelines for placebo use, and propose future research directions for harnessing the placebo effect ethically.  相似文献   

9.
The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI) methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS) while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception.  相似文献   

10.
At the heart of the social intelligence hypothesis is the central role of 'social living'. But living is messy and psychologists generally seek to avoid this mess in the interests of getting clean data and cleaner logical explanations. The study of deception as intelligent action is a good example of the dangers of such avoidance. We still do not have a full picture of the development of deceptive actions in human infants and toddlers or an explanation of why it emerges. This paper applies Byrne & Whiten's functional taxonomy of tactical deception to the social behaviour of human infants and toddlers using data from three previous studies. The data include a variety of acts, such as teasing, pretending, distracting and concealing, which are not typically considered in relation to human deception. This functional analysis shows the onset of non-verbal deceptive acts to be surprisingly early. Infants and toddlers seem to be able to communicate false information (about themselves, about shared meanings and about events) as early as true information. It is argued that the development of deception must be a fundamentally social and communicative process and that if we are to understand why deception emerges at all, the scientist needs to get 'back to the rough ground' as Wittgenstein called it and explore the messy social lives in which it develops.  相似文献   

11.
Combinatorial chemistry is common place today in chemical synthesis. Virtually thousands of derivatives of a molecule can be achieved by automated systems. The use of biological systems to exploit combinatorial chemistry (combinatorial biochemistry) now has multiple examples in the polyketide field. The modular functional domain structure of polyketide synthases have been recombined through genetic engineering into unnatural constellations in heterologous hosts in order to produce polyketide structures not yet discovered in nature. We present herein an example for a potential type of combinatorial biochemistry in alkaloidal systems using various combinations of Thalictrum tuberosum (meadow rue) O-methyltransferase subunits that result in heterodimeric enzymes with substrate specificities that differ from those of the homodimeric native enzymes.  相似文献   

12.
Although communication underpins many biological processes, its function and basic definition remain contentious. In particular, researchers have debated whether information should be an integral part of a definition of communication and how it remains reliable. So far the handicap principle, assuming signal costs to stabilize reliable communication, has been the predominant paradigm in the study of animal communication. The role of by‐product information produced by mechanisms other than the communicative interaction has been neglected in the debate on signal reliability. We argue that by‐product information is common and that it provides the starting point for ritualization as the process of the evolution of communication. Second, by‐product information remains unchanged during ritualization and enforces reliable communication by restricting the options for manipulation and cheating. Third, this perspective changes the focus of research on communication from studying signal costs to studying the costs of cheating. It can thus explain the reliability of signalling in many communication systems that do not rely on handicaps. We emphasize that communication can often be informative but that the evolution of communication does not cause the evolution of information because by‐product information often predates and stimulates the evolution of communication. Communication is thus a consequence but not a cause of reliability. Communication is the interplay of inadvertent, informative traits and evolved traits that increase the stimulation and perception of perceivers. Viewing communication as a complex of inadvertent and derived traits facilitates understanding of the selective pressures shaping communication and those shaping information and its reliability. This viewpoint further contributes to resolving the current controversy on the role of information in communication.  相似文献   

13.
Directed evolution is a powerful tool for engineering protein function. The process of directed evolution involves iterative rounds of sequence diversification followed by assaying activity of variants and selection. The range of sequence variants and linked activities generated in the course of an evolution are a rich information source for investigating relationships between sequence and function. Key residue positions determining protein function, combinatorial contributors to activity and even potential functional mechanisms have been revealed in directed evolutions. The recent application of high throughput sequencing substantially increases the information that can be retrieved from directed evolution experiments. Combined with computational analysis this additional sequence information has allowed high‐resolution analysis of individual residue contributions to activity. These developments promise to significantly enhance the depth of insight that experimental evolution provides into mechanisms of protein function.  相似文献   

14.
In animal communication, signals are frequently emitted using different channels (e.g. frequencies in a vocalization) and different modalities (e.g. gestures can accompany vocalizations). We explore two explanations that have been provided for multimodality: (i) selection for high information transfer through dedicated channels and (ii) increasing fault tolerance or robustness through multichannel signals. Robustness relates to an accurate decoding of a signal when parts of a signal are occluded. We show analytically in simple feed-forward neural networks that while a multichannel signal can solve the robustness problem, a multimodal signal does so more effectively because it can maximize the contribution made by each channel while minimizing the effects of exclusion. Multimodality refers to sets of channels where within each set information is highly correlated. We show that the robustness property ensures correlations among channels producing complex, associative networks as a by-product. We refer to this as the principle of robust overdesign. We discuss the biological implications of this for the evolution of combinatorial signalling systems; in particular, how robustness promotes enough redundancy to allow for a subsequent specialization of redundant components into novel signals.  相似文献   

15.
Metabolic compartmentation represents a major characteristic of eukaryotic cells. The analysis of compartmented metabolic networks is complicated by separation and parallelization of pathways, intracellular transport, and the need for regulatory systems to mediate communication between interdependent compartments. Metabolic flux analysis (MFA) has the potential to reveal compartmented metabolic events, although it is a challenging task requiring demanding experimental techniques and sophisticated modeling. At present no ready-made solution can be provided to cope with the complexity of compartmented metabolic networks, but new powerful tools are emerging. This review gives an overview of different strategies to approach this issue, focusing on different MFA methods and highlighting the additional information that should be included to improve the outcome of an experiment and associate estimation procedures.  相似文献   

16.
Hongchun Qu  Tal Seifan  Merav Seifan 《Oikos》2017,126(12):1815-1826
Model–mimic plant systems are well known. However, the conditions promoting the existence of such systems are still an enigma. We suggest that by focusing on floral similarity between model and mimic, reward levels offered by models, and pollinators’ ability to adjust foraging accordingly, the conditions can be better understood. Using spatially‐explicit modelling, we examined trait combinations that lead to the survival of deceptive species under a large range of mimic strategies, from Batesian mimicry to general food deception. Unlike previous models studying such systems, we examined model–mimic interactions in the presence of a third, dissimilar species, thus generating a more realistic scenario where pollinators may avoid the model–mimic system altogether. Results showed that overall survival and abundance of species in food deceptive systems depend on the relative reward provided by the participating species and the potential alternatives available. Specifically, the success of a mimic in a Batesian mimicry system depends on high levels of reward provided by its model species relative to potential alternatives in the flower community. On the other hand, the success of a mimic in a general food deception system was higher when the reward offered was lower. Our study suggests that the ability of pollinators to utilize their experience as part of decision‐making is highly relevant in promoting mimic survival, thus shedding light on the conditions under which food deception is expected.  相似文献   

17.
Animals often gather information from other species by eavesdropping on signals intended for others. We review the extent, benefits, mechanisms, and ecological and evolutionary consequences of eavesdropping on other species' alarm calls. Eavesdropping has been shown experimentally in about 70 vertebrate species, and can entail closely or distantly related species. The benefits of eavesdropping include prompting immediate anti‐predator responses, indirect enhancement of foraging or changed habitat use, and learning about predators. Eavesdropping on heterospecifics can provide more eyes looking for danger, complementary information to that from conspecifics, and potentially information at reduced cost. The response to heterospecific calls can be unlearned or learned. Unlearned responses occur when heterospecific calls have acoustic features similar to that used to recognize conspecific calls, or acoustic properties such as harsh sounds that prompt attention and may allow recognition or facilitate learning. Learning to recognize heterospecific alarm calls is probably essential to allow recognition of the diversity of alarm calls, but the evidence is largely indirect. The value of eavesdropping on different species is affected by problems of signal interception and the relevance of heterospecific alarm calls to the listener. These constraints on eavesdropping will affect how information flows among species and thus affect community function. Some species are ‘keystone’ information producers, while others largely seek information, and these differences probably affect the formation and function of mixed‐species groups. Eavesdroppers might also integrate alarm calls from multiple species to extract relevant and reliable information. Eavesdropping appears to set the stage for the evolution of interspecific deception and communication, and potentially affects communication within species. Overall, we now know that eavesdropping on heterospecific alarm calls is an important source of information for many species across the globe, and there are ample opportunities for research on mechanisms, fitness consequences and implications for community function and signalling evolution.  相似文献   

18.
The Orchidaceae are one of the most species-rich plant families and their floral diversity and pollination biology have long intrigued evolutionary biologists. About one-third of the estimated 18,500 species are thought to be pollinated by deceit. To date, the focus has been on how such pollination evolved, how the different types of deception work, and how it is maintained, but little progress has been made in understanding its evolutionary consequences. To address this issue, we discuss here how deception affects orchid mating systems, the evolution of reproductive isolation, speciation processes and neutral genetic divergence among species. We argue that pollination by deceit is one of the keys to orchid floral and species diversity. A better understanding of its evolutionary consequences could help evolutionary biologists to unravel the reasons for the evolutionary success of orchids.  相似文献   

19.
Deception has always been a part of human communication as it helps to promote self-presentation. Although both men and women are equally prone to try to manage their appearance, their strategies, motivation and eagerness may be different. Here, we asked if lying could be influenced by gender on both the behavioral and neural levels. To test whether the hypothesized gender differences in brain activity related to deceptive responses were caused by differential socialization in men and women, we administered the Gender Identity Inventory probing the participants' subjective social sex role. In an fMRI session, participants were instructed either to lie or to tell the truth while answering a questionnaire focusing on general and personal information. Only for personal information, we found differences in neural responses during instructed deception in men and women. The women vs. men direct contrast revealed no significant differences in areas of activation, but men showed higher BOLD signal compared to women in the left middle frontal gyrus (MFG). Moreover, this effect remained unchanged when self-reported psychological gender was controlled for. Thus, our study showed that gender differences in the neural processes engaged during falsifying personal information might be independent from socialization.  相似文献   

20.
Indirect reciprocity is often claimed as one of the key mechanisms of human cooperation. It works only if there is a reputational score keeping and each individual can inform with high probability which other individuals were good or bad in the previous round. Gossip is often proposed as a mechanism that can maintain such coherence of reputations in the face of errors of transmission. Random errors, however, are not the only source of uncertainty in such situations. The possibility of deceptive communication, where the signallers aim to misinform the receiver cannot be excluded. While there is plenty of evidence for deceptive communication in humans the possibility of deception is not yet incorporated into models of indirect reciprocity. Here we show that when deceptive strategies are allowed in the population it will cause the collapse of the coherence of reputations and thus in turn it results the collapse of cooperation. This collapse is independent of the norms and the cost and benefit values. It is due to the fact that there is no selection for honest communication in the framework of indirect reciprocity. It follows that indirect reciprocity can be only proposed plausibly as a mechanism of human cooperation if additional mechanisms are specified in the model that maintains honesty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号